Deformations of finite hypergroups

Satoshi Kawakami, Tatsuya Tsurii and Satoe Yamanaka
Received

Abstract

The purpose of the present paper is to introduce q-deformations of finite groups of low order, for examples, cyclic groups, symmetric groups, dihedral groups and the quaternion group in the category of hypergroups. Moreover we discuss q deformations of certain finite hypergroups.

1 Introduction

We investigate q-deformations of finite groups and finite hypergroups in the category of hypergroups. It is known that there is no q-deformations of finite groups in the category of quantum groups ([24]). However we introduce that there are many q-deformations of finite groups in the category of hypergroups.

Hypergroups $\mathbb{Z}_{q}(2)$ of order two with a parameter $q(0<q \leq 1)$ are interpreted as q-deformations of the cyclic group \mathbb{Z}_{2}. This fact is our motivation that we started to investigate q-deformations of finite groups and finite hypergroups.

In section 3 , we discuss q-deformations of the cyclic group \mathbb{Z}_{3} of order three and the cyclic group \mathbb{Z}_{4} of order four. In section 4 , we discuss q-deformations of the symmetric group S_{3}, the dihedral group D_{4} and quaternion group Q_{4}. These q-deformations are obtained by applying a notion of a semi-direct product hypergroup introduced by H . Heyer and S . Kawakami (see [5]).

Moreover we study q-deformations of certain finite hypergroups of low order, the orbital hypergroups $\mathcal{K} \widehat{\mathcal{K}}^{\alpha}\left(\mathbb{Z}_{3}\right)$ of \mathbb{Z}_{3} and $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{4}\right)$ of \mathbb{Z}_{4}, the character hypergroups $\mathcal{K}\left(\widehat{S_{3}}\right)$ of $S_{3}, \mathcal{K}\left(\widehat{D_{4}}\right)$ of D_{4} and $\mathcal{K}\left(\widehat{Q_{4}}\right)$ of Q_{4}, the conjugacy class hypergroups $\mathcal{K}\left(S_{3}\right)$ of $S_{3}, \mathcal{K}\left(D_{4}\right)$ of D_{4} and $\mathcal{K}\left(Q_{4}\right)$ of Q_{4} in section 5 .

2 Preliminaries

For a finite set $K=\left\{c_{0}, c_{1}, \cdots, c_{n}\right\}$, we denote by $M^{b}(K)$ and $M^{1}(K)$, the set of all complex valued measures on K and the set of all non-negative probability measures on K respectively, namely

$$
\begin{aligned}
& M^{b}(K):=\left\{\sum_{j=0}^{n} a_{j} \delta_{c_{j}}: a_{j} \in \mathbb{C}(j=0,1,2, \cdots, n)\right\} \\
& M^{1}(K):=\left\{\sum_{j=0}^{n} a_{j} \delta_{c_{j}}: a_{j} \geq 0 \quad(j=0,1,2, \cdots, n), \quad \sum_{j=0}^{n} a_{j}=1\right\}
\end{aligned}
$$

where the symbol δ_{c} stands for the Dirac measure in $c \in K$. For $\mu=a_{0} \delta_{c_{0}}+a_{1} \delta_{c_{1}}+\cdots+$ $a_{n} \delta_{c_{n}} \in M^{b}(K)$, the support of μ is

$$
\operatorname{supp}(\mu):=\left\{c_{j} \in K: a_{j} \neq 0(j=0,1,2, \cdots, n)\right\} .
$$

[^0]Key words and phrases. Deformation, Finite group, Hypergroup.

