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Abstract. In this study, we applied propositional and predicate logic for mathemat-
ical explication of the processes of inference by children. This facilitated extraction and
comparison of children-specific inference processes, which are difficult to derive from
a child’s protocol itself, and elucidation of the structure of children’s ratio-related
conceptual and procedural knowledge.

1 Introduction In arithmetic education, ascertaining the concepts of given domains
in terms of conceptual and procedural knowledge is essential as a mechanism of knowl-
edge change during knowledge acquisition. Conceptual knowledge consists of an implicit
or explicit system of interlinked pieces of knowledge for a given domain, and procedural
knowledge comprises systems of multiple execution series for problem solution [1], [2].

The concept of ratio is applied in ascertaining the relation between two quantities and in
comparing the relative quantities of two sets. It differs in meaning from simple multiplication
and is active in the sense of comparing the relative sizes (multiples) of given quantities and
base quantities rather than directly comparing quantities [3]. In the present study, we
therefore focus on comparison of the relations between quantities in two different sets. It
has been noted that the concept of ratio can be investigated in a fairly pure form as a logical
mathematical recognition [4], and in this light we treat this comparison as a probabilistic
comparison task. Ratio and probability are different concepts, but for children unschooled
in probability, the ratio concept can be utilized as an approach for probability settings.
Studies that have utilized probability comparison tasks include A. Nakagaki [4], [5], N.
Fujimura [6], G. Noelting [7], [8], J. Piaget and B. Inhelder [9], and R. S. Siegler [10],
[11], which in relation to quantification of probability all share the view that recognition of
equivalence based on recognition of multiple relationships provides the foundation for the
intensive quantity concept, and formation of that concept begins at the age of 11 or 12 years
[6]. A. Nakagaki [5] identifies the psychological stage of development of the ratio concept as
a process of balancing in which the ability to compensate affirmation with negation becomes
complete. Moreover, children inherently possess and apply the concept of“ half”1/2) as
an intuitive approach for quantification of probability [12], and the“ half” benchmark
strategy [13] is of key significance during the stage in which children recognize and develop
ratio inference leading to“ part-whole”comparison in probability comparison problems.

Previous studies have not included integrated analyses of children’s recognition in the
three situational contexts of ratio, comparative quantity, and base quantity, and are gen-
erally protocol-based analyses of children’s recognition of ratio rather than mathematical
representations of children’s thought processes, using test problems that include numbers,
and thereby make it difficult to determine the relationship between children’s conceptual
and procedural knowledge in their ratio recognition.
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The present study was undertaken to develop test problems that distinguish between
conceptual and procedural knowledge relating to ratios, express the thought processes of
children mathematically, and elucidate the structures of ratio-related conceptual and pro-
cedural knowledge.

2 Development of test problems
(1) Symbolization of inference process by propositional and predicate logic In
the development of each test problem, it is necessary to prove that a given inference process
can derive the correct conclusion from the perspective of probability with the conditions
given in the problem statement as assumptions. In analysis of the test results, moreover, it is
essential to explain the children-specific logic used in the inference process mathematically.
In the present study, we perform these proofs and analyses by using propositional logic and
predicate logic with reference to the views of S. Tamura, K. Aragane, and T. Hirai [14] and
K. Todayama [15]. The symbols and the rules and laws of inference as used in the present
study are essentially as follows. Note that we express A ⇒ B, i.e., if A ≡ ⊤ then B ≡ ⊤,
as inference schemata with a horizontal line of the form as below.

A ⇒ B
A

B

1) Inference rules and laws We let x, y, z, a, b, c, and d be nonnegative variables, and
let f(x) be x = y, x > y, or x < y. We refer to f(x) containing variable x as the expression.
The focus is on the thought processes of children, and we accordingly allow the use of
operations on the variables and take the operation rules to be applicable to inference rules.
Tables 1 through 3 show the unit element, zero element, and reflective, symmetric, and
transitive laws, the inference rules, and the inference laws, respectively, for operations on
the variables. The proofs of the inference laws are not shown.

Unit Element(UE) If x× y = y × x = x, take y as a unit element and write y = 1.
Zero Element(ZE) If x+ y = y + x = x, take y as a zero element and write y = 0.
Reflective Law(RL) x = x

Symmetric Law(SL)
x = y

y = x

Transitive Law(TL)
x = y y = z

x = z

x > y y > z

x > z

x < y y < z

x < z

x > y y = z

x > z

x = y y > z

x > z

x < y y = z

x < z

x = y y < z

x < z
Table 1: Unit element, zero element, and reflective, symmetric, and
transitive laws for operations on the variables

Rule name Inference rule

Operation−Inference(OI) Where a ◦ b = c, allow
f(a ◦ b)
f(c)

and
f(c)

f(a ◦ b)

==
a = b c = d

a ◦ c = b ◦ d
◦ : +,−,×, or ÷
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>= 1
a > b c = d

a ◦ c > b ◦ d
a < b c = d

a ◦ c < b ◦ d
◦ : +,−,×, or ÷

a = b c > d

a ◦ c > b ◦ d
a = b c < d

a ◦ c < b ◦ d
◦ : + or ×

>= 2
a = b c > d

a ◦ c < b ◦ d
a = b c < d

a ◦ c > b ◦ d
◦ : − or ÷

>> 1
a > b c > d

a ◦ c > b ◦ d
a < b c < d

a ◦ c < b ◦ d
◦ : + or ×

>> 2
a > b c > d

a ◦ d > b ◦ c
a < b c < d

a ◦ d < b ◦ c
◦ : − or ÷

<>
a > b

b < a

a < b

b > a
Table 2: Rules of inference for operations on variables

In all of the above operations, ÷ is applicable so long as c ̸= 0 and d ̸= 0.

