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Deformations of finite hypergroups
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ABSTRACT. The purpose of the present paper is to introduce g-deformations of finite
groups of low order, for examples, cyclic groups, symmetric groups, dihedral groups
and the quaternion group in the category of hypergroups. Moreover we discuss g-
deformations of certain finite hypergroups.

1 Introduction

We investigate g-deformations of finite groups and finite hypergroups in the category of
hypergroups. It is known that there is no ¢-deformations of finite groups in the category of
quantum groups ([24]). However we introduce that there are many g-deformations of finite
groups in the category of hypergroups.

Hypergroups Z,(2) of order two with a parameter ¢ (0 < g < 1) are interpreted as
g-deformations of the cyclic group Z,. This fact is our motivation that we started to
investigate g-deformations of finite groups and finite hypergroups.

In section 3, we discuss g-deformations of the cyclic group Zs of order three and the
cyclic group Z4 of order four. In section 4, we discuss g-deformations of the symmetric group
S3, the dihedral group D4 and quaternion group Q4. These g-deformations are obtained
by applying a notion of a semi-direct product hypergroup introduced by H. Heyer and S.
Kawakami (see [5]).

Moreover we study g-deformations of certain finite hypergroups of low order, the orbital
hypergroups K*(Z3) of Z3 and K%(Z4) of Z4, the character hypergroups K(S3) of S5, K(Dy)
of Dy and IC(@) of Qq4, the conjugacy class hypergroups K(Ss) of Ss, K(D4) of Dy and
K(Q4) of Q4 in section 5.

2 Preliminaries

For a finite set K = {cg,c1, - ,cn}, we denote by M?(K) and M!(K), the set of all
complex valued measures on K and the set of all non-negative probability measures on K
respectively, namely

n

MY(K) =4 ad., : a; €C (j=0,1,2,--,n) 3,

=0
MY K) =Y aj, : a; >0 (j=0,1,2,---,n), Y a;=1
j=0 §=0

where the symbol . stands for the Dirac measure in ¢ € K. For p = apde, + a1ds, + -+ +
ande, € MP(K), the support of p is

Supp(,u) = {CJ €K : a; #0 (J:0u1727 ,TL)}

2010 Mathematics Subject Classification. 20N20, 20B05, 20C05.
Key words and phrases. Deformation, Finite group, Hypergroup.




S. KAWAKAMI, T. TSURIT AND S. YAMANAKA

Axiom A finite hypergroup K = (K, M°(K), o, *) consists of a finite set K = {cg,c1,- -+ ,¢n}
together with an associative product (called convolution) o and an involution * in M®(K)
satisfying the following conditions.

(1) The space (M?(K), o, %) is an associative *-algebra with unit d,.

(2) For ¢;,¢; € K, the convolution d., o d., belongs to M'(K).

(3) There exists an involutive bijection ¢; > ¢j on K such that d.x = 7.
Moreover ¢; = ¢} if and only if ¢y € supp(de, o d.,) for all ¢;,¢c; € K.

A finite hypergroup K is called commutative if the convolution o on M®(K) is commutative.

Let K and L be finite hypergroups. A mapping ¢ : K — L is called a (hypergroup)
homomorphism of K into L if there exists a *-homomorphism ¢ of M®(K) into M°(L) as
x-algebras such that d,) = @(0.). If @ is bijective, ¢ is called an isomorphism of K onto
L. In the case that L = K, an isomorphism ¢ : K — K is called an automorphism of K.
The set of all automorphisms of K becomes a group and it is denoted by Aut(K). Let G
be a finite group. A homomorphism « : G — Aut(K) is called an action of G on K.

For a commutative hypergroup K, a complex-valued function y on K is called a character
if y is linearly extendable on M®(K) to be Y(d.,) = x(c;) and satisfying that Y(0.,) = 1,
X(0¢; ©0c;) = X(0¢;)X(dc;) and x(3%) = X(d¢,) for all ¢;,¢; € K. We denote the trivial
character by xq. Let K be the set of all characters of K. A convolution on K is defined by
rr}ultiplication of functions on K. Then K becomes a signed hypergroup and the duality

K = K holds.

