Fuzzy hyper BCK-implicative ideals of hyper BCK-algebras

Muhammad Touqeer *
and M. Aslam Malik †

Received December 9, 2014

Abstract

The fuzzification of (weak, strong, reflexive) hyper BCK-implicative ideals in hyper BCK-algebras is considered. It is shown that every fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is a fuzzy (weak, strong, reflexive) hyper BCK-ideal. We have discussed the properties of (fuzzy) weak hyper BCK-implicative ideals, (fuzzy) hyper BCK-implicative ideals, (fuzzy) strong hyper BCK-implicative ideals and (fuzzy) reflexive hyper BCK-implicative ideals and also their relations are given. Characterization of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is given. The hyper homomorphic pre-image of a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is discussed. Lastly the properties of product of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals are discussed.

Keywords: Hyper BCK-algebra; (fuzzy) hyper BCK-implicative ideal; (fuzzy) weak hyper BCK-implicative ideal; (fuzzy) strong hyper BCK-implicative ideal; (fuzzy) reflexive hyper BCK-implicative ideal.

^{*}touqeer-fareed@yahoo.com

[†]malikpu@yahoo.com

1 Introduction

In 1966, Imai and Iseki [7] introduced the notion of BCK-algebra. In the same year, Iseki introduced another notion called BCI-algebra. Liu et al. [13] discussed the concept of BCIimplicative ideals in BCI-algebras. Dudek [2] introduced the class of medial BCI-algebras. In 1983, Komori [11] introduced the notion of BCC-algebras as a new class of algebras. Then Dudek [3, 5] studied BCC-algebras and discussed the number of subalgebras of finite BCCalgebras. Dudek in [4] also gave the construction of BCC-algebras. After the introduction of the concept of fuzzy sets by Zadeh [16], various researchers discussed the idea of fuzzification of ideals in BCK/BCI/BCC-algebras. Khalid and Ahmad [10] considered the fuzzification of H-ideals in BCI-algebras. Mustafa [15] introduced the concept of fuzzy implicative ideals in BCK-algebras. Zhan and Jun [17] discussed generalized fuzzy ideals in BCI-algebras. Dudek and Jun [6] applied the idea of fuzzy sets to ideals in BCC-algebras. Marty [14], in 1934 introduced the hyper structure theory at the 8th Congrass of Scandinavian Mathematicians. Jun et al. [9] applied the hyper structures to BCK-algebras by introducing the concept of a hyper BCK-algebras, which is a generalization of BCK-algebras. In this paper, we introduce the concept of fuzzification of (weak, strong, reflexive) hyper BCK-implicative ideals in hyper BCK-algebras and discuss some of their properties.

2 Preliminaries

Let *H* be a non-empty set endowed with a hyper operation " \circ ", that is, \circ is a function from $H \times H$ to $P(H) - \emptyset$. For two subset *A* and *B* of *H*, denote by $A \circ B$ the set $\bigcup \{a \circ b \mid a \in A, b \in B\}$. We shall use $x \circ y$ instead of $x \circ \{y\}, \{x\} \circ y$ or $\{x\} \circ \{y\}$.

Definition 2.1. [9] By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation " \circ " and a constant 0 satisfying the following axioms:

$$(HK1) \quad (x \circ z) \circ (y \circ z) \ll x \circ y$$

$$(HK2) \quad (x \circ y) \circ z = (x \circ z) \circ y$$

- $(HK3) \quad x \circ H \ll \{x\}$
- (HK4) $x \ll y$ and $y \ll x$ imply x = y

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case we call " \ll " the hyper order in H.

Proposition 2.2. [9] In any hyper BCK-algebra H, the following hold:

 $\begin{array}{ll} (i) \ x \circ 0 = \{x\} & (vi) \ A \circ \{0\} = \{0\} \ implies \ A = \{0\} \\ (ii) \ x \circ y \ll x & (vii) \ 0 \ll x \\ (iii) \ 0 \circ A = \{0\} & (viii) \ 0 \circ x = \{0\} \\ (iv) \ A \ll A & (ix) \ 0 \circ 0 = \{0\} \\ (v) \ A \subseteq B \ implies \ A \ll B & (x) \ y \ll z \ implies \ x \circ z \ll x \circ y \\ for \ all \ x, y, z \in H \ and \ for \ all \ non-empty \ subsets \ A \ and \ B \ of \ H. \end{array}$

Let I be a non-empty subset of hyper BCK-algebra H and $0 \in I$. Then I is called a hyper BCK-subalgebra of H if $x \circ y \subseteq I$, for all $x, y \in I$, a weak hyper BCK-ideal of H if $x \circ y \subseteq I$ and $y \in I$ imply $x \in I$, for all $x, y \in H$, a hyper BCK-ideal of H if $x \circ y \ll I$ and $y \in I$ imply $x \in I$, for all $x, y \in H$, a strong hyper BCK-ideal of H if $x \circ y \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$, for all $x, y \in H$. I is said to be reflexive if $x \circ x \subseteq I$ for all $x \in H$.

Lemma 2.3. [9] Let H be a hyper BCK-algebra. Then

- any reflexive hyper BCK-ideal of H is a strong hyper BCK-ideal of H.
- any strong hyper BCK-ideal of H is a hyper BCK-ideal of H.
- any hyper BCK-ideal of H is a weak hyper BCK-ideal of H.

Lemma 2.4. [8] Let I be a reflexive hyper BCK-ideal of a hyper BCK-algebra H. Then $x \circ y \cap I \neq \emptyset$ implies $x \circ y \ll I$, $\forall x, y \in H$.

Proposition 2.5. [8] Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal of H such that $A \ll I$ then $A \subseteq I$.

Definition 2.6. Let *H* be a hyper BCK-algebra. A non-empty subset $I \subseteq H$ containing 0 is called

 \bullet a weak hyper BCK-implicative ideal of H if

 $((x \circ y) \circ y) \circ z \subseteq I$ and $z \in I$ imply $x \circ (y \circ (y \circ x)) \subseteq I$.

 \bullet a hyper BCK-implicative ideal of H if

$$((x \circ y) \circ y) \circ z \ll I$$
 and $z \in I$ imply $x \circ (y \circ (y \circ x)) \subseteq I$.

 \bullet a strong hyper BCK-implicative ideal of H if

 $(((x \circ y) \circ y) \circ z) \cap I \neq \emptyset$ and $z \in I$ imply $x \circ (y \circ (y \circ x)) \subseteq I$.