The following rules are allowed as operation-inference rules for a ◦ b = c.
(1) x× 1 = 1× x = x
(2) x× 1/x = 1/x× x = x÷ x = x/x = 1
(3) x+ 0 = 0 + x = x
(4) x− x = 0
(5) x ◦ y = y ◦ x (◦ : + or ×) [Commutative Law]
(6) (x ◦ y) ◦ z = x ◦ (y ◦ z) (◦ : + or ×) [Associative Law]
(7) x× (y ◦ z) = x× y ◦ x× z (◦ : + or −) [Distributive Law]
(8) (y ◦ z)÷ x = y ÷ x ◦ z ÷ x (◦ : + or −) [Distributive Law]

The following calculations are allowed as operation-inference rules for a ◦ b = c.
(1) x× 1/y = x÷ y = x/y
(2) a÷ b = (a× c)÷ (b× c)
(3) (a/b× bd)÷ (c/d× bd) = (a× d)÷ (b× c)

Law name Inference law

= Substitution(= Sub)
f(a1, a2, · · · , an) a1 = b1, a2 = b2, · · · , an = bn

f(b1, b2, · · · , bn)
Table 3: Laws of inference for operations on variables

The next four tables show the inference rules (Table 4) and inference laws (Table 5)
for propositional logic, and the inference rules (Table 6) and inference law (Table 7) for
predicate logic. F (X) is a logical expression containing propositional variable X. The
proofs of the inference laws are not shown.
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Rule name Inference rule Rule name Inference rule

(k) (k) (k)

→ Introduction(→ Int) [A] ∨Removal(∨Rem) [A] [B]

B

A → B
(k)

A ∨B C C

C
(k)

→ Removal(→ Rem)
A A → B

B
∨Introduction(∨Int) A

A ∨B

Transition(Trn)
A → B B → C

A → B
¬Removal(¬Rem)

A ¬¬A
⊥

∧Introduction(∧Int) A B

A ∧B
¬Introduction(¬Int) [A]

⊥
¬A

∧Removal(∧Rem)
A ∧B

A

A ∧B

B
¬¬Removal(¬¬Rem)

¬¬A
A

Table 4: Rules of inference for propositional logic

Law name Inference law Law name Inference law

≡ Removal(≡ Rem)
A ≡ B

A → B

A ≡ B

B → A
≡ Substiution(≡ Sub)

F (A) A ≡ B

F (B)

∧∧Introduction(∧∧Int) A1 A2 A3 · · ·An

A1∧A2∧A3∧· · ·∧An
⊻ → ∨ A ⊻B

A ∨B

¬¬Introduction(¬¬Int) A

¬¬A
Importation(Imp)

A → (B → C)

A ∧B → C

Contraposition(Cont)
A → B

¬B → ¬A
Table 5: Laws of inference for propositional logic

Rule name Inference rule

∀Removal(∀Rem)
∀x[P (x)]

P (ai)

∃Introduction(∃Int) P (ai)

∃x[P (x)]

∀Introduction(∀Int) P (a1) P (a2) · · ·P (an)

∀x[P (x)]

∃Removal(∃Rem)
∃x[P (x)]

P (a1)

C

P (a2)

C
· · · P (an)

C
C

Table 6: Rules of inference for predicate logic
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Law name Inference law

∃∃Introduction(∃∃Int)
P1(a1i1 ) P2(a2i2 ) · · ·Pn(anin

)

∃x1∃x2 · · · ∃xn[P1(x1) ∧ P2(x2) ∧ · · · ∧ Pn(xn)]
Table 7: Law of inference for predicate logic

2) Symbolization for single-lot drawing trials Table 8 shows the symbolization for
the number of events, elementary events, and probabilities in a trial drawing of one lot
from a set containing winning and losing lots and in a trial drawing of one lot each from
sets A and B (thus an“ A lot”and a“ B lot”, respectively) with both sets containing
winning and losing lots. Variable x may be n(X), n(Y ), n(S), P (X), or P (Y ), either alone
or in combination.

X Event: Drawing of winning lot n(S) Total number of lots
XA Event: Drawing of winning A lot n(SA) Total number of A lots
XB Event: Drawing of winning B lot n(SB) Total number of B lots
Y Event: Drawing of losing lot P (X) Probability of drawing winning lot
YA Event: Drawing of losing A lot P (XA) Probability of drawing winning A lot
YB Event: Drawing of losing B lot P (XB) Probability of drawing winning B lot
S All events P (Y ) Probability of drawing losing lot
SA All A-lot events P (YA) Probability of drawing losing A lot
SB All B-lot events P (YB) Probability of drawing losing B lot
n(X) Number of winning lots P (S) Probability of all events
n(XA) Number of winning A lots P (SA) Probability of all events for A lots
n(XB) Number of winning B lots P (SB) Probability of all events for B lots

n(Y ) Number of losing lots

n(YA) Number of losing A lots

n(YB) Number of losing B lots

Table 8: Number and probability of events and elementary events
in single-lot drawing trials

Table 9 shows the symbolization of comparative conditions in the settings, with the total
number of lots, number of winning lots, number of losing lots, probability of winning, and
probability of losing as the objects of comparison. The expression (A ∧ ¬B) ∨ (¬A ∧B) is
abbreviated A ⊻B, and exclusive disjunction is symbolized as ⊻.

Condition Symbolization
Equal total numbers of A and B lots A1: n(SA) = n(SB)
Larger total number of A lots A2: n(SA) > n(SB)
Larger total number of B lots A3: n(SA) < n(SB)
Different total numbers of A and B lots ¬A1: ¬(n(SA) = n(SB))
Equal numbers of winning A and B lots B1: n(XA) = n(XB)
Larger number of winning A lots B2: n(XA) > n(XB)
Larger number of winning B lots B3: n(XA) < n(XB)
Different numbers of winning A and B lots ¬B1: ¬(n(XA) = n(XB))
Equal numbers of losing A and B lots C1: n(YA) = n(YB)
Larger number of losing A lots C2: n(YA) > n(YB)
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Larger number of losing B lots C3: n(YA) < n(YB)
Different numbers of losing A and B lots ¬C1: ¬(n(YA) = n(YB))
Equal chances of winning with A and B lots D1: P (XA) = P (XB)
Greater chance of winning with A lots D2: P (XA) > P (XB)
Greater chance of winning with B lots D3: P (XA) < P (XB)
Different chances of winning with A and B lots ¬D1: ¬(P (XA) = P (XB))
Equal chances of losing with A and B lots E1: P (YA) = P (YB)
Greater chance of losing with A lots E2: P (YA) > P (YB)
Greater chance of losing with B lots E3: P (YA) < P (YB)
Different chances of losing with A and B lots ¬E1: ¬(P (YA) = P (YB))

Table 9: Comparative setting conditions relating to probabilities

From A1 ⊻ A2 ⊻ A3, ¬A1 ≡ A2 ⊻ A3; from B1 ⊻ B2 ⊻ B3, ¬B1 ≡ B2 ⊻ B3; from C1 ⊻ C2

⊻ C3, ¬C1 ≡ C2 ⊻ C3; from D1 ⊻ D2 ⊻ D3, ¬D1 ≡ D2 ⊻ D3; and from E1 ⊻ E2 ⊻ E3, ¬E1

≡ E2 ⊻ E3

3) Axioms, definitions, and theorems for single-lot drawing trials Table 10 shows
the axioms, definitions, and theorems for the trials in which a single lot is drawn. The
theorem proofs are not shown.