Axiom A finite hypergroup $K=\left(K, M^{b}(K), \circ, *\right)$ consists of a finite set $K=\left\{c_{0}, c_{1}, \cdots, c_{n}\right\}$ together with an associative product (called convolution) \circ and an involution $*$ in $M^{b}(K)$ satisfying the following conditions.
(1) The space $\left(M^{b}(K), \circ, *\right)$ is an associative $*$-algebra with unit $\delta_{c_{0}}$.
(2) For $c_{i}, c_{j} \in K$, the convolution $\delta_{c_{i}} \circ \delta_{c_{j}}$ belongs to $M^{1}(K)$.
(3) There exists an involutive bijection $c_{i} \mapsto c_{i}^{*}$ on K such that $\delta_{c_{i}^{*}}=\delta_{c_{i}}^{*}$. Moreover $c_{j}=c_{i}^{*}$ if and only if $c_{0} \in \operatorname{supp}\left(\delta_{c_{i}} \circ \delta_{c_{j}}\right)$ for all $c_{i}, c_{j} \in K$.
A finite hypergroup K is called commutative if the convolution \circ on $M^{b}(K)$ is commutative.

Let K and L be finite hypergroups. A mapping $\varphi: K \rightarrow L$ is called a (hypergroup) homomorphism of K into L if there exists a *-homomorphism $\tilde{\varphi}$ of $M^{b}(K)$ into $M^{b}(L)$ as *-algebras such that $\delta_{\varphi(c)}=\tilde{\varphi}\left(\delta_{c}\right)$. If $\tilde{\varphi}$ is bijective, φ is called an isomorphism of K onto L. In the case that $L=K$, an isomorphism $\varphi: K \rightarrow K$ is called an automorphism of K. The set of all automorphisms of K becomes a group and it is denoted by $\operatorname{Aut}(K)$. Let G be a finite group. A homomorphism $\alpha: G \rightarrow \operatorname{Aut}(K)$ is called an action of G on K.

For a commutative hypergroup K, a complex-valued function χ on K is called a character if χ is linearly extendable on $M^{b}(K)$ to be $\tilde{\chi}\left(\delta_{c_{i}}\right)=\chi\left(c_{i}\right)$ and satisfying that $\tilde{\chi}\left(\delta_{c_{0}}\right)=1$, $\tilde{\chi}\left(\delta_{c_{i}} \circ \delta_{c_{j}}\right)=\tilde{\chi}\left(\delta_{c_{i}}\right) \tilde{\chi}\left(\delta_{c_{j}}\right)$ and $\tilde{\chi}\left(\delta_{c_{i}}^{*}\right)=\bar{\chi}\left(\delta_{c_{i}}\right)$ for all $c_{i}, c_{j} \in K$. We denote the trivial character by χ_{0}. Let \hat{K} be the set of all characters of K. A convolution on \hat{K} is defined by multiplication of functions on K. Then \hat{K} becomes a signed hypergroup and the duality $\hat{\hat{K}} \cong K$ holds.

Conjugacy class hypergroup Let G be a finite group. For $g \in G$, put $\alpha_{g}(k)=A d_{g}(k)=$ $g k g^{-1}(k \in G)$. Then α is an action of G on G. Hence we obtain the orbital hypergroup $\mathcal{K}^{\alpha}(G)$ which we denote by $\mathcal{K}(G)$ which is called a conjugacy class hypergroup of G.
Character hypergroup For a finite group $G, \hat{G}=\left\{\pi_{0}, \pi_{1}, \cdots, \pi_{m}\right\}$ is the set of the all equivalence classes of irreducible representations of G. For $\pi_{j} \in \hat{G}$, a character χ_{j} associated with π_{j} is defined by

$$
\chi_{j}(g)=\frac{1}{\operatorname{dim} \pi_{j}} \operatorname{tr}\left(\pi_{j}(g)\right)
$$

Then $\mathcal{K}(\hat{G})=\left\{\chi_{0}, \chi_{1}, \cdots, \chi_{m}\right\}$ becomes a commutative hypergroup with unit χ_{0} by the multiplication of functions on G.