Theorem 2.7. Every (weak, strong, reflexive) hyper BCK-implicative ideal of a hyper BCKalgebra H is a (weak, strong, reflexive) hyper BCK-ideal of H.

Proof. Suppose that I is a hyper BCK-implicative ideal of H. Then for any $x, y, z \in H$ $((x \circ y) \circ y) \circ z \ll I$ and $z \in I$ imply $x \circ (y \circ (y \circ x)) \subseteq I$. Putting y = 0 and z = y we get

 $((x \circ 0) \circ 0) \circ y \ll I$ and $y \in I$ imply $x \circ (0 \circ (0 \circ x)) \subseteq I$.

 $\Rightarrow (x \circ y) \ll I \text{ and } y \in I \Rightarrow x \in I.$

Hence I is a hyper BCK-ideal of H.

The converse of theorem 2.7 is not true in general. It can be observed by the following example

Example 2.8. Let $H = \{0, 1, 2, 3\}$ be a hyper BCK-algebra defined by the following table:

0	0	1	2	3
0	{0}	{0}	{0}	{0}
1	{1}	$\{0, 1\}$	$\{0, 1\}$	$\{0, 1\}$
2	{2}	{2}	$\{0, 1\}$	{0}
3	{3}	{3}	{3}	$\{0, 1\}$

Take $I = \{0, 1\}$. Then I is a hyper BCK-ideal of H but it is not a hyper BCK-implicative ideal of H because

 $((2 \circ 3) \circ 3) \circ 1 = \{0\} \ll I \text{ and } 1 \in I \text{ but } 2 \circ (3 \circ (3 \circ 2)) = \{2\} \nsubseteq I.$

It can be observed from the above example that I is a weak hyper BCK-ideal of H but it not a weak hyper BCK-implicative ideal of H because

 $((2 \circ 3) \circ 3) \circ 1 = \{0\} \subseteq I \text{ and } 1 \in I \text{ but } 2 \circ (3 \circ (3 \circ 2)) = \{2\} \nsubseteq I.$

Also I is a strong hyper BCK-ideal of H but it is not a strong hyper BCK-implicative ideal of H because

 $((2 \circ 3) \circ 3) \circ 1 = \{0\} \cap I \neq \emptyset \text{ and } 1 \in I \text{ but } 2 \circ (3 \circ (3 \circ 2)) = \{2\} \nsubseteq I.$

Moreover it is clear that I is a reflexive hyper BCK-ideal of H but it is not a reflexive hyper BCK-implicative ideal of H.

Theorem 2.9. Let H be a hyper BCK-algebra. Then

(i) Every hyper BCK-implicative ideal of H is a weak hyper BCK-implicative ideal of H.

(ii) Every strong hyper BCK-implicative ideal of H is a hyper BCK-implicative ideal of H.

(iii) Every reflexive hyper BCK-implicative ideal of H is a strong hyper BCK-implicative ideal of H.

Proof. (i) Suppose that I is a hyper BCK-implicative ideal of H.

For any $x, y, z \in H$, let $((x \circ y) \circ y) \circ z \subseteq I$ and $z \in I$. Then $((x \circ y) \circ y) \circ z \subseteq I$ implies $((x \circ y) \circ y) \circ z \ll I$ (by Proposition 2.2(v)), which along with $z \in I$ implies $x \circ (y \circ (y \circ x)) \subseteq I$. Hence I is a weak hyper BCK-implicative ideal of H.

(*ii*) Suppose that I is a strong hyper BCK-implicative ideal of H. Let $((x \circ y) \circ y) \circ z \ll I$ and $z \in I$. Then for all $a \in ((x \circ y) \circ y) \circ z$, $\exists b \in I$ such that $a \ll b$. This implies $0 \in a \circ b$ and thus $(a \circ b) \cap I \neq \emptyset$. By Theorem 2.7, I is also a strong hyper BCK-ideal of H, therefore $(a \circ b) \cap I \neq \emptyset$ along with $b \in I$ implies $a \in I$, that is $((x \circ y) \circ y) \circ z \subseteq I$. Therefore $(((x \circ y) \circ y) \circ z) \cap I \neq \emptyset$, which along with $z \in I$ implies $x \circ (y \circ (y \circ x)) \subseteq I$. Hence I is a hyper BCK-implicative ideal of H.

(*iii*) Suppose that I is a reflexive hyper BCK-implicative ideal of H. For any $x, y, z \in H$, let $(((x \circ y) \circ y) \circ z) \cap I \neq \emptyset$ and $z \in I$. Being a reflexive hyper BCK-implicative ideal, I is also a reflexive hyper BCK-ideal of H (by Theorem 2.7), therefore by Lemma 2.4, $(((x \circ y) \circ y) \circ z) \cap I \neq \emptyset \Rightarrow ((x \circ y) \circ y) \circ z \ll I$, which along with $z \in I$ implies $x \circ (y \circ (y \circ x)) \subseteq I$. Hence I is a strong hyper BCK-implicative ideal of H. \Box

The converse of Theorem 2.9 may not be true. It can be observed by the following examples:

Example 2.10. Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra defined by the following table:

0	{0}	{1}	$\{2\}$
0	{0}	{0}	{0}
1	{1}	$\{0, 1\}$	$\{0, 1\}$
2	$\{2\}$	$\{2\}$	$\{0, 2\}$

Take $I = \{0, 2\}$. Then I is a weak hyper BCK-implicative ideal of H but it is not a hyper BCK-implicative ideal of H because

 $((1 \circ 0) \circ 0) \circ 2 = \{0, 1\} \ll I \text{ and } 2 \in I \text{ but } 1 \circ (0 \circ (0 \circ 1)) = \{1\} \nsubseteq I.$

Example 2.11. Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra defined by the following table:

0	{0}	$\{1\}$	$\{2\}$
0	{0}	{0}	{0}
1	{1}	$\{0\}$	{0}
2	$\{2\}$	$\{1, 2\}$	$\{0, 1, 2\}$

Take $I = \{0, 1\}$. Then I is a hyper BCK-implicative ideal of H but it is not a strong hyper BCK-implicative ideal of H because

 $(((2 \circ 0) \circ 0) \circ 1) \cap I = \{1, 2\} \cap I \neq \emptyset \text{ and } 1 \in I \text{ but } 2 \circ (0 \circ (0 \circ 2)) = \{2\} \nsubseteq I.$