Axiom1(Ax1) P (S) = 1, P (ϕ) = 0
Axiom2(Ax2) P (S) = P (X) + P (Y )
Axiom3(Ax3) 0 ≦ P (X) ≦ 1, 0 ≦ P (Y ) ≦ 1 (X ⫅ S, Y ⫅ S)
Definition(Def) P (Z) = n(Z)÷ n(S) (Z : X,Y )
Theorem1(Thm1) P (Y ) = 1− P (X)
Theorem2(Thm2) P (X) = 1− P (Y )
Theorem3(Thm3) n(Z) = n(S)× P (Z) (Z : X,Y )
Theorem4(Thm4) n(S) = n(Z)÷ P (Z) (Z : X,Y )
Theorem5(Thm5) n(S) = n(X) + n(Y )
Theorem6(Thm6) n(Y ) = n(S)− n(X)
Theorem7(Thm7) n(X) = n(S)− n(Y )
Table 10: Axioms, definitions, and theorems for single-lot drawing
trials

(2) Test problems The test problems in the probability comparison tasks are in the two
categories of ratio-related conceptual and ratio-related procedural knowledge. Each of the
two categories includes the three contextual categories of ratio, comparative-quantity, and
base-quantity. The conceptual-knowledge problems are those that contain no numbers and
thus require approaches based primarily on concepts. The procedural-knowledge problems
are those that contain numbers and thus allow approaches based primarily on procedures.
In the following, we provide examples of ratio-context test problems that pertain to ratio-
related conceptual and procedural knowledge. Tables 11 and 12 show the supposition and
conclusion of each of these test problems. Please refer to Supplements 1 through 4 for test
problems in the comparative-quantity and base-quantity contexts pertaining to ratio-related
conceptual and procedural knowledge.
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Example test problem for ratio-related conceptual knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an“ easy winner”.

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
There are more losing B lots than losing A lots. (Supposition)

If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following
answers that you think may be correct. Note that in some questions, a circle can be
drawn in all of the boxes.

□
It is easier to win
with an A lot.

□
No difference between
an A lot and a B lot.

□
It is easier to win
with a B lot. (Conclusion)

Supposition Correct conclusion
Question 1 A1, B2, C3 D2

Question 2 A1, B1, C1 D1

Question 3 ¬A1, B2, C3 D2

Question 4 ¬A1, B2, C2 D1, D2, D3

Question 5 ¬A1, B2, C1 D2

Question 6 ¬A1, B1, C2 D3

Table 11: Test problem suppositions and correct conclusions for
ratio-related conceptual knowledge in the ratio context

Example test problem for ratio-related procedural knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot“ chance of winning”. If chance of
winning is high, we call the group an“ easy winner”.

The total number of A lots is 5, and 3 of them are winning lots.
The total number of B lots is 5, and 1 of them is a winning lot.

(Supposition)



　　　　　　　　　　　　　　　　　T. Sakai, T. Takahashi

If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following
answers that you think may be correct.

□
It is easier to win
with an A lot.

□
No difference between
an A lot and a B lot.

□
It is easier to win
with a B lot. (Conclusion)

Supposition Correct conclusion
Question 1 n(XA) = 3, n(XB) = 1, n(SA) = 5, n(SB) = 5 D2

Question 2 n(XA) = 1, n(XB) = 3, n(SA) = 2, n(SB) = 6 D1

Question 3 n(XA) = 3, n(XB) = 3, n(SA) = 4, n(SB) = 5 D2

Question 4 n(XA) = 1, n(XB) = 3, n(SA) = 4, n(SB) = 4 D3

Question 5 n(XA) = 3, n(XB) = 6, n(SA) = 4, n(SB) = 8 D1

Question 6 n(XA) = 2, n(XB) = 2, n(SA) = 4, n(SB) = 5 D2

Question 7 n(XA) = 1, n(XB) = 4, n(SA) = 2, n(SB) = 5 D3

Question 8 n(XA) = 1, n(XB) = 3, n(SA) = 4, n(SB) = 6 D3

Question 9 n(XA) = 2, n(XB) = 3, n(SA) = 4, n(SB) = 5 D3

Question 10 n(XA) = 2, n(XB) = 3, n(SA) = 8, n(SB) = 10 D3

Question 11 n(XA) = 3, n(XB) = 4, n(SA) = 4, n(SB) = 5 D3

Question 12 n(XA) = 4, n(XB) = 3, n(SA) = 10, n(SB) = 6 D3

Table 12: Test problem suppositions and correct conclusions for
ratio-related procedural knowledge in the ratio context

(3) Test-problem proofs We proved the validity of the correct conclusions given the
problem descriptions and suppositions, by propositional logic in cases resulting in one correct
answer and by predicate logic in cases not resulting in one correct answer. The following
two examples are typical of the proof process. One is for a problem involving ratio-related
conceptual knowledge in the ratio context and the other is for a problem involving ratio-
related procedural knowledge in the ratio context.

1) Ratio-related conceptual knowledge in the ratio context
Case resulting in one correct answer: Question 1

Supposition A1, B2, C3

Correct conclusion D2

B2 : n(XA) > n(XB) A1 : n(SA) = n(SB)

n(XA)÷ n(SA) > n(XB)÷ n(SB)
(>= 1)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)

n(XA)÷ n(SA) = P (XA)
(SL)

(= Sub)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)

n(XB)÷ n(SB) = P (XB)
(SL)

(= Sub)
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n(XA)÷n(SA)>n(XB)÷n(SB) n(XA)÷n(SA)=P (XA) n(XB)÷n(SB)=P (XB)

D2 : P (XA) > P (XB)
(= Sub)

This proves that D2 is the correct conclusion, given supposition A1 and B2.