Conjugacy class hypergroup Let G be a finite group. For g € G, put ay(k) = Ady(k) =
gkg™! (k € G). Then « is an action of G on G. Hence we obtain the orbital hypergroup
K*(G) which we denote by K(G) which is called a conjugacy class hypergroup of G.

Character hypergroup For a finite group G, G = {70, 1, o ,Tm } 1s the set of the all
equivalence classes of irreducible representations of G. For m; € G, a character x; associated
with 7; is defined by

X;(9) tr(m;(g))-

- dim T
Then K(G) = {x0,X1, - » Xm} becomes a commutative hypergroup with unit yo by the
multiplication of functions on G.

Hypergroup join For two finite hypergroups H = {hg, h1, - ,h,} and L = {lo, ¢y, -
, U}, a hypergroup join

H\/L: {hO)hla'” 7h’ma€13”' aek}
is defined by the convolution ¢ whose structure equations are

On; ©O0n; = On; ©0n,, On, ©0s; = y;,
(Sgi & (ng = (5& o (ng when Ej 75 f:,

k
b, 005, = njw(H) + Z ng&j
j=1

where d¢, 0 87 = nfdy, + Z?:l nfégj and w(H) is the normalized Haar measure of H.
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3 Deformations of finite abelian groups
Let K = {cg,c1} be a hypergroup of order two. Then the structure of K is determined
by

601 ° 601 = q(SCo + (1 - q>601

where 0 < ¢ < 1. We denote it by Z,(2) which is interpreted as a g-deformation of Zs.
Stimulating by this fact, we have started to study g-deformations of finite groups.

3.1 Deformation Z,(3) of Zs
First of all we discuss a g-deformation of Zs. It is easy to check the following proposition
directly and this fact is also described in the paper ([19], [23] and [25]).

Proposition 3.1 Let K = {cg,c1,ca} be a hypergroup of order three. For each ¢ (0 <
q < 1) there exists a unique hypergroup of order three such that ¢} = d., and o, 0 d., =
@0¢y + a10¢, + a2de,.

We denote the above K by Z,(3), which is interpreted as a g-deformation of Zz. The
structure equations of Z4(3) = {co,c1,c2} (0 < ¢ < 1) are determined by

l—¢q 1—¢q
601 o 602 = q600 + 2 601 + 2 6027
1—g¢q 144¢q
501 o 601 = T(SCI + Téczv
1+gq 1—g¢q
ey ©0ey = —0y + —0ey.

—

Put Z4(3) = {x0, X1, X2} Then the character table of Z,(3) is

Ch | C1 C2
Yo | 1] 11
X1 | 1w | Wy
X2 1 Fq Wy

—q+iy/a*+2¢

where w, = 5

—

By the symmetry of the character table we see that Z,(3) = Z,(3).

3.2 Deformation Z, ,(4) of Z4

We investigated several kinds of extension problem in the category of commutative
hypergroups, refer to [6], [8], [10], [11], [12], [13], [14], [15], [16], [17], [18]. The cyclic
group Z,4 of order four is a non-splitting extension of Zy by Zs. Then one can consider a
non-splitting extension Z, 4)(4) (0 <p <1, 0 < q < 1) of Zy(2) by Z,(2) as follows.