Zadeh [16] defined fuzzy set μ in H as a function $\mu: H \to [0, 1]$

Definition 2.12. [8] A fuzzy set μ of a hyper BCK-algebra H is called

• a fuzzy weak hyper BCK-ideal of H if for all $x, y \in H$,

 $\mu(0) \ge \mu(x) \ge \min \{ \inf_{a \in x \circ y} \mu(a), \ \mu(y) \}$

• a fuzzy hyper BCK-ideal of H if $x \ll y$ implies $\mu(x) \ge \mu(y)$ and for all $x, y \in H$,

 $\mu(x) \ge \min \{ \inf_{a \in x \circ y} \mu(a), \ \mu(y) \}$

• a fuzzy strong hyper BCK-ideal of H if for all $x, y \in H$,

i

$$nf_{a \in x \circ x} \mu(a) \ge \mu(x) \ge \min \{ \sup_{b \in x \circ y} \mu(b), \mu(y) \}$$

• a fuzzy reflexive hyper BCK-ideal of H if for all $x, y \in H$,

 $inf_{a \in x \circ x} \mu(a) \ge \mu(y)$ and $\mu(x) \ge min \{sup_{b \in x \circ y} \mu(b), \mu(y)\}$

Theorem 2.13. [8] Let H be a hyper BCK-aglebra. Then

- Every fuzzy hyper BCK-ideal of H is a fuzzy weak hyper BCK-ideal of H.
- Every fuzzy strong hyper BCK-ideal of H is a fuzzy hyper BCK-ideal of H.
- Every fuzzy reflexive hyper BCK-ideal of H is a fuzzy strong hyper BCK-ideal of H.

3 Fuzzy hyper BCK-implicative ideals

Now we introduce the notions of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals in hyper BCK-algebras and discuss some of their properties. **Definition 3.1.** Let H be hyper BCK-algebra . A fuzzy set μ in H is called

• a fuzzy weak hyper BCK-implicative ideal of H if for all $x, y, z \in H$,

$$\mu(0) \ge \mu(x) \text{ and for all } t \in x \circ (y \circ (y \circ x)),$$
$$\mu(t) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \}$$

• a fuzzy hyper BCK-implicative ideal of H if for all $x, y, z \in H$,

$$\begin{aligned} x \ll y \text{ implies } \mu(x) \geq \mu(y) \text{ and for all } t \in x \circ (y \circ (y \circ x)), \\ \mu(t) \geq \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \} \end{aligned}$$

• a fuzzy strong hyper BCK-implicative ideal of H if for all $x, y, z \in H$,

$$inf_{a \in x \circ x} \ \mu(a) \ge \mu(x) \text{ and for all } t \in x \circ (y \circ (y \circ x)),$$
$$\mu(t) \ge \min \{ sup_{b \in ((x \circ y) \circ y) \circ z} \ \mu(b), \ \mu(z) \}$$

• a fuzzy reflexive hyper BCK-implicative ideal of H if for all $x, y, z \in H$,

 $inf_{a \in x \circ x} \ \mu(a) \ge \mu(y) \text{ and for all } t \in x \circ (y \circ (y \circ x)),$ $\mu(t) \ge \min \{ sup_{b \in ((x \circ y) \circ y) \circ z} \ \mu(b), \ \mu(z) \}$

Theorem 3.2. Let H be a hyper BCK-algebra. Then every fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H is a fuzzy (weak, strong, reflexive) hyper BCK-ideal of H.

Proof. Let μ be a fuzzy hyper BCK-implicative ideal of H. Then for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$ we have,

$$\begin{split} \mu(t) \geq \min \ \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \ \mu(a), \ \mu(z) \} \\ \text{Putting } y = 0 \text{ and } z = y \text{ we get,} \\ \mu(x) \geq \min \ \{ \inf_{a \in ((x \circ 0) \circ 0) \circ y} \ \mu(a), \ \mu(y) \} \\ \text{which gives,} \\ \mu(x) \geq \min \ \{ \inf_{a \in x \circ y} \ \mu(a), \ \mu(y) \} \end{split}$$

Thus μ is a fuzzy hyper BCK-ideal of H.

The converse of Theorem 3.2 may not be true. It can be observed by considering the hyper BCK-algebra $H = \{0, 1, 2, 3\}$ defined by the table given in example (2.8). Define a fuzzy set μ in H by:

 $\mu(0) = \mu(1) = 1, \ \mu(2) = 0.5, \ \mu(3) = 0.3$

Then μ is a fuzzy hyper BCK-ideal of H but it is not a fuzzy hyper BCK-implicative ideal of H because for $2 \in (2 \circ (3 \circ (3 \circ 2)))$

$$\mu(2) = 0.5 < 1 = \min \{ \inf_{a \in ((2 \circ 3) \circ 3) \circ 0} \mu(a), \ \mu(0) \}$$

From above example it can be observed that μ is a fuzzy weak hyper BCK-ideal of H but it is not a fuzzy weak hyper BCK-implicative ideal of H.

Also μ is a fuzzy strong hyper BCK-ideal of H but it is not a fuzzy strong hyper BCKimplicative ideal of H because for $2 \in (2 \circ (3 \circ (3 \circ 2)))$

 $\mu(2) = 0.5 < 1 = \min \{ \sup_{a \in ((2 \circ 3) \circ 3) \circ 0} \mu(a), \ \mu(0) \}$

Moreover it is clear that μ is a fuzzy reflexive hyper BCK-ideal of H but it is not a fuzzy reflexive hyper BCK-implicative ideal of H.

Theorem 3.3. Let H be a hyper BCK-algebra. Then

(i) Every fuzzy hyper BCK-implicative ideal of H is a fuzzy weak hyper BCK-implicative ideal of H.

(ii) Every fuzzy Strong hyper BCK-implicative ideal of H is a fuzzy hyper BCK-implicative ideal of H.

(iii) Every fuzzy reflexive hyper BCK-implicative ideal of H is a fuzzy strong hyper BCK-implicative ideal of H.

Proof. (i) Let μ be a fuzzy hyper BCK-implicative ideal of H. Since every fuzzy hyper BCK-implicative ideal is a fuzzy hyper BCK-ideal (By Theorem 3.2) and every fuzzy hyper BCK-ideal is a fuzzy weak hyper BCK-ideal (By Theorem 2.13), therefore μ is a fuzzy weak hyper BCK-ideal of H. Hence μ satisfies $\mu(0) \ge \mu(x)$ for all $x \in H$. Also being a fuzzy hyper BCK-implicative ideal, for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$, μ satisfies:

$$\mu(t) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \}$$

Hence μ is a fuzzy weak hyper BCK-implicative ideal of H.