Case not resulting in one correct answer: Question 4

Supposition ¬A1, B2, C2

Correct conclusion D1, D2, D3

n(XA)=2 n(XB)=1 n(SA)=4 n(SB)=2 2>1 4>2 4−2>2−1 2/4=1/2

∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∃∃Int)

∧n(SA) = z ∧ n(SB) = w ∧ z > w
∧n(YA) = z − x ∧ n(YB) = w − y ∧ z − x > w − y
∧P (XA) = x/z ∧ P (XB) = y/w ∧ x/z = y/w] · · · (a)

n(XA)=3 n(XB)=1 n(SA)=5 n(SB)=2 3>1 5>2 5−3>2−1 3/5>1/2

∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′
(∃∃Int)

∧n(SA) = z′ ∧ n(SB) = w′ ∧ z′ > w′

∧n(YA) = z′ − x′ ∧ n(YB) = w′ − y′ ∧ z′ − x′ > w′ − y′

∧P (XA) = x′/z′ ∧ P (XB) = y′/w′ ∧ x′/z′ > y′/w′] · · · (b)

n(XA)=2 n(XB)=1 n(SA)=5 n(SB)=2 2>1 5>2 5−2>2−1 2/5<1/2

∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′
(∃∃Int)

∧n(SA) = z′′ ∧ n(SB) = w′′ ∧ z′′ > w′′

∧n(YA) = z′′ − x′′ ∧ n(YB) = w′′ − y′′ ∧ z′′ − x′′ > w′′ − y′′

∧P (XA) = x′′/z′′ ∧ P (XB) = y′′/w′′ ∧ x′′/z′′ < y′′/w′′] · · · (c)

(a) (b) (c)

(∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∧∧ Int)

∧n(SA) = z ∧ n(SB) = w ∧ z > w
∧n(YA) = z − x ∧ n(YB) = w − y ∧ z − x > w − y
∧P (XA) = x/z ∧ P (XB) = y/w ∧ x/z = y/w])

∧(∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′

∧n(SA) = z′ ∧ n(SB) = w′ ∧ z′ > w′

∧n(YA) = z′ − x′ ∧ n(YB) = w′ − y′ ∧ z′ − x′ > w′ − y′

∧P (XA) = x′/z′ ∧ P (XB) = y′/w′ ∧ x′/z′ > y′/w′])
∧(∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′

∧n(SA) = z′′ ∧ n(SB) = w′′ ∧ z′′ > w′′

∧n(YA) = z′′ − x′′ ∧ n(YB) = w′′ − y′′ ∧ z′′ − x′′ > w′′ − y′′

∧P (XA) = x′′/z′′ ∧ P (XB) = y′′/w′′ ∧ x′′/z′′ < y′′/w′′])

This proves that there exist n(XA), n(XB), n(SA), and n(SB) that satisfy ¬A1, B2, C2,
and D1; ¬A1, B2, C2, and D2; and ¬A1, B2, C2, and D3, respectively.
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2) Ratio-related procedural knowledge in the ratio context
Question 1

Supposition n(XA) = 3, n(XB) = 1, n(SA) = 5, n(SB) = 5
Correct conclusion D2

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)
(= Sub)

P (XA) = n(XA)÷ n(SA) n(XA) = 3 n(SA) = 5

P (XA) = 3÷ 5

P (XA) = 3/5
(OI)

(= Sub)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)
(= Sub)

P (XB) = n(XB)÷ n(SB) n(XB) = 1 n(SB) = 5

P (XB) = 1÷ 5

P (XB) = 1/5
(OI)

(= Sub)

P (XA) = 3/5 3/5 > 1/5

P (XA) > 1/5
(TL)

P (XB) = 1/5

1/5 = P (XB)
(SL)

D2 : P (XA) > P (XB)
(TL)

This proves D2 as the correct conclusion.

We similarly proved all of the test problems by mathematically deriving the correct
answers from the suppositions, using propositional or predicate logic. The results showed all
of the test problems to be free from contradiction and demonstrated their correct inference
processes. By similarly representing the inference processes performed by the children, it
was then possible to obtain a clear comparison between the correct reasoning based on
probability definitions and the children’s reasoning based on theorems of their own making.

(4) Children tested The tests were administered to children in the fifth and sixth grades
of elementary schools. The sixth graders had been schooled in unit-element ratios and the
fifth graders had not. The number of children in each test category was as follows.

Ratio-related conceptual knowledge in the ratio context
125 5th graders, 129 6th graders, 254 total

Ratio-related conceptual knowledge in the comparative-quantity context
117 5th graders, 114 6th graders, 231 total

Ratio-related conceptual knowledge in the base-quantity context
144 5th graders, 139 6th graders, 283 total

Ratio-related procedural knowledge in the ratio context
214 5th graders, 229 6th graders, 443 tota

Ratio-related procedural knowledge in the comparative-quantity context
188 5th graders, 203 6th grader, 391 total

Ratio-related procedural knowledge in the base-quantity context
207 5th graders, 220 6th graders, 427 total
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3 Analysis of test results
(1) Mathematical explication of children’s inference processes We listed the test
problems in order from high to low correct-answer rate and analyzed the children’s proto-
cols. As a result, we found that the children’s manner of reasoning was characteristic and
that because they consistently used the same manner of reasoning it tended to be applicable
only to specific problems. As shown in Table 13, we therefore added symbols relating to
determinations based on half (1/2) as the basis/standard and then performed the symbol-
ization of inferences seen in classic child protocols to obtain a mathematical explication of
the children’s manner of reasoning. We also performed level and stage categorization, with
structural and qualitative changes in the children’s manner of reasoning taken as changes
of level and changes of stages within levels, respectively. For integrated analysis relating to
the two types of ratio-related knowledge and the three contexts, we extracted the children-
specific manner of reasoning as reasoning that is central to the reasoning of children.

In the following, we show typical examples of our symbolization of inferences made by
the children and the related level and stage categories for several test problems on ratio-
related conceptual knowledge in the ratio context. In these examples, we refer to correct
conclusions derived from the suppositions as“correct answers”and answers derived by the
children simply as“ conclusions”, and highlight the children-specific reasoning in inference
schemata.