Proposition 3.2 (Example 4.2 in [14]) For (p,q) (0 < p <1, 0 < ¢ < 1) there exists a
unique hypergroup Z, q)(4) = {co, c1, c2, c3} of order four, which is an extension hypergroup
of Z¢(2) by Z,(2) = {co, c2} such that ¢} = cs.
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The structure of Z, 4)(4) = {co,c1,¢2,¢c3} (0 <p < 1,0 < ¢ < 1) is given by

1— 1—
§ey © 00, = 0oy © 00y = chscl + b, + Tq(scy

1—p 1+p
502 o 562 = p560 + (1 _p)écza 661 © 502 = 9 661 + 9 5637
2pq l—gq q—pq l—gq
66 5C == 66 55 55 56 )
1 ©0cg 1+p o T 2 Tt 1+p , 9 3
1+p 1—p
662 (] 563 = ?601 + T(SCS

—

Put Z,.q)(4) = {x0, X1, X2, x3}. Then the character table of Z, 4)(4) is

Co C1 Co C3
xo | 1 1 1 1
x1 | 1 i\/Dq —p | —iy/Dq
X2 | 1 —q 1 —q
xs | 1| —iy/pg | —p | iv/Pq

It is easy to see that Z(, q)(4) is interpreted as a (p, ¢)-deformation of Z, and Z(;q)\(él) =
Lgp)(4).

4 Deformations of non-abelian finite groups

Let o be an action of a finite group G on a finite hypergroup H = (H, M°(H), o, *).
Then a semi-direct product hypergroup S := H %, G is introduced in [5]. A convolution
0, in M?(S) is defined by

(‘C:hl Y 591) O« (Ehz Y 592) = (Ehl o gagl (h2) ® 591!]2)7

where € and § stand for Dirac measures in M®(H) and M®(G) respectively. Unit element
is €, ® d.. An involution ~ is

(1®3,)" == a; (1) ® 6,1

for all u € M*(H) and g € G.

4.1 Deformation S,(3) of the symmetric group Ss3
The symmetric group S3 is a semi-direct product Zsz X, Zo where « is an action of Zq
on Zg.

Let o be an action of Zs = {e, g} on a hypergroup Z,(3) = {ho, h1,h2} (0 < ¢ < 1) such
that
ag(hl) = hz, ag(h2> = hl.

Then we obtain a semi-direct product hypergroup
Sq(3) :=7Z4(3) Xo Zo

which is a g-deformation of the symmetric group S3 = Z3 X Zs.



DEFORMATIONS OF FINITE HYPERGROUPS

4.2 Deformation D, . (4) of the dihedral group D,
The dihedral group Dy is written by a semi-direct product Z4 X Zo.

Let H = Zp,q)(4) = {ho, h1,ha,h3} (0 <p < 1,0 < g < 1) be the (p, g)-deformation of
Z4 and « an action of Zy = {e, g} on Z, 4)(4) given by

Oég(hl) = h3, Oég(hg) = hg, Otg(hg) = hl.
Then we obtain a semi-direct product hypergroup
D(p,q) (4) = Z(p,q) (4) Ao ZQ.
Hence, we obtain a (p, ¢)-deformation D, ;)(4) of the dihedral group Dj.

4.3 Another deformation W,(4) of the dihedral group D,
The dihedral group Dy is also written by a semi-direct product (Zg x Z3) X g Zg where
B is a flip action of Zy on Zg X Zs.

Let Zq(2) XZq(Q) = {(ho, ho), (ho, hl), (hl, ho), (h17 hl) 3 ho, h1 S Zq(Q)} be a q—deformat—

ion of Zy X Zy. Let 8 be a flip action of Zy = {e, g} on Z4(2) x Z4(2) given by
By((hihy)) = (hjhe) (irj =0 or 1).
Then we obtain a semi-direct product hypergroup
Wy(d) = (Zy(2) X Z4(2)) 25 Zs.
The hypergroup W, (4) is another g-deformation of Dy.