(*ii*) Suppose that μ is a fuzzy strong hyper BCK-implicative ideal of H. Since every fuzzy strong hyper BCK-implicative ideal is a fuzzy strong hyper BCK-ideal (by Theorem 3.2) and every fuzzy strong hyper BCK-ideal is a fuzzy hyper BCK-ideal (by Theorem 2.13), therefore

 μ is a fuzzy hyper BCK-ideal of H. Hence for any $x, y \in H$, if $x \ll y$ then $\mu(x) \ge \mu(y)$.

Also being a fuzzy strong hyper BCK-implicative ideal, for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$, μ satisfies

$$\mu(t) \ge \min \{ \sup_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \}$$

Since $\sup_{a \in ((x \circ y) \circ y) \circ z} \mu(a) \ge \mu(b)$, for all $b \in ((x \circ y) \circ y) \circ z$, therefore we get, $\mu(t) \ge \min \{\mu(b), \ \mu(z)\}$, for all $b \in ((x \circ y) \circ y) \circ z$

Since $\mu(b) \ge inf_{c \in ((x \circ y) \circ y) \circ z} \ \mu(c)$ for all $b \in ((x \circ y) \circ y) \circ z$, therefore we have, $\mu(t) \ge min \ \{\mu(b), \ \mu(z)\} \ge min \ \{inf_{c \in ((x \circ y) \circ y) \circ z} \ \mu(c), \ \mu(z)\},$ that is $\mu(t) \ge min \ \{inf_{c \in ((x \circ y) \circ y) \circ z} \ \mu(c), \ \mu(z)\}$

Hence μ is a fuzzy hyper BCK-implicative ideal of H.

(*iii*) Let μ be a fuzzy reflexive hyper BCK-implicative ideal of H. Then μ satisfies

$$inf_{a \in x \circ x} \ \mu(a) \ge \mu(y)$$
, for all $x, y \in H$
 $\Rightarrow inf_{a \in x \circ x} \ \mu(a) \ge \mu(x)$, for all $x \in H$

Hence the first condition for μ to be a fuzzy strong hyper BCK-implicative ideal of H is satisfied. Also being a fuzzy reflexive hyper BCK-implicative ideal, for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$, μ satisfies

$$\mu(t) \ge \min \{ \sup_{b \in ((x \circ y) \circ y) \circ z} \mu(b), \ \mu(z) \}$$

Hence μ is a fuzzy strong hyper BCK-implicative ideal of H.

The converse of Theorem 3.3 may not be true. Consider the hyper BCK-algebra $H = \{0, 1, 2\}$ defined by the table given in example (2.10). Define a fuzzy set μ in H by:

$$\mu(0) = \mu(2) = 1, \ \mu(1) = 0$$

Then μ is a fuzzy weak hyper BCK-implicative ideal of H but it is not a fuzzy hyper BCK-implicative ideal of H because:

$$1 \ll 2$$
 but $\mu(1) = 0 < 1 = \mu(2)$

Example 3.4. Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra defined by the following table:

0	{0}	{1}	$\{2\}$
0	{0}	{0}	{0}
1	{1}	$\{0, 1\}$	$\{0, 1\}$
2	{2}	$\{1, 2\}$	$\{0, 1, 2\}$

Define a fuzzy set μ in H by:

$$\mu(0) = \mu(1) = 1, \ \mu(2) = 0$$

ŀ

Then μ is a fuzzy hyper BCK-implicative ideal of H but it is not a fuzzy strong hyper BCK-implicative ideal of H because for $2 \in (2 \circ (2 \circ (2 \circ 2)))$

 $\mu(2) = 0 < 1 = \min \{ \sup_{a \in (((2 \circ 2) \circ 2) \circ 0)} \mu(a), \ \mu(0) \}$

Let μ be a fuzzy set in a hyper BCK-algebra H. Then the set defined by $\mu_t = \{x \in H : \mu(x) \ge t\}$, where $t \in [0, 1]$, is called a level subset of H.

Theorem 3.5. Let μ be a fuzzy set in a hyper BCK-algebra H. Then μ is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if for all $t \in [0, 1]$, $\mu_t \neq \emptyset$ is a (weak, strong, reflexive) hyper BCK-implicative ideal of H.

Proof. Suppose that μ is a fuzzy hyper BCK-implicative ideal of H. Since $\mu_t \neq \emptyset$, so for any $x \in \mu_t, \ \mu(x) \ge t$. Since every fuzzy hyper BCK-implicative ideal is also a fuzzy weak hyper BCK-implicative ideal (by Theorem 3.3(i)), so μ is also a fuzzy weak hyper BCK-implicative ideal of H. Thus $\mu(0) \ge \mu(x) \ge t$, for all $x \in H$, which implies $0 \in \mu_t$.

Let $((x \circ y) \circ y) \circ z \ll \mu_t$ and $z \in \mu_t$, for some $x, y, z \in H$. Then for all $a \in ((x \circ y) \circ y) \circ z$, $\exists b \in \mu_t$ such that $a \ll b$. So $\mu(a) \ge \mu(b) \ge t$, for all $a \in ((x \circ y) \circ y) \circ z$. Thus $inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a) \ge t$. Also $\mu(z) \ge t$, as $z \in \mu_t$. Therefore for all $v \in x \circ (y \circ (y \circ x))$, μ satisfies

$$\mu(v) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \ \mu(a), \ \mu(z) \} \ge \min \{ t, t \} = t$$
$$\Rightarrow v \in \mu_t, \text{ for all } v \in x \circ (y \circ (y \circ x))$$
$$\Rightarrow x \circ (y \circ (y \circ x)) \subseteq \mu_t$$

Hence μ_t is hyper BCK-implicative ideal of H.

Conversely suppose that $\mu_t \neq \emptyset$ is a hyper BCK-implicative ideal of H for all $t \in [0, 1]$. Let $x \ll y$ for some $x, y \in H$ and put $\mu(y) = t$. Then $y \in \mu_t$. So $x \ll y \in \mu_t \Rightarrow x \ll \mu_t$. Being a hyper BCK-implicative ideal, μ_t is also a hyper BCK-ideal of H (by Theorem (2.7)) therefore by Proposition 2.5, $x \in \mu_t$. Hence $\mu(x) \ge t = \mu(y)$. That is $x \ll y \Rightarrow \mu(x) \ge \mu(y)$, for all $x, y \in H$.