W (z) P (z) > 1/2
L(z) P (z) < 1/2
H(z) P (z) = 1/2

Table 13: Determinations from base 1/2

1) Level 0

Question 2
Supposition A1, B1, C1

Correct answer D1

Conclusion D3

Correct or Incorrect Incorrect

2) Level 1, Stage 1A

Question 2
Supposition A1, B1, C1

Correct answer D1

Conclusion D1

Correct or Incorrect correct

B1 : n(XA) = n(XB) n(XA)=n(XB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→ Rem)

Question 6
Supposition ¬A1, B1, C2

Correct answer D3
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Conclusion D1

Correct or Incorrect Incorrect

B1 : n(XA) = n(XB) n(XA)=n(XB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→ Rem)

3) Level 1, Stage 1B

Question 6
Supposition ¬A1, B1, C2

Correct answer D3

Conclusion D3

Correct or Incorrect correct

B1 C2

B1 ∧ C2
(∧Int)

C2 : n(YA) > n(YB)
(∧Rem)

n(YA)>n(YB)→P (XA)<P (XB)

D3 : P (XA) < P (XB)
(→ Rem)

Question 4
Supposition ¬A1, B2, C2

Correct answer D1, D2, D3

Conclusion D2

Correct or Incorrect Incorrect

B2 C2

B2 ∧ C2
(∧Int)

B2 : n(XA) > n(XB)
(∧Rem)

n(XA)>n(XB)→P (XA)>P (XB)

D2 : P (XA) > P (XB)
(→ Rem)

4) Level 2

Question 4
Supposition ¬A1, B2, C2

Correct answer D1, D2, D3

Conclusion D1, D2, D3

Correct or Incorrect correct

n(XA) = 3, n(XB) = 2, n(YA) = 3, n(YB) = 2 · · · (1)

In the following inference schemata, [1] should be replaced with (1), excluding the
commas.

[1] 3 > 2 3 > 2 3/(3 + 3) = 2/(2 + 2)

∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∃∃Int)

∧n(YA) = z ∧ n(YB) = w ∧ z > w
∧P (XA) = x/(x+ z) ∧ P (XB) = y/(y + w) ∧ x/(x+ z) = y/(y + w)] · · · (a)

n(XA) = 6, n(XB) = 2, n(YA) = 3, n(YB) = 2 · · · (2)
In the following inference schemata, [2] should be replaced with (2), excluding the
commas.
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[2] 6 > 2 3 > 2 6/(6 + 3) > 2/(2 + 2)

∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′
(∃∃Int)

∧n(YA) = z′ ∧ n(YB) = w′ ∧ z′ > w′

∧P (XA) = x′/(x′+z′)∧P (XB) = y′/(y′+w′)∧x′/(x′+z′) > y′/(y′+w′)] · · · (b)

n(XA) = 6, n(XB) = 4, n(YA) = 6, n(YB) = 2 · · · (3)
In the following inference schemata, [3] should be replaced with (3), excluding the
commas.

[3] 6 > 4 6 > 2 6/(6 + 6) < 4/(4 + 2)

∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′
(∃∃Int)

∧n(YA) = z′′ ∧ n(YB) = w′′ ∧ z′′ > w′′

∧P (XA)=x′′/(x′′+z′′)∧P (XB)=y′′/(y′′+w′′)∧x′′/(x′′+z′′)<y′′/(y′′+w′′)] · · · (c)

(a) (b) (c)

(∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∧∧ Int)

∧n(YA) = z ∧ n(YB) = w ∧ z > w
∧P (XA) = x/(x+ z) ∧ P (XB) = y/(y + w) ∧ x/(x+ z) = y/(y + w)])

∧(∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′

∧n(YA) = z′ ∧ n(YB) = w′ ∧ z′ > w′

∧P (XA) = x′/(x′+z′)∧P (XB) = y′/(y′+w′)∧x′/(x′+z′) > y′/(y′+w′)])
∧(∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′

∧n(YA) = z′′ ∧ n(YB) = w′′ ∧ z′′ > w′′

∧P (XA) = x′′/(x′′+z′′)∧P (XB) = y′′/(y′′+w′′)∧x′′/(x′′+z′′) < y′′/(y′′+w′′)])

The processes of inference in children unschooled in probability are not based on an ex-
plicit definition of probability. In their inference processes, leaps therefore tend to occur due
to children-specific reasoning. The children’s reasoning sequences n(XA)=n(XB)→P (XA)=

P (XB) in Level 1 Stage 1A and n(YA)>n(YB)→P (XA)<P (XB) in Level 1 Stage 1B gen-
erally hold in cases where n(SA) = n(SB), but it appears that they were also excessively
applied in cases where n(SA) ̸= n(SB). The children at Level 2 apparently focused on
n(XA), n(XB), n(YA), and n(YB), and derived inference schema conclusion (a) based on
the following manner of reasoning.

n(XA) = 3, n(XB) = 2, n(YA) = 3, n(YB) = 2

n(XA) = 3 3 > 2

n(XA) > 2
(TL)

n(XB) = 2

2 = n(XB)
(SL)

B2 : n(XA) > n(XB)
(TL)

n(YA) = 3 3 > 2

n(YA) > 2
(TL)

n(YB) = 2

2 = n(YB)
(SL)

C2 : n(YA) > n(YB)
(TL)

n(XA) = 3 n(YA) = 3

n(XA)÷ n(YA) = 3÷ 3
(==)

n(XA)÷ n(YA) = 1
(OI)

n(XB) = 2 n(YB) = 2

n(XB)÷ n(YB) = 2÷ 2
(==)

n(XB)÷ n(YB) = 1
(OI)

1 = n(XB)÷ n(YB)
(SL)

n(XA)÷ n(YA) = n(XB)÷ n(YB)
(TL)
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n(XA)÷n(YA)=n(XB)÷n(YB) n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→Rem)

The Level-2 children’s reasoning, n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB), is
not correct in terms of probability. It does have a certain generality, as in this reasoning the
ratio n(XA) to n(YA) extended to the ratio n(XA) to n(SA) and the ratio n(XB) to n(YB)
extended to the ratio n(XB) to n(SB). It is accordingly a mathematically correct concept
in special cases, but its generality is not guaranteed. In the following, we show in terms of
propositional logic the process of obtaining n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB).