4.4 Deformation Q,(4) of the quaternion group Q4
The structure of the quaternion group Q4 = {£1, i, 45, £k} is determined by

P=2=k=-1, ij=k.
Let o be an action of Zy = {e, g} on Zy = {hg, h1, ha, h3} such that
ag(hi) = hs, ag(he) = ha, ag(h3) = hy.
Let ¢ be a Zy-valued 2-cocycle of Zo which is also given by
c(e,e) = cle,g) = c(g,e) = hg and c¢(g,g) = ho.
Then a twisted semi-direct product group Z4 ¢ Zsg is defined by the product
(h,g)(W,g") = (hay(h)c(g. 9), 99)

for h,h/ € Z4 and g,g' € Zs. The quaternion group @4 is isomorphic to Zy4 ¢ Zs. Hence
we interpret Q4 as a twisted semi-direct product group Z4 x¢, Zs.

Let Z1,q)(4) = {ho, h1, ha, h3} be a g-deformation of Z, with a subgroup {ho,h2} and ¢
a Z1,q)(4)-valued 2-cocycle which is also given by

c(e,e) = cle,g) = c(g,e) = ho and c(g,9) = ha.
Then, we obtain a twisted semi-direct product hypergroup
Qq(4) = Z(17q)(4) ><IZ Zs.
The hypergroup Q,(4) is a g-deformation of the quaternion group Q4 = Zy %, Zs.
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5 Deformations of finite hypergroups
In this section we discuss g-deformations of several kinds of finite hypergroups in a
similar way to the case of finite groups.

5.1 Deformations of orbital hypergroups

Given an action « of a finite group G on a commutative hypergroup H, we obtain a
orbit O = {ay(h) ; g € G} of h € H under the action . Let {Og,O1,---,0p,} be the set
of all orbits in . We denote an element c; which is corresponding to each orbit O; and
put H* = {cp,c1, -+ ,¢m}. Let MP(H)® denote the fixed point algebra of M®(H) under
the action «, namely

MP(H)™ = { € M*(H) ; a,(p) = p for all g € G}.

We note that M®(H)* is a x-subalgebra of M°(H). For ¢; € H®, put

1 1
O, = — op = — ag(dp).
PR EP LA

heO;
Then 4., € M*(H)* N M'(H). K*(H) = (H*, M"(H)“, 0,*) becomes a hypergroup which
is called an orbital hypergroup of H by the action a.
Example 1 The orbital hypergroup K*(Z4(3)) = {co, c1} is a g-deformation of X*(Zs3).

The structure equations are

0cy 00y = %(500 + (1 - %) ey -

Remark K%(Zy(3)) = Z4(2).
Example 2 The orbital hypergroup K%(Z, 4 (4)) = {co,c1,c2} is a g-deformation of
K*(Zy).

The structure equations are

6C1 o 601 :p500 + (1 _p) 5(317 561 o 602 = 6027

pq q
562 (¢] 652 = m&co + mécl + (1 — q)(sCz.

Remark K(Zy,q)(4)) = Zp(2) V Zy(2).

5.2 Deformations of character hypergroups of semi-direct product hypergroups

Let S = H x4 G be a semi-direct product hypergroup defined by an action « of a finite
abelian group G on a finite commutative hypergroup H (Refer to [5]). S = H/N-Q\G is the
set, of all equivalence classes of irreducible representations of S. For (m,H(w)) € S, the
character ch(m) of 7 is defined by

h(m)(h)) = T-—tr(n(h,g))

where (h, g) € H x4 G and tr is the trace of B(H(r)). Put K(S) = {ch(n) ; 7 € S}.

Proposition 5.1 ([5] and [7]) If the action « satisfies the regularity condition, then
K(H %, G) becomes a commutative hypergroup by the product of functions on S = H x,G.
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This hypergroup is called a character hypergroup of the semi-direct product hypergroup
S=H x,G.

Example 3 The character hypergroup IC(S/q-(\3)) of 54(3) = Z4(3) xq Zs is a g-deformation
of K(S3).