Moreover for any $x, y, z \in H$, let $d = \min \{ \inf_{c \in ((x \circ y) \circ y) \circ z} \mu(c), \mu(z) \}$. Then $\mu(z) \ge d \Rightarrow z \in \mu_d$ and for all $e \in ((x \circ y) \circ y) \circ z, \mu(e) \ge \inf_{c \in ((x \circ y) \circ y) \circ z} \mu(c) \ge d$, which implies $e \in \mu_d$. Thus $((x \circ y) \circ y) \circ z \subseteq \mu_d$. By Proposition 2.2(v), $((x \circ y) \circ y) \circ z \subseteq \mu_d \Rightarrow ((x \circ y) \circ y) \circ z \ll \mu_d$, which along with $z \in \mu_d$ implies $x \circ (y \circ (y \circ x)) \subseteq \mu_d$. Hence for all $u \in x \circ (y \circ (y \circ x))$, we get

$$\mu(u) \ge d = \min \{ \inf_{c \in ((x \circ y) \circ y) \circ z} \mu(c), \ \mu(z) \}$$

Thus μ is a fuzzy hyper BCK-implicative ideal of H.

Theorem 3.6. If μ is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of Hthen the set $A = \{x \in H \mid \mu(x) = \mu(0)\}$ is a (weak, strong, reflexive) hyper BCK-implicative ideal of H.

Proof. Suppose that μ is a fuzzy hyper BCK-implicative ideal of H. Clearly $0 \in A$. Let $((x \circ y) \circ y) \circ z \ll A$ and $z \in A$ for any $x, y, z \in H$. Then for all $a \in ((x \circ y) \circ y) \circ z$, $\exists b \in A$ such that $a \ll b$. Therefore $\mu(a) \ge \mu(b) = \mu(0)$. But being a fuzzy hyper BCK-implicative ideal, μ is also a fuzzy weak hyper BCK-implicative ideal of H (by Theorem 3.3(i)), so μ satisfies $\mu(0) \ge \mu(v)$, for all $v \in H$. This implies $\mu(0) \ge \mu(a)$, for all $a \in ((x \circ y) \circ y) \circ z$. Therefore $\mu(a) = \mu(0)$, for all $a \in ((x \circ y) \circ y) \circ z$, that is, $\inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a) = \mu(0)$. Also $\mu(z) = \mu(0)$. Being a fuzzy hyper BCK-implicative ideal, for all $t \in x \circ (y \circ (y \circ x))$, μ satisfies

$$\mu(t) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \ \mu(a), \ \mu(z) \} = \min \{ \mu(0), \ \mu(0) \} = \mu(0)$$

Since $\mu(0) \ge \mu(v)$, for all $v \in H$, therefore $\mu(t) = \mu(0)$, for all $t \in x \circ (y \circ (y \circ x))$. Thus $x \circ (y \circ (y \circ x)) \subseteq A$.

Hence A is a hyper BCK-implicative ideal of H.

The transfer principle for fuzzy sets described in [12] suggest the following theorem.

Theorem 3.7. For any subset A of a hyper BCK-algebra H, let μ be a fuzzy set in H defined by:

$$\mu(x) = \begin{cases} t & if \ x \in A \\ 0 & if \ x \notin A \end{cases}$$

for all $x \in H$, where $t \in (0,1]$. Then A is a (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if μ is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H.

Proof. Suppose that A is a hyper BCK-implicative ideal of H. Let $x \ll y$ for some $x, y \in H$ and put $\mu(y) = t$. Then $y \in \mu_t$. So $x \ll y \in \mu_t \Rightarrow x \ll \mu_t$. Being a hyper BCK-implicative ideal, μ_t is also a hyper BCK-ideal of H (by Theorem (2.7)) therefore by Proposition 2.5, $x \in \mu_t$. Hence $\mu(x) \ge t = \mu(y)$. That is $x \ll y \Rightarrow \mu(x) \ge \mu(y)$, for all $x, y \in H$

Moreover for any $x, y, z \in H$,

If $((x \circ y) \circ y) \circ z \ll A$ and $z \in A$ then $x \circ (y \circ (y \circ x)) \subseteq A$. Since A is a hyper BCK-implicative ideal of H, so by Proposition 2.5, $((x \circ y) \circ y) \circ z \subseteq A$. Thus $\mu(a) = t$, for all $a \in ((x \circ y) \circ y) \circ z$ which implies $inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a) = t$. Also $\mu(z) = t$. Since $x \circ (y \circ (y \circ x)) \subseteq A$, for all $u \in x \circ (y \circ (y \circ x))$, we have

$$\mu(u) = t = \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \}$$

If
$$((x \circ y) \circ y) \circ z \not\ll A$$
 and $z \notin A$ then
 $\min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \} = 0 \le \mu(u), \text{ for all } u \in x \circ (y \circ (y \circ x))$

If $((x \circ y) \circ y) \circ z \not\ll A$ and $z \in A$ (OR) If $((x \circ y) \circ y) \circ z \ll A$ and $z \notin A$

Then in both of these cases we have

$$\min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \ \mu(z) \} = 0 \le \mu(u), \text{ for all } u \in x \circ (y \circ (y \circ x)) \}$$

Hence μ is a fuzzy hyper BCK-implicative ideal of H.

Conversely suppose that μ is a fuzzy hyper BCK-implicative ideal of H. Then by Theorem 3.5, for all $t \in (0, 1]$, $\mu_t = A$ is a hyper BCK-implicative ideal of H.

For a family $\{\mu_i \mid i \in I\}$ of fuzzy sets in a non-empty set X, define the join $\forall_{i \in I} \mu_i$ and meet $\wedge_{i \in I} \mu_i$ as follows:

$$(\bigvee_{i \in I} \mu_i)(x) = \sup_{i \in I} \mu_i(x)$$
$$(\wedge_{i \in I} \mu_i)(x) = \inf_{i \in I} \mu_i(x)$$

for all $x \in X$, where I is any indexing set.

Theorem 3.8. The family of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals of a hyper BCK-algebra H is a completely distributive lattice with respect to join and meet.

Proof. Let $\{\mu_i \mid i \in I\}$ be a family of fuzzy hyper BCK-implicative ideals of H. Since [0, 1] is a completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient to show that $\bigvee_{i \in I} \mu_i$ and $\bigwedge_{i \in I} \mu_i$ are fuzzy hyper BCK-implicative ideals of H.