(OI)∗1
1÷ (n(XA)÷ n(YA)) = 1× n(YA)÷ (n(XA)÷ n(YA)× n(YA))

= n(YA)÷ n(XA)

(OI)∗2
1 + n(YA)÷ n(XA) = n(XA)÷ n(XA) + n(YA)÷ n(XA)

= (n(XA) + n(YA))÷ n(XA)

(OI)∗3
n(XA)× (n(XA)+n(YA))÷n(XA) = (n(XA)+n(YA))×n(XA)÷n(XA)

= (n(XA) + n(YA))× 1
= n(XA) + n(YA)

1 = 1

n(XA) = 3 n(YA) = 3

n(XA)÷ n(YA) = 3÷ 3
(==)

n(XA)÷ n(YA) = 1
(OI)

1÷ (n(XA)÷ n(YA)) = 1÷ 1
(==)

1÷ (n(XA)÷ n(YA)) = 1
(OI)

n(YA)÷ n(XA) = 1
(OI)∗1

1 = 1 n(YA)÷ n(XA) = 1

1 + n(YA)÷ n(XA) = 1 + 1
(==)

(n(XA) + n(YA))÷ n(XA) = 1 + 1
(OI)∗2

n(XA) = 3 (n(XA) + n(YA))÷ n(XA) = 1 + 1

n(XA)× (n(XA) + n(YA))÷ n(XA) = 3× (1 + 1)
(==)

n(XA)× (n(XA) + n(YA))÷ n(XA) = 3 + 3
(OI)

n(XA) + n(YA) = 3 + 3
(OI)∗3

Thm5 : n(S) = n(X) + n(Y ) n(X) = n(XA) n(Y ) = n(YA) n(S) = n(SA)

n(SA) = n(XA) + n(YA)
(= Sub)

n(XA) = 3

n(XA) + n(YA) = 3 + 3

n(SA) = n(XA) + n(YA)

n(XA) + n(YA) = n(SA)
(SL)

n(SA) = 3 + 3
(= Sub)

n(XA)÷ n(SA) = 3÷ (3 + 3)
(==)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)
(= Sub)
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n(XA)÷ n(SA) = 3÷ (3 + 3)

P (XA) = n(XA)÷ n(SA)

n(XA)÷ n(SA) = P (XA)
(SL)

P (XA) = 3÷ (3 + 3)
(= Sub)

P (XA) = 1/2
(OI)

1 = 1

n(XB) = 2 n(YB) = 2

n(XB)÷ n(YB) = 2÷ 2
(==)

n(XB)÷ n(YB) = 1
(OI)

1÷ (n(XB)÷ n(YB)) = 1÷ 1
(==)

1÷ (n(XB)÷ n(YB)) = 1
(OI)

n(YB)÷ n(XB) = 1
(OI)∗1

1 = 1 n(YB)÷ n(XB) = 1

1 + n(YB)÷ n(XB) = 1 + 1
(==)

(n(XB) + n(YB))÷ n(XB) = 1 + 1
(OI)∗2

n(XB) = 2 (n(XB) + n(YB))÷ n(XB) = 1 + 1

n(XB)× (n(XB) + n(YB))÷ n(XB) = 2× (1 + 1)
(==)

n(XB)× (n(XB) + n(YB))÷ n(XB) = 2 + 2
(OI)

n(XB) + n(YB) = 2 + 2
(OI)∗3

Thm5 : n(S) = n(X) + n(Y ) n(X) = n(XB) n(Y ) = n(YB) n(S) = n(SB)

n(SB) = n(XB) + n(YB)
(= Sub)

n(XB) = 2

n(XB) + n(YB) = 2 + 2

n(SB) = n(XB) + n(YB)

n(XB) + n(YB) = n(SB)
(SL)

n(SB) = 2 + 2
(= Sub)

n(XB)÷ n(SB) = 2÷ (2 + 2)
(==)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)
(= Sub)

n(XB)÷ n(SB) = 2÷ (2 + 2)

P (XB) = n(XB)÷ n(SB)

n(XB)÷ n(SB) = P (XB)
(SL)

P (XB) = 2÷ (2 + 2)
(= Sub)

P (XB) = 1/2
(OI)

P (XA) = 1/2

P (XB) = 1/2

1/2 = P (XB)
(SL)

D1 : P (XA) = P (XB)
(TL)

(2) Children-specific reasoning As a result of the symbolization of the inferences
performed by the children for all of the test problems and their level and stage classification
as shown in Tables 14 and 15, we found children-specific reasoning to be present in all levels
and stages. Tables 16 and 17 provide a summary of the children-specific reasoning extracted
from the children’s manner of reasoning at each level and stage, and the correct answers
based on probabilistic definitions.
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Level Stage Ratio Comparative quantity Base quantity

0

1 1A Question 2 Question 2 Question 2
Question 1 Question 1 Question 1
Question 3
Question 5

1B Question 6 Question 6 Question 6
Question 4 Question 3

2 Question 4 Question 5
Question 3

Question 5
Question 4

Table 14: Levels and stages of ratio-related conceptual knowledge

Level Stage Ratio Comparative quantity Base quantity

0

1 1A Question 1 Question 1 Question 2
Question 4 Question 4 Question 5

Question 11 Question 7
Question 9 Question 11
Question 10 Question 8
Question 8 Question 9
Question 7 Question 10

Question 12
1B Question 6 Question 2 Question 3

Question 3 Question 5 Question 6
Question 12

1C Question 2
Question 8
Question 9
Question 7

2 Question 5
Question 10
Question 11

Question 6
Question 12
Question 3

Question 1
Question 4

Table 15: Levels and stages of ratio-related procedural knowledge

Level Stage Ratio Comparative quantity Base quantity

0

1 1A ·n(XA) = n(XB) → ·n(YA) = n(YB) → ·n(XA) = n(XB) →
P (XA) = P (XB) n(XA) = n(XB) n(YA) = n(YB)
·n(XA) > n(XB) → ·n(YA) < n(YB) → ·n(XA) > n(XB) →
P (XA) > P (XB) n(XA) > n(XB) n(YA) < n(YB)

1B ·n(XA) = n(XB) → ·n(YA) = n(YB) → ·n(XA) = n(XB) →
n(YA) > n(YB) → P (XA) > P (XB) → P (XA) < P (XB) →
P (XA) < P (XB) n(XA) > n(XB) n(YA) > n(YB)
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2 ·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·W (XA) ∧ L(XB) →
P (XA) > P (XB)
·L(XA) ∧W (XB) →
P (XA) < P (XB)