Hypergroup join For two finite hypergroups $H=\left\{h_{0}, h_{1}, \cdots, h_{m}\right\}$ and $L=\left\{\ell_{0}, \ell_{1}, \cdots\right.$, $\left.\ell_{k}\right\}$, a hypergroup join

$$
H \vee L=\left\{h_{0}, h_{1}, \cdots, h_{m}, \ell_{1}, \cdots, \ell_{k}\right\}
$$

is defined by the convolution \diamond whose structure equations are

$$
\begin{aligned}
& \delta_{h_{i}} \diamond \delta_{h_{j}}=\delta_{h_{i}} \circ \delta_{h_{j}}, \quad \delta_{h_{i}} \diamond \delta_{\ell_{j}}=\delta_{\ell_{j}} \\
& \delta_{\ell_{i}} \diamond \delta_{\ell_{j}}=\delta_{\ell_{i}} \circ \delta_{\ell_{j}} \text { when } \ell_{j} \neq \ell_{i}^{*}, \\
& \delta_{\ell_{i}} \diamond \delta_{\ell_{i}}^{*}=n_{i}^{0} \omega(H)+n_{i}^{k} \delta_{\ell_{j}}
\end{aligned}
$$

where $\delta_{\ell_{i}} \circ \delta_{\ell_{i}}^{*}=n_{i}^{0} \delta_{\ell_{0}}+\sum_{j=1}^{k} n_{i}^{j} \delta_{\ell_{j}}$ and $\omega(H)$ is the normalized Haar measure of H.

DEFORMATIONS OF FINITE HYPERGROUPS

3 Deformations of finite abelian groups

Let $K=\left\{c_{0}, c_{1}\right\}$ be a hypergroup of order two. Then the structure of K is determined by

$$
\delta_{c_{1}} \circ \delta_{c_{1}}=q \delta_{c_{0}}+(1-q) \delta_{c_{1}}
$$

where $0<q \leq 1$. We denote it by $\mathbb{Z}_{q}(2)$ which is interpreted as a q-deformation of \mathbb{Z}_{2}. Stimulating by this fact, we have started to study q-deformations of finite groups.

3.1 Deformation $\mathbb{Z}_{q}(3)$ of \mathbb{Z}_{3}

First of all we discuss a q-deformation of \mathbb{Z}_{3}. It is easy to check the following proposition directly and this fact is also described in the paper ([19], [23] and [25]).

Proposition 3.1 Let $K=\left\{c_{0}, c_{1}, c_{2}\right\}$ be a hypergroup of order three. For each $q(0<$ $q \leq 1)$ there exists a unique hypergroup of order three such that $\delta_{c_{1}}^{*}=\delta_{c_{2}}$ and $\delta_{c_{1}} \circ \delta_{c_{2}}=$ $q \delta_{c_{0}}+a_{1} \delta_{c_{1}}+a_{2} \delta_{c_{2}}$.

We denote the above K by $\mathbb{Z}_{q}(3)$, which is interpreted as a q-deformation of \mathbb{Z}_{3}. The structure equations of $\mathbb{Z}_{q}(3)=\left\{c_{0}, c_{1}, c_{2}\right\}(0<q \leq 1)$ are determined by

$$
\begin{aligned}
& \delta_{c_{1}} \circ \delta_{c_{2}}=q \delta_{c_{0}}+\frac{1-q}{2} \delta_{c_{1}}+\frac{1-q}{2} \delta_{c_{2}} \\
& \delta_{c_{1}} \circ \delta_{c_{1}}=\frac{1-q}{2} \delta_{c_{1}}+\frac{1+q}{2} \delta_{c_{2}} \\
& \delta_{c_{2}} \circ \delta_{c_{2}}=\frac{1+q}{2} \delta_{c_{1}}+\frac{1-q}{2} \delta_{c_{2}}
\end{aligned}
$$

Put $\widehat{\mathbb{Z}_{q}(3)}=\left\{\chi_{0}, \chi_{1}, \chi_{2}\right\}$. Then the character table of $\mathbb{Z}_{q}(3)$ is

	c_{0}	c_{1}	c_{2}
χ_{0}	1	1	1
χ_{1}	1	ω_{q}	$\overline{\omega_{q}}$
χ_{2}	1	$\overline{\omega_{q}}$	ω_{q}

where $\omega_{q}=\frac{-q+i \sqrt{q^{2}+2 q}}{2}$.
By the symmetry of the character table we see that $\widehat{\mathbb{Z}_{q}(3)} \cong \mathbb{Z}_{q}(3)$.