For any $x, y \in H$, if $x \ll y$ then $(\bigvee_{i \in I} \mu_i)(x) = \sup_{i \in I} \mu_i(x) \ge \sup_{i \in I} \mu_i(y) = (\bigvee_{i \in I} \mu_i)(y)$ $\Rightarrow (\bigvee_{i \in I} \mu_i)(x) \ge (\bigvee_{i \in I} \mu_i)(y)$

Moreover, for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$, we have $(\bigvee_{i \in I} \mu_i)(t) = \sup_{i \in I} \mu_i(t) \ge \sup_{i \in I} [\min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu_i(a), \mu_i(z) \}]$ $= \min \{ \sup_{i \in I} (\inf_{a \in ((x \circ y) \circ y) \circ z} \mu_i(a)), \sup_{i \in I} (\mu_i(z)) \}$ $= \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} (\sup_{i \in I} \mu_i(a)), \sup_{i \in I} (\mu_i(z)) \}$ $= \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} ((\bigvee_{i \in I} \mu_i)(a)), (\bigvee_{i \in I} \mu_i)(z) \}$ $\Rightarrow (\bigvee_{i \in I} \mu_i)(t) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} ((\bigvee_{i \in I} \mu_i)(a)), (\bigvee_{i \in I} \mu_i)(z) \}$

Hence $\bigvee_{i \in I} \mu_i$ is a fuzzy hyper BCK-implicative ideal of H.

Now we prove that $\wedge_{i \in I} \mu_i$ is a fuzzy hyper BCK-implicative ideal of H. For any $x, y \in H$ we have, if $x \ll y$ then

$$(\wedge_{i\in I} \ \mu_i)(x) = \inf_{i\in I} \ \mu_i(x) \ge \inf_{i\in I} \ \mu_i(y) = (\wedge_{i\in I} \ \mu_i)(y)$$
$$\Rightarrow (\wedge_{i\in I} \ \mu_i)(x) \ge (\wedge_{i\in I} \ \mu_i)(y)$$

Moreover, for any $x, y, z \in H$ and for all $t \in x \circ (y \circ (y \circ x))$, we have $(\wedge_{i \in I} \mu_i)(t) = \inf_{i \in I} \mu_i(t) \ge \inf_{i \in I} [\min \{\inf_{b \in ((x \circ y) \circ y) \circ z} \mu_i(b), \mu_i(z)\}]$ $= \min \{\inf_{i \in I} (\inf_{b \in ((x \circ y) \circ y) \circ z} \mu_i(b)), \inf_{i \in I} (\mu_i(z))\}$

$$= \min \{ \inf_{b \in ((x \circ y) \circ y) \circ z} (\inf_{i \in I} \mu_i(b)), \inf_{i \in I} (\mu_i(z)) \}$$

= min $\{ \inf_{b \in ((x \circ y) \circ y) \circ z} ((\wedge_{i \in I} \mu_i)(b)), (\wedge_{i \in I} \mu_i)(z) \}$
 $\Rightarrow (\wedge_{i \in I} \mu_i)(t) \ge \min \{ \inf_{b \in ((x \circ y) \circ y) \circ z} ((\wedge_{i \in I} \mu_i)(b)), (\wedge_{i \in I} \mu_i)(z) \}$

Hence $\wedge_{i \in I} \mu_i$ is a fuzzy hyper BCK-implicative ideal of H.

Thus the family of fuzzy hyper BCK-implicative ideals of H is a completely distributive lattice with respect to join and meet.

Let X and Y be hyper BCK-algebras. A mapping $f: X \to Y$ is called a hyper homomorphism if

(i)
$$f(0) = 0$$

(ii) $f(x \circ y) = f(x) \circ f(y)$, for all $x, y \in X$.

Theorem 3.9. Let $f: X \to Y$ be an onto hyper homomorphism from a hyper BCK-algebra X to a hyper BCK-algebra Y. If ν is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of Y then the hyper homomorphic pre-image μ of ν under f is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of X.

Proof. Suppose that ν is a fuzzy hyper BCK-implicative ideal of Y. Since μ is a hyper homomorphic pre-image of ν under f then μ is defined by $\mu = \nu \circ f$ that is $\mu(x) = \nu(f(x))$ for all $x \in X$.

For any $x, y \in X$ and $f(x), f(x) \in Y$ If $x \ll y$ then $0 \in x \circ y$, which implies $f(0) \in f(x \circ y)$ $\Rightarrow 0 \in f(x) \circ f(y) \Rightarrow f(x) \ll f(y)$ $\Rightarrow \nu(f(x)) \ge \nu(f(y)) \Rightarrow \mu(x) \ge \mu(y)$ that is, $x \ll y \Rightarrow \mu(x) \ge \mu(y)$, for all $x, y \in X$

Now for all $t \in x \circ (y \circ (y \circ x))$, $f(t) \in f(x \circ (y \circ (y \circ x))) = f(x) \circ (f(y) \circ (f(y) \circ f(x)))$, where $x, y \in X$ and $f(x), f(y) \in Y$, we have

$$\mu(t) = \nu(f(t)) \ge \min \{ \inf_{f(a) \in ((f(x) \circ f(y)) \circ f(y)) \circ z'} \nu(f(a)), \ \nu(z') \}$$

where $z' \in Y$. Since $f: X \to Y$ is an onto hyper homomorphism, so for $z' \in Y$, $\exists z \in X$

such that f(z) = z'. Hence we get

$$\mu(t) \ge \min \{ \inf_{f(a) \in ((f(x) \circ f(y)) \circ f(y)) \circ f(z) = f((x \circ y) \circ y) \circ z)} \nu(f(a)), \ \nu(f(z)) \}$$

$$\Rightarrow \mu(t) \ge \min \{ \inf_{a \in ((x \circ y) \circ y) \circ z} \mu(a), \mu(z) \} \text{ for all } x, y, z \in X \}$$

Hence μ is a fuzzy hyper BCK-implicative ideal of X.

4 Product of fuzzy hyper BCK-implicative ideals

Definition 4.1. [1] Let $(H_1, \circ_1, 0_1)$ and $(H_2, \circ_2, 0_2)$ are hyper BCK-algebras and $H = H_1 \times H_2$. We define a hyper operation " \circ " on H by $(a_1, b_1) \circ (a_2, b_2) = (a_1 \circ a_2, b_1 \circ b_2)$ for all $(a_1, b_1), (a_2, b_2) \in H$, where for $A \subseteq H_1$ and $B \subseteq H_2$ by (A, B) we mean $(A, B) = \{(a, b) : a \in A, b \in B\}$ and $0 = (0_1, 0_2)$ and a hyper order " \ll " on H by $(a_1, b_1) \ll (a_2, b_2) \Leftrightarrow a_1 \ll a_2$ and $b_1 \ll b_2$ Thus $(H, \circ, 0)$ is a hyper BCK-algebra.