·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·L(XA) ∧W (XB) →
P (XA) < P (XB)

·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·W (XA) ∧ L(XB) →
P (XA) > P (XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) >
n(XB)÷ n(YB) →
P (XA) > P (XB)
·n(XA)÷ n(YA) <
n(XB)÷ n(YB) →
P (XA) < P (XB)
·n(XA)÷ n(SA) =
n(XB)÷ n(SB) →
P (XA) = P (XB)
·n(XA)÷ n(SA) >
n(XB)÷ n(SB) →
P (XA) > P (XB)
·n(XA)÷ n(SA) <
n(XB)÷ n(SB) →
P (XA) < P (XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) <
n(XB)÷ n(YB) →
P (XA) < P (XB)
·n(SA)× P (XA) >
n(SB)× P (XB) →
n(XA) > n(XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) >
n(XB)÷ n(YB) →
P (XA) > P (XB)
·n(SA)× P (YA) >
n(SB)× P (YB) →
n(YA) > n(YB)

Table 16: Children’s reasoning related to conceptual knowledge

Level Stage Ratio Comparative quantity Base quantity

0 ·n(SA) = n(SB) →
P (XA) = P (XB)

·n(SA) = n(SB) →
n(XA) = n(XB)

·P (XA) = P (XB) →
n(SA) = n(SB)

1 1A ·n(XA) = (nXB) → ·P (XA) = P (XB) → ·n(XA) = n(XB) →
P (XA) = P (XB) n(XA) = n(XB) n(SA) = n(SB)
·n(XA) > n(XB) → ·P (XA) > P (XB) → ·n(XA) > n(XB) →
P (XA) > P (XB) n(XA) > n(XB) n(SA) > n(SB)

·P (XA) < P (XB) → ·n(XA) < n(XB) →
n(XA) < n(XB) n(SA) < n(SB)

1B ·n(XA) = (nXB) → ·P (XA) = P (XB) → ·n(XA) = n(XB) →
n(SA) > n(SB) → n(SA) < n(SB) → P (XA) > P (XB) →
P (XA) < P (XB) n(XA) < n(XB) n(SA) < n(SB)
·n(XA) = (nXB) →
n(SA) < n(SB) →
P (XA) > P (XB)
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1B ·n(YA) > n(YB) →
P (XA) < P (XB)
·n(YA) < n(YB) →
P (XA) > P (XB)

1C
·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·L(XA) ∧H(XB) →
P (XA) < P (XB)
·H(XA) ∧W (XB) →
P (XA) < P (XB)

·n(XA)− n(YA) <
·n(XB)− n(YB) →
P (XA) < P (XB)

2 ·n(SA)× a = n(SB)× b
→n(XA)×a=n(XB)×b
→P (XA)=P (XB)
·n(SA)× a = n(SB)× b
→n(XA)×a<n(XB)×b
→P (XA)<P (XB)

·n(XA)÷ n(SA) =
n(XB)÷ n(SB) →
P (XA) = P (XB)
·n(XA)÷ n(SA) <
n(XB)÷ n(SB) →
P (XA) < P (XB)

·n(SA)× P (XA) =
n(SB)× P (XB) →
n(XA) = n(XB)
·n(SA)× P (XA) >
n(SB)× P (XB) →
n(XA) > n(XB)

·n(XA)÷ P (XA) =
n(XB)÷ P (XB) →
n(SA) = n(SB)

Table 17: Children’s reasoning related to procedural knowledge

4 Discussion In reasoning, children consider relations between two sets and relations
within a set, which we refer to here as“Between”and“Within”relations, respectively.
For Between relations, such as that of n(XA) and n(XB), they consider the relation between
two quantities with each occurring in a different set. For Within relations, such as that of
n(XA) and n(YA), they consider the relation between two quantities occurring in the same
set.

In comparing the children’s reasoning processes, as shown in Tables 16 and 17, we found
that additive reasoning (including size comparison) for Between relations and multiplicative
reasoning for Within relations occur in relation to both conceptual knowledge and proce-
dural knowledge in all three of the contexts, and that additive reasoning for the Between
relation precedes multiplicative reasoning for the Within relation. We found additive rea-
soning (including size comparison) for the Within relation to occur consistently in relation
to ratio-related conceptual knowledge in all three contexts. In relation to ratio-related
procedural knowledge in the ratio context, we found additive reasoning (including size com-
parison) for the Within relation and multiplicative reasoning for the Between relation, again
with additive reasoning for the Within relation preceding multiplicative reasoning for the
Between relation. These findings indicate that the Between relation is easier for children to
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recognize than the Within relation, and that additive reasoning is easier than multiplica-
tive reasoning. They also indicate that the transitions in reasoning proceed from additive
reasoning for the Between relation to additive reasoning for the Within relation, to multi-
plicative reasoning for the Between relation, and finally to multiplicative reasoning for the
Within relation. Additive reasoning for the Within relation was found to involve the use of
half as a basis strategy. This is in accord with the findings in studies made to present on
the stages of children’s knowledge and development in proportional reasoning.

In cases where the number of winning lots and total number of lots in two sets were
in a double-half (1/2) relation, some of the children considered the related numbers and
performed inferences based on multiplicative reasoning for the Between relation. Even in
problems containing no explicit numbers, some of the children on their own initiative set
up actual numbers that were in the double-half (1/2) relation, e.g., (4, 2), (6, 3), (8, 4),
and (10, 5), for the number of winning and losing lots and performed their inferences based
on multiplicative reasoning for the Within relation. In these cases, they used half as a
ratio rather than as a basis strategy. Their unprompted introduction of the half concept,
in any case, clearly suggests that it holds a key role as a prime mover in the transition
from additive reasoning in the Within relation to multiplicative reasoning in the Between
relation and to multiplicative reasoning in the Within relation.

The occurrence of additive reasoning relating to ratio-related conceptual and procedu-
ral knowledge for Between relations and multiplicative reasoning for Within relations in
all three contexts indicates that in each of the contexts an association is formed between
ratio-related conceptual and procedural knowledge under additive reasoning and the struc-
tural change in the manner of thinking then leads to a formation of a new association under
multiplicative reasoning. The structural change is a basic change from an additive to a mul-
tiplicative algebraic structure that is the foundation of the children’s manner of reasoning
and corresponds to a structural change in level. The emergence of Additive reasoning for
Within relations can also be regarded as a qualitative change from the Between relation to
the Within relation in additive reasoning, and the emergence of multiplicative reasoning for
Between relations can be regarded as a qualitative change from the Between relation to the
Within relation in multiplicative reasoning.