3.2 Deformation $\mathbb{Z}_{(p, q)}(4)$ of \mathbb{Z}_{4}

We investigated several kinds of extension problem in the category of commutative hypergroups, refer to [6], [8], [10], [11], [12], [13], [14], [15], [16], [17], [18]. The cyclic group \mathbb{Z}_{4} of order four is a non-splitting extension of \mathbb{Z}_{2} by \mathbb{Z}_{2}. Then one can consider a non-splitting extension $\mathbb{Z}_{(p, q)}(4)(0<p \leq 1,0<q \leq 1)$ of $\mathbb{Z}_{q}(2)$ by $\mathbb{Z}_{p}(2)$ as follows.

Proposition 3.2 (Example 4.2 in [14]) For $(p, q)(0<p \leq 1,0<q \leq 1)$ there exists a unique hypergroup $\mathbb{Z}_{(p, q)}(4)=\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}$ of order four, which is an extension hypergroup of $\mathbb{Z}_{q}(2)$ by $\mathbb{Z}_{p}(2)=\left\{c_{0}, c_{2}\right\}$ such that $c_{1}^{*}=c_{3}$.

The structure of $\mathbb{Z}_{(p, q)}(4)=\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}(0<p \leq 1,0<q \leq 1)$ is given by

$$
\begin{aligned}
& \delta_{c_{1}} \circ \delta_{c_{1}}=\delta_{c_{3}} \circ \delta_{c_{3}}=\frac{1-q}{2} \delta_{c_{1}}+q \delta_{c_{2}}+\frac{1-q}{2} \delta_{c_{3}}, \\
& \delta_{c_{2}} \circ \delta_{c_{2}}=p \delta_{c_{0}}+(1-p) \delta_{c_{2}}, \quad \delta_{c_{1}} \circ \delta_{c_{2}}=\frac{1-p}{2} \delta_{c_{1}}+\frac{1+p}{2} \delta_{c_{3}}, \\
& \delta_{c_{1}} \circ \delta_{c_{3}}=\frac{2 p q}{1+p} \delta_{c_{0}}+\frac{1-q}{2} \delta_{c_{1}}+\frac{q-p q}{1+p} \delta_{c_{2}}+\frac{1-q}{2} \delta_{c_{3}}, \\
& \delta_{c_{2}} \circ \delta_{c_{3}}=\frac{1+p}{2} \delta_{c_{1}}+\frac{1-p}{2} \delta_{c_{3}} .
\end{aligned}
$$

Put $\widehat{\mathbb{Z}_{(p, q)}(4)}=\left\{\chi_{0}, \chi_{1}, \chi_{2}, \chi_{3}\right\}$. Then the character table of $\mathbb{Z}_{(p, q)}(4)$ is

	c_{0}	c_{1}	c_{2}	c_{3}
χ_{0}	1	1	1	1
χ_{1}	1	$i \sqrt{p q}$	$-p$	$-i \sqrt{p q}$
χ_{2}	1	$-q$	1	$-q$
χ_{3}	1	$-i \sqrt{p q}$	$-p$	$i \sqrt{p q}$

It is easy to see that $\mathbb{Z}_{(p, q)}(4)$ is interpreted as a (p, q)-deformation of \mathbb{Z}_{4} and $\widehat{\mathbb{Z}_{(p, q)}(4)} \cong$ $\mathbb{Z}_{(q, p)}(4)$.