Let μ and ν be fuzzy sets in hyper BCK-algebras H_1 and H_2 respectively. Then $\mu \times \nu$, the product of μ and ν of $H = H_1 \times H_2$ is defined as

$$(\mu \times \nu)((x,y)) = min \ \{\mu(x), \nu(y)\}$$

From now on, let H_1 and H_2 are hyper BCK-algebras and let $H = H_1 \times H_2$.

Definition 4.2. Let μ be a fuzzy set in H. Then fuzzy sets μ_1 and μ_2 on H_1 and H_2 respectively, are defined as

$$\mu_1(x) = \mu((x,0)), \quad \mu_2(y) = \mu((0,y))$$

Theorem 4.3. Let μ be a fuzzy set in H. If μ is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H, then $\mu = \mu_1 \times \mu_2$, where μ_1 and μ_2 are fuzzy sets on H_1 and H_2 respectively.

Proof. Suppose that μ is a fuzzy hyper BCK-implicative ideal of H. Then for any (x, u), (y, v), $(z, w) \in H$, where $x, y, z \in H_1$ and $u, v, w \in H_2$ and for all

 $(a,b) \in (x,u) \circ ((y,v) \circ ((y,v) \circ (x,u))) = (x \circ (y \circ (y \circ x)), u \circ (v \circ (v \circ u))),$ we have

 $\mu((a,b)) \ge \min \{ \inf_{(c,d) \in (((x,u) \circ (y,v)) \circ (y,v)) \circ (z,w)} \mu((c,d)), \ \mu((z,w)) \}$

Putting y = v = z = d = 0 and w = u, we get

$$\begin{split} \mu((x,u)) &\geq \min \left\{ \inf_{(c,0) \in (((x,u) \circ (0,0)) \circ (0,0)) \circ (0,u)} \mu((c,0)), \ \mu((0,u)) \right\} \\ &\Rightarrow \mu((x,u)) \geq \min \left\{ \inf_{(c,0) \in (x, \ u \circ u)} \mu((c,0)), \ \mu((0,u)) \right\} \\ &\Rightarrow \mu((x,u)) \geq \min \left\{ \mu_1(x), \ \mu_2(u) \right\} \\ &\Rightarrow \mu((x,u)) \geq (\mu_1 \times \mu_2)((x,u)) \\ &\Rightarrow \mu_1 \times \mu_2 \subseteq \mu \qquad (1) \end{split}$$

Conversely, since $(x, 0) \ll (x, u)$ and $(0, u) \ll (x, u)$ $\Rightarrow \mu((x, 0)) \ge \mu((x, u))$ and $\mu((0, u)) \ge \mu((x, u))$

Thus we have

$$(\mu_{1} \times \mu_{2})((x, u)) = \min \{\mu_{1}(x), \ \mu_{2}(u)\} = \min \{\mu(x, 0), \ \mu(0, u)\}$$

$$\geq \min \{\mu(x, u), \ \mu(x, u)\} = \ \mu(x, u)$$

$$\Rightarrow (\mu_{1} \times \mu_{2})((x, u)) \ge \mu(x, u)$$

$$\Rightarrow \mu \subseteq \mu_{1} \times \mu_{2} \qquad (2)$$

Hence from (1) and (2) we have, $\mu_1 \times \mu_2 = \mu$

Theorem 4.4. Let $\mu = \mu_1 \times \mu_2$ be a fuzzy set in H. Then $\mu = \mu_1 \times \mu_2$ is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H if and only if μ_1 and μ_2 are fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals of H_1 and H_2 respectively.

Proof. Let μ be a fuzzy hyper BCK-implicative ideal of H and let $x_1 \ll x_2$ for some $x_1, x_2 \in H_1$. Then $(x_1, 0) \ll (x_2, 0)$ which implies $\mu((x_1, 0)) = \mu_1(x_1) \ge \mu((x_2, 0)) = \mu_1(x_2)$, that is, $\mu_1(x_1) \ge \mu_1(x_2)$

Moreover for any $x_1, y_1, z_1 \in H_1$, let $t = \min \{ \inf_{a \in ((x_1 \circ y_1) \circ y_1) \circ z_1} \mu_1(a), \mu_1(z_1) \}$

Then for all $b \in ((x_1 \circ y_1) \circ y_1) \circ z_1$, $\mu_1(b) \ge inf_{a \in ((x_1 \circ y_1) \circ y_1) \circ z_1} \mu_1(a) \ge t$ and $\mu_1(z_1) \ge t$

 $\Rightarrow \mu((b,0)) \ge t \text{ and } \mu((z_1,0)) \ge t, \text{ for all } (b,0) \in (((x_1,0) \circ (y_1,0)) \circ (y_1,0)) \circ (z_1,0)$

 $\Rightarrow (b,0) \in \mu_t \text{ and } (z_1,0) \in \mu_t, \text{ for all } (b,0) \in (((x_1,0) \circ (y_1,0)) \circ (y_1,0)) \circ (z_1,0)$

$$\Rightarrow$$
 ((($x_1, 0$) \circ ($y_1, 0$)) \circ ($y_1, 0$)) \circ ($z_1, 0$) $\subseteq \mu_t$ and ($z_1, 0$) $\in \mu_t$

Since by Theorem 3.5, $\mu_t \neq \emptyset$ is a hyper BCK-implicative ideal of H and so is a weak hyper BCK-implicative ideal of H (by Theorem 2.9(i)). Thus

$$((((x_1, 0) \circ (y_1, 0)) \circ (y_1, 0)) \circ (z_1, 0)) \subseteq \mu_t \text{ and } (z_1, 0) \in \mu_t \text{ imply} (x_1, 0) \circ ((y_1, 0) \circ ((y_1, 0) \circ (x_1, 0))) \subseteq \mu_t$$

Therefore $\mu((s,0)) \ge t$, for all $(s,0) \in (x_1,0) \circ ((y_1,0) \circ ((x_1,0))) = (x_1 \circ (y_1 \circ (y_1 \circ x_1)), 0)$

$$\Rightarrow \mu_1(s) \ge t = \min \{ \inf_{a \in ((x_1 \circ y_1) \circ y_1) \circ z_1} \mu_1(a), \ \mu_1(z_1) \},$$

for all $s \in x_1 \circ (y_1 \circ (y_1 \circ x_1))$

Hence μ_1 is a fuzzy hyper BCK-implicative ideal of H_1 .