—

Se(3) = H/x;G = {x0 © 70,X0 ® 71,7}, where 7 is a two-dimensional irreducible

representation of S,(3). K(m) = {ch(x0 ® 70), ch(x0 ® 71), ch(mw)}. The character table
is

(ho,€) | (hi,€) | (ha,€) | (ho,g) | (h1,9) | (h2,9)
Yo = ch(xo ® o) 1 1 1 1 1 1
v = ch(xo ® 11) 1 1 1 -1 -1 -1
Yo = ch(m) 1 -2 -1 0 0 0

and the structure equations of IC(SZ(?’))) are

1 q) -
— 35 )72, Y172 = 72

q q
Y11 = Yo, V2Y2 = S0+ Z’Yl + ( 5

4
Example 4 The character hypergroup IC(D@)\(ZL)) of Dip.g)(4) = Zp,q)(4) X Zg is a
(p, q)-deformation of IC(BZ).
The structure equations of (D, 4y(4)) = {Y0, 71,72, 73,74} are

Y171 = Yo, Y172 = V3, Y173 = V2,
Y272 = 1373 = ¢ + (1 = @)v2, Y23 = qn + (1 — q)73,

Yaya = Yo + M+ Y2 + 78 + (1 = p)ya,

pq bq p p
2(1+4¢q) 2(1+¢q) 2(1+¢q) 2(1+¢

V1V4 = VY4, V204 = V4, V3V4 = V4

—

Example 5 The character hypergroup K(Qq(4)) of Qq(4) = Z(1,9)(4) X§, Zo is a g¢-
deformation of IC(DZ).

The structure equations of K(Q4(4)) = {70, v1,72,73, 74} are

Y171 = Y0, Y172 = V3, Y17V3 = V2,
Y22 = 7373 = qY0 + (1 — @)v2, Y23 = qn + (1 — q)73,

YaYa = )72 +

2(1 +q)73’

1
_|_
) 10 2(1+4q

q “
2(1+q 21+¢q)

V1Y4 = VY4, V24 = V4, V3V4 = V4.

5.3 Deformations of generalized conjugacy class hypergroups
Let S = H x, G be a semi-direct product hypergroup. Then there exists the canonical
conditional expectation E from M®(S) onto the center Z(M?"(S)) of M?®(S). Put

K(H x4 G) :={E(p,qg) ; (h,g) € Hxo G}

Proposition 5.2 ([6]) If the action « satisfies the regularity condition, then K(H x, G)
becomes a commutative hypergroup with the convolution in the center Z(M?(S)). Moreover

K(H %o G) = K(H %, G) holds.
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We call K(H %, G) a generalized conjugacy class hypergroup of H %, G.

Example 6 The generalized conjugacy class hypergroup IC(54(3)) of S4(3) is a g-deformation
of K(S3).
The structure equations of K(S5,(3)) = {co,c1,c2} are

2

0e, 00, = gaco + (1 - g) Ocry Ocp 00c, = 1r2

2 +

q
m(s(;o 6(31? 6(11 [e] (5(52 = 5(:2 .

Example 7 The generalized conjugacy class hypergroup K(D, 4)(4)) of D, 4)(4) is a
(p, q)-deformation of IC(Dy).
The structure equations of K(D, 4y(4)) = {co,c1,¢2, 3, ¢4} are

pq q

601 (] (501 = 5(;4 o 604 = méco + (1 — q)écl + mCSCQ,
p 1
5(;2 [e] (5(;2 :p500 + (1 —p)502, 603 o 503 = mtsco + m(s(;z,

601 o 5(;2 = 6(,’17 601 o 503 = 6047 5(;1 o 604 = q603 + (1 - Q)504)
662 o 664 = 6647 5(;2 o 603 = 663’ 663 © 6(;4 = 5(;1'

Example 8 The generalized conjugacy class hypergroup K(Q,(4)) of Q,(4) is a g-deformation
of ]C(Q4)

The structure equations of K(Q4(4)) = {co, c1, ¢z, c3,ca} are
_ _4g q
0¢y ©0cy = 0¢y 08¢, = 5500 +(1—q)oe, + 5502,

1 1
562 (e 562 = 500; 563 [e) 563 = 5500 + §5C2;

ey ©0cy = 0eys Oy 005 = 0y Oy ©0c, = qcy + (1 — q)0ec,,
Ocy ©0cy =0cyy Ocy ©0c, = 00y, Ogy ©0c, = Ocy -

By the above structure equations, we have the following theorem.