4 Deformations of non-abelian finite groups

Let α be an action of a finite group G on a finite hypergroup $H=\left(H, M^{b}(H), \circ, *\right)$. Then a semi-direct product hypergroup $S:=H \rtimes_{\alpha} G$ is introduced in [5]. A convolution \circ_{α} in $M^{b}(S)$ is defined by

$$
\left(\varepsilon_{h_{1}} \otimes \delta_{g_{1}}\right) \circ_{\alpha}\left(\varepsilon_{h_{2}} \otimes \delta_{g_{2}}\right):=\left(\varepsilon_{h_{1}} \circ \varepsilon_{\alpha_{g_{1}}\left(h_{2}\right)} \otimes \delta_{g_{1} g_{2}}\right)
$$

where ε and δ stand for Dirac measures in $M^{b}(H)$ and $M^{b}(G)$ respectively. Unit element is $\varepsilon_{e} \otimes \delta_{e}$. An involution ${ }^{-}$is

$$
\left(\mu \otimes \delta_{g}\right)^{-}:=\alpha_{g}^{-1}\left(\mu^{*}\right) \otimes \delta_{g^{-1}}
$$

for all $\mu \in M^{b}(H)$ and $g \in G$.

4.1 Deformation $S_{q}(3)$ of the symmetric group S_{3}

The symmetric group S_{3} is a semi-direct product $\mathbb{Z}_{3} \rtimes_{\alpha} \mathbb{Z}_{2}$ where α is an action of \mathbb{Z}_{2} on \mathbb{Z}_{3}.

Let α be an action of $\mathbb{Z}_{2}=\{e, g\}$ on a hypergroup $\mathbb{Z}_{q}(3)=\left\{h_{0}, h_{1}, h_{2}\right\}(0<q \leq 1)$ such that

$$
\alpha_{g}\left(h_{1}\right)=h_{2}, \quad \alpha_{g}\left(h_{2}\right)=h_{1}
$$

Then we obtain a semi-direct product hypergroup

$$
S_{q}(3):=\mathbb{Z}_{q}(3) \rtimes_{\alpha} \mathbb{Z}_{2}
$$

which is a q-deformation of the symmetric group $S_{3}=\mathbb{Z}_{3} \rtimes_{\alpha} \mathbb{Z}_{2}$.

DEFORMATIONS OF FINITE HYPERGROUPS

4.2 Deformation $D_{(p, q)}(4)$ of the dihedral group D_{4}

The dihedral group D_{4} is written by a semi-direct product $\mathbb{Z}_{4} \rtimes_{\alpha} \mathbb{Z}_{2}$.
Let $H=\mathbb{Z}_{(p, q)}(4)=\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\}(0<p \leq 1,0<q \leq 1)$ be the (p, q)-deformation of \mathbb{Z}_{4} and α an action of $\mathbb{Z}_{2}=\{e, g\}$ on $\mathbb{Z}_{(p, q)}(4)$ given by

$$
\alpha_{g}\left(h_{1}\right)=h_{3}, \quad \alpha_{g}\left(h_{2}\right)=h_{2}, \quad \alpha_{g}\left(h_{3}\right)=h_{1} .
$$

Then we obtain a semi-direct product hypergroup

$$
D_{(p, q)}(4):=\mathbb{Z}_{(p, q)}(4) \rtimes_{\alpha} \mathbb{Z}_{2}
$$

Hence, we obtain a (p, q)-deformation $D_{(p, q)}(4)$ of the dihedral group D_{4}.