We also found an increase from one to two in the number of events considered in ad-
ditive reasoning for the Between relation, with the proviso that although two events were
considered in all three contexts for ratio-related conceptual and procedural knowledge, in
those cases where equality was established for one event there was a tendency to perform
the determination based only on the other event.

These qualitative changes signify a change in the children’s mode of consideration from
one event to two and from the Between relation to the Within relation, and correspond
to a change in stage. Until the structural change from additive to multiplicative reasoning
occurs, children consistently perform inferences based on additive reasoning. In summary,
the findings indicate that the three contexts do not become integrated in terms of additive
reasoning until after ratio-related conceptual and procedural knowledge become linked in
additive reasoning in each of the three.

Additional note
This work was supported by JSPS KAKENHI Grant Number 25381204.
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Appendix 1
Example test problem for ratio-related conceptual knowledge in the comparative quantity
context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an“ easy winner”.

The total number of A lots is the same as the total number of B lots.
There are more losing B lots than losing A lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. (Supposition)
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Which of the A lots or the B lots have a larger number of winning lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

□
There are more
winning A lots.

□
No difference between
the A lots and B lots.

□
There are more
winning B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 A1, C3, D2 B2

Question 2 A1, C1, D1 B1

Question 3 ¬A1, C2, D3 B1, B2, B3

Question 4 ¬A1, C2, D2 B2

Question 5 ¬A1, C2, D1 B2

Question 6 ¬A1, C1, D2 B2

Appendix 2
Example test problem for ratio-related conceptual knowledge in the base quantity context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an“ easy winner”.

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. (Supposition)

Which of the A lots or the B lots have a larger number of losing lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

□
There are more
losing A lots.

□
No difference between
the A lots and B lots.

□
There are more
losing B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the base quantity context
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Supposition Correct conclusion
Question 1 A1, B2, D2 C3

Question 2 A1, B1, D1 C1

Question 3 ¬A1, B2, D3 C2

Question 4 ¬A1, B2, D2 C1, C2, C3

Question 5 ¬A1, B2, D1 C2

Question 6 ¬A1, B1, D3 C2

Appendix 3
Example problem for ratio-related procedural knowledge in the comparative quantity con-
text

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot“ chance of winning”. If chance of
winning is high, we call the group an“ easy winner”.

The total number of A lots is 5, and chance of winning is 0.6.
The total number of B lots is 5, and chance of winning is 0.2.

(Supposition)

Which of the A lots or the B lots have a larger number of winning lots, or is it the
same for the A lots and B lots? Draw a circle in the box above any of the following
answers that you think may be correct.

□
There are more
winning A lots.

□
No difference between
the A lots and B lots.

□
There are more
winning B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related procedural knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 n(SA) = 5, n(SB) = 5, P (XA) = 0.6, P (XB) = 0.2 B2

Question 2 n(SA) = 2, n(SB) = 6, P (XA) = 0.5, P (XB) = 0.5 B3

Question 3 n(SA) = 4, n(SB) = 5, P (XA) = 0.75, P (XB) = 0.6 B1

Question 4 n(SA) = 4, n(SB) = 4, P (XA) = 0.25, P (XB) = 0.75 B3

Question 5 n(SA) = 4, n(SB) = 8, P (XA) = 0.75, P (XB) = 0.75 B3

Question 6 n(SA) = 4, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.4 B1

Question 7 n(SA) = 2, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.8 B3

Question 8 n(SA) = 4, n(SB) = 6, P (XA) = 0.25, P (XB) = 0.5 B3

Question 9 n(SA) = 4, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.6 B3

Question 10 n(SA) = 8, n(SB) = 10, P (XA) = 0.25, P (XB) = 0.3 B3

Question 11 n(SA) = 4, n(SB) = 5, P (XA) = 0.75, P (XB) = 0.8 B3

Question 12 n(SA) = 10, n(SB) = 6, P (XA) = 0.4, P (XB) = 0.5 B2
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Appendix 4
Example problem for ratio-related procedural knowledge in the base quantity context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called“ A lots”and lots from
the other group are called“ B lots”. Both groups include winning lots and losing lots.
The“ total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot“ chance of winning”. If chance of
winning is high, we call the group an“ easy winner”.

Chance of winning of an A lot is 0.6, and the number of winning lots is 3.
Chance of winning of a B lot is 0.2, and the number of winning lots is 1.

(Supposition)

Which of the A lots or the B lots have a larger total number of lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct.

□
The total number
of A lots is larger.

□
No difference between
the A lots and B lots.

□
The total number
of B lots is larger. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related procedural knowledge
in the base quantity context

Supposition Correct conclusion
Question 1 P (XA) = 0.6, P (XB) = 0.2, n(XA) = 3, n(XB) = 1 A1

Question 2 P (XA) = 0.5, P (XB) = 0.5, n(XA) = 1, n(XB) = 3 A3

Question 3 P (XA) = 0.75, P (XB) = 0.6, n(XA) = 3, n(XB) = 3 A3

Question 4 P (XA) = 0.25, P (XB) = 0.75, n(XA) = 1, n(XB) = 3 A1

Question 5 P (XA) = 0.75, P (XB) = 0.75, n(XA) = 3, n(XB) = 6 A3

Question 6 P (XA) = 0.5, P (XB) = 0.4, n(XA) = 2, n(XB) = 2 A3

Question 7 P (XA) = 0.5, P (XB) = 0.8, n(XA) = 1, n(XB) = 4 A3

Question 8 P (XA) = 0.25, P (XB) = 0.5, n(XA) = 1, n(XB) = 3 A3

Question 9 P (XA) = 0.5, P (XB) = 0.6, n(XA) = 2, n(XB) = 3 A3

Question 10 P (XA) = 0.25, P (XB) = 0.3, n(XA) = 2, n(XB) = 3 A3

Question 11 P (XA) = 0.75, P (XB) = 0.8, n(XA) = 3, n(XB) = 4 A3

Question 12 P (XA) = 0.4, P (XB) = 0.5, n(XA) = 4, n(XB) = 3 A2
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