Theorem There are deformations Sq(3) = Z4(3) xq Zo of the symmetric group Ss,
Dpgy(4) = Zpq)(4) Xa Zy and Wy(4) = (Z¢(2) x Z¢(2)) xp Zo of the dihedral group
Dy and Qq(4) = Z1,4)(4) X, Zs of the quaternion group Q4 in the category of hypergroups.
These deformations have the following properties.

(1) K(5,(3)) = Z V 24 (2) and K(5,(3)) = 24 (2) V Zs.

(2) K(D(:q)\(él)) is a (g, p)-deformation of lC(l/)\4) and K(Dp.4)(4)) is a (p, ¢)-deformation
of K(Dy). K(Qq(4)) is a g-deformation of IC(@) and K(Q,(4)) is a g-deformation of K(Q4).

Moreover K(D(1,4)(4)) = IC(Q/q@) and K(D1,4)(4)) = K(Qq(4)) although D 4y(4) is not
isomorphic to Q4(4).

(3) K(m) is not a hypergroup when g # 1.
Proof (1) We put Zs = {bo, b1} and Zs(2) = {co, cl},ﬁgere Op, 09p, = Op, and 0, 00e, =
20co + (1 = 2)o., (0 < g < 1). The structure of K(5,(3)) in Example 3 is the same of
the hypergroup join Zy V Z4(2). Hence K(S4(3)) = Z2 V Z4(2). In a similar way we get
K(Sq(3)) = Z4(2) V Z3 as in Example 6.
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(2) The former properties follow directly from above examples 4, 7, 5 and 8. Both of
D1,4)(4) and Q4(4) are extension hypergroups of Zy by Z; 4)(4). However Dy 4)(4) is of
splitting type but Q,(4) is of non-splitting type. Hence Dy 4)(4) is not isomorphic to Q,(4).

(3) We put Zg(2) x Zq(2) = {xo0, X1, X2, X3} and Z = {rg, 71 }. Then

o —

We(4) = {x0 ® 70, X0 © 71, X3 ® T0, X3 © T1, 7},
where 7 is the two-dimensional irreducible representation of W, (4) given by

. W (4
T = mdzqq(é))xzq@) (x1 ®70)-

Hence,

L —

K(Wq(4)) = {ch(xo © 10),ch(xo0 © T1),ch(x3 © T0), ch(x3 © T1), ch(m)}.
Assume that K(m) is a hypergroup for ¢ # 1. Then
ch(x3®O10)ch(x3070) = agch(xo®70)+a1ch(xo®T1)+azch(xsO10)+asch(xs®11)+asch(n),
where Z?:O aj=1and a; >0 (j=0,1,2,3,4). Since
ch(xo ©® 11)(ho,g) = =1, ch(xs © 11)(ho,9) = —1,
ch(m)(ho,g) =0 and ch(x3 © 10)ch(x3 © 70)(ho,g) =1
where hq is the unit of Z,(2) x Z4(2) and Zs = {e, g}, g> = e, we see that
apg— a1 +as —az =1.
This implies that a; = 0,a3 = 0, a4 = 0. Hence, we get
ch(xs © To)ch(x3 © o) = agch(xo ® 7o) + azch(xs © 70).
Restricting this equality to Z4(2) x Z4(2), we obtain
X3X3 = @oXo + a2X3-
This contradicts with the fact :
xaxs = ¢*xo + (1 = )x1 +q(1 — g)x2 + (1 — 9)*xs.

—

Hence, IC(W,(4)) is not a hypergroup when ¢ # 1. O
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