4.3 Another deformation $W_{q}(4)$ of the dihedral group D_{4}

The dihedral group D_{4} is also written by a semi-direct product $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes_{\beta} \mathbb{Z}_{2}$ where β is a flip action of \mathbb{Z}_{2} on $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Let $\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)=\left\{\left(h_{0}, h_{0}\right),\left(h_{0}, h_{1}\right),\left(h_{1}, h_{0}\right),\left(h_{1}, h_{1}\right) ; h_{0}, h_{1} \in \mathbb{Z}_{q}(2)\right\}$ be a q-deformat-
ion of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Let β be a flip action of $\mathbb{Z}_{2}=\{e, g\}$ on $\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)$ given by

$$
\beta_{g}\left(\left(h_{i}, h_{j}\right)\right)=\left(h_{j}, h_{i}\right) \quad(i, j=0 \text { or } 1) .
$$

Then we obtain a semi-direct product hypergroup

$$
W_{q}(4):=\left(\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)\right) \rtimes_{\beta} \mathbb{Z}_{2} .
$$

The hypergroup $W_{q}(4)$ is another q-deformation of D_{4}.

4.4 Deformation $Q_{q}(4)$ of the quaternion group Q_{4}

The structure of the quaternion group $Q_{4}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is determined by

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=k
$$

Let α be an action of $\mathbb{Z}_{2}=\{e, g\}$ on $\mathbb{Z}_{4}=\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\}$ such that

$$
\alpha_{g}\left(h_{1}\right)=h_{3}, \quad \alpha_{g}\left(h_{2}\right)=h_{2}, \quad \alpha_{g}\left(h_{3}\right)=h_{1}
$$

Let c be a \mathbb{Z}_{4}-valued 2-cocycle of \mathbb{Z}_{2} which is also given by

$$
c(e, e)=c(e, g)=c(g, e)=h_{0} \quad \text { and } \quad c(g, g)=h_{2}
$$

Then a twisted semi-direct product group $\mathbb{Z}_{4} \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$ is defined by the product

$$
(h, g)\left(h^{\prime}, g^{\prime}\right)=\left(h \alpha_{g}\left(h^{\prime}\right) c\left(g, g^{\prime}\right), g g^{\prime}\right)
$$

for $h, h^{\prime} \in \mathbb{Z}_{4}$ and $g, g^{\prime} \in \mathbb{Z}_{2}$. The quaternion group Q_{4} is isomorphic to $\mathbb{Z}_{4} \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$. Hence we interpret Q_{4} as a twisted semi-direct product group $\mathbb{Z}_{4} \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$.

Let $\mathbb{Z}_{(1, q)}(4)=\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\}$ be a q-deformation of \mathbb{Z}_{4} with a subgroup $\left\{h_{0}, h_{2}\right\}$ and c a $\mathbb{Z}_{(1, q)}(4)$-valued 2-cocycle which is also given by

$$
c(e, e)=c(e, g)=c(g, e)=h_{0} \quad \text { and } \quad c(g, g)=h_{2} .
$$

Then, we obtain a twisted semi-direct product hypergroup

$$
Q_{q}(4):=\mathbb{Z}_{(1, q)}(4) \rtimes_{\alpha}^{c} \mathbb{Z}_{2}
$$

The hypergroup $Q_{q}(4)$ is a q-deformation of the quaternion group $Q_{4}=\mathbb{Z}_{4} \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$.

S. KAWAKAMI, T. TSURII AND S. YAMANAKA

5 Deformations of finite hypergroups

In this section we discuss q-deformations of several kinds of finite hypergroups in a similar way to the case of finite groups.

5.1 Deformations of orbital hypergroups

Given an action α of a finite group G on a commutative hypergroup H, we obtain a orbit $O=\left\{\alpha_{g}(h) ; g \in G\right\}$ of $h \in H$ under the action α. Let $\left\{O_{0}, O_{1}, \cdots, O_{m}\right\}$ be the set of all orbits in H. We denote an element c_{j} which is corresponding to each orbit O_{j} and put $H^{\alpha}=\left\{c_{0}, c_{1}, \cdots, c_{m}\right\}$. Let $M^{b}(H)^{\alpha}$ denote the fixed point algebra of $M^{b}(H)$ under the action α, namely

$$
M^{b}(H)^{\alpha}=\left\{\mu \in M^{b}(H) ; \alpha_{g}(\mu)=\mu \text { for all } g \in G\right\}
$$

We note that $M^{b}(H)^{\alpha}$ is a $*$-subalgebra of $M^{b}(H)$. For $c_{j} \in H^{\alpha}$, put

$$
\delta_{c_{j}}=\frac{1}{\left|O_{j}\right|} \sum_{h \in O_{j}} \delta_{h}=\frac{1}{|G|} \sum_{g \in G} \alpha_{g}\left(\delta_{h}\right)
$$

Then $\delta_{c_{j}} \in M^{b}(H)^{\alpha} \cap M^{1}(H) . \mathcal{K}^{\alpha}(H)=\left(H^{\alpha}, M^{b}(H)^{\alpha}, \circ, *\right)$ becomes a hypergroup which is called an orbital hypergroup of H by the action α.

Example 1 The orbital hypergroup $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{q}(3)\right)=\left\{c_{0}, c_{1}\right\}$ is a q-deformation of $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{3}\right)$. The structure equations are

$$
\delta_{c_{1}} \circ \delta_{c_{1}}=\frac{q}{2} \delta_{c_{0}}+\left(1-\frac{q}{2}\right) \delta_{c_{1}}
$$

Remark $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{q}(3)\right)=\mathbb{Z}_{\frac{q}{2}}(2)$.
Example 2 The orbital hypergroup $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{(p, q)}(4)\right)=\left\{c_{0}, c_{1}, c_{2}\right\}$ is a q-deformation of $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{4}\right)$.

The structure equations are

$$
\begin{aligned}
& \delta_{c_{1}} \circ \delta_{c_{1}}=p \delta_{c_{0}}+(1-p) \delta_{c_{1}}, \quad \delta_{c_{1}} \circ \delta_{c_{2}}=\delta_{c_{2}} \\
& \delta_{c_{2}} \circ \delta_{c_{2}}=\frac{p q}{1+p} \delta_{c_{0}}+\frac{q}{1+p} \delta_{c_{1}}+(1-q) \delta_{c_{2}}
\end{aligned}
$$

Remark $\mathcal{K}^{\alpha}\left(\mathbb{Z}_{(p, q)}(4)\right)=\mathbb{Z}_{p}(2) \vee \mathbb{Z}_{q}(2)$.
5.2 Deformations of character hypergroups of semi-direct product hypergroups

Let $S=H \rtimes_{\alpha} G$ be a semi-direct product hypergroup defined by an action α of a finite abelian group G on a finite commutative hypergroup H (Refer to [5]). $\hat{S}=\widehat{H \rtimes_{\alpha} G}$ is the set of all equivalence classes of irreducible representations of S. For $(\pi, \mathcal{H}(\pi)) \in \hat{S}$, the character $\operatorname{ch}(\pi)$ of π is defined by

$$
\operatorname{ch}(\pi)((h, g))=\frac{1}{\operatorname{dim} \pi} \operatorname{tr}(\pi(h, g))
$$

where $(h, g) \in H \rtimes_{\alpha} G$ and tr is the trace of $B(\mathcal{H}(\pi))$. Put $\mathcal{K}(\hat{S})=\{\operatorname{ch}(\pi) ; \pi \in \hat{S}\}$.
Proposition 5.1 ([5] and [7]) If the action α satisfies the regularity condition, then $\mathcal{K}\left(\widehat{H \rtimes_{\alpha} G}\right)$ becomes a commutative hypergroup by the product of functions on $S=H \rtimes_{\alpha} G$.

DEFORMATIONS OF FINITE HYPERGROUPS

This hypergroup is called a character hypergroup of the semi-direct product hypergroup $S=H \rtimes_{\alpha} G$.
Example 3 The character hypergroup $\mathcal{K}\left(\widehat{S_{q}(3)}\right)$ of $S_{q}(3)=\mathbb{Z}