Similarly we can prove that μ_2 is a fuzzy hyper BCK-implicative ideal of H_2 .

Conversely suppose that μ_1 and μ_2 are fuzzy hyper BCK-implicative ideals of H_1 and H_2 respectively.

For any $(x, u), (y, v) \in H$, where $x, y \in H_1$ and $u, v \in H_2$, let $(x, u) \ll (y, v)$ Since $(x, u) \ll (y, v) \Leftrightarrow x \ll y$ and $u \ll v$ $\Rightarrow \mu_1(x) \ge \mu_1(y)$ and $\mu_2(u) \ge \mu_2(v)$ $\Rightarrow min \{\mu_1(x), \ \mu_2(u)\} \ge min \{\mu_1(y), \ \mu_2(v)\}$ $\Rightarrow (\mu_1 \times \mu_2)((x, u)) \ge (\mu_1 \times \mu_2)((y, v))$ $\Rightarrow \mu((x, u)) \ge \mu((y, v))$ Thus $(x, u) \ll (y, v) \Rightarrow \mu((x, u)) \ge \mu((y, v))$

Moreover for any (x, u), (y, v), $(z, w) \in H$, where $x, y, z \in H_1$ and $u, v, w \in H_2$ and for all $(a, b) \in (x, u) \circ ((y, v) \circ ((y, v) \circ (x, u))) = (x \circ (y \circ (y \circ x)), u \circ (v \circ (v \circ u)))$, we have

$$\mu((a,b)) = (\mu_1 \times \mu_2)((a,b)) = \min \{\mu_1(a), \ \mu_2(b)\}$$

 $\geq \min \left[\min \left\{ \inf_{c \in ((x \circ y) \circ y) \circ z} \mu_1(c), \ \mu_1(z) \right\}, \ \min \left\{ \inf_{d \in ((u \circ v) \circ v) \circ w} \mu_2(d), \ \mu_2(w) \right\} \right]$

 $= \min \left[\min \left\{ \inf_{c \in ((x \circ y) \circ y) \circ z} \mu_1(c), \ \inf_{d \in ((u \circ v) \circ v) \circ w} \mu_2(d) \right\}, \ \min \left\{ \ \mu_1(z), \ \mu_2(w) \right\} \right]$

 $= \min \left[\inf_{c \in ((x \circ y) \circ y) \circ z, \ d \in ((u \circ v) \circ v) \circ w} \{ \min \{ \mu_1(c), \ \mu_2(d) \} \}, \ \min \{ \ \mu_1(z), \ \mu_2(w) \} \right]$

 $= \min \{ \inf_{(c,d) \in (((x \circ y) \circ y) \circ z, ((u \circ v) \circ v) \circ w)} (\mu_1 \times \mu_2)((c,d)), (\mu_1 \times \mu_2)((z,w)) \}$

 $= \min \{ \inf_{(c,d) \in (((x \circ y) \circ y) \circ z, ((u \circ v) \circ v) \circ w)} \mu((c,d)), \ \mu((z,w)) \}$

 $\Rightarrow \mu((a,b)) \ge \min \ \{ \inf_{(c,d) \in (((x,u) \circ (y,v)) \circ (y,v)) \circ (z,w)} \ \mu((c,d)), \ \mu((z,w)) \}$

Hence μ is a fuzzy hyper BCK-implicative ideal of H.

5 CONCLUSION

Every (fuzzy) reflexive hyper BCK-implicative ideal of a hyper BCK-algebra H is a (fuzzy) strong hyper BCK-implicative ideal of H and every (fuzzy) strong hyper BCK-implicative ideal of H is a (fuzzy) hyper BCK-implicative ideal of H, each of which in turn is a (fuzzy) weak hyper BCK-implicative ideal of H. Moreover a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H is a fuzzy (weak, strong, reflexive) hyper BCK-ideal of H. The hyper homomorphic pre-image of a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal.

References

 R.A. Borzooei, A. Hasankhani, M.M. Zahedi, Y.B. Jun: On hyper K-algebras, Math. Japonica 52 (1) (2000), 113-121.

- [2] W.A. Dudek: On medial BCI-algebras, Prace Naukowe WSP w Czestochowie, ser. Matematyka 1 (1987), 25-33.
- [3] W.A. Dudek: On BCC-algebras, Logique et Analyse 129-130 (1990), 103-111.
- [4] W.A. Dudek: On constructions of BCC-algebras, Selected Papers on BCK and BCIalgebras 1 (1992), 93-96.
- [5] W.A. Dudek: Subalgebras in finite BCC-algebras, Bul. Inst. Math. Acad. Sinica 28 (2000), 201-206.
- [6] W.A. Dudek and Y.B. Jun: Fuzzifications of ideals in BCC-algebras, Glasnik Mat. 36(56) (2001), 127-138.
- [7] Y. Imai, K. Iseki: On axioms of propositional calculi, XIV Proc., Jpn. Acad. 42 (1966), 19-22.
- [8] Y.B. Jun, X.L. Xin: Fuzzy hyper BCK-ideals of hyper BCK-algebras, Sci. Math. Jpn. 53 (2) (2001), 415-422.
- [9] Y.B. Jun, M.M. Zahedi, X.L. Xin, R. A. Borzooei: On hyper BCK-algebras, Ital. J. Pure Appl. Math. 8 (2000), 127-136.
- [10] H.M. Khalid, B. Ahmad: Fuzzy H-ideals in BCI-algebras, Fuzzy Sets and Systems 101 (1999), 153-158.
- [11] Y. Komori: The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13-16.
- [12] M. Kondo, W.A. Dudek: On the transfer principle in fuzzy theory, Mathware and Soft Computing 12 (2005), 41-55.
- [13] Y.L. Liu, Y. Xu, J. Meng: BCI-implicative ideals of BCI-algebras, Information Sciences 177 (2007), 49874996.
- [14] F. Marty: Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm 1934, 45-49.
- [15] S.M. Mostafa: Fuzzy implicative ideals in BCK-algebras, Fuzzy Sets and Systems 87 (1997), 361-368.
- [16] L. A Zadeh: Fuzzy sets, Inf. Control 8 (1965), 338-353.

[17] J. Zhan and Y.B. Jun: Generalized Fuzzy Ideals of BCI-Algebras, Bull. Malays. Math. Sci. Soc. (2) 32 (2) (2009), 119130.

Communicated by Hiroaki Ishii

Muhammad Touqeer touqeer-fareed@yahoo.com M. Aslam Malik malikpu@yahoo.com

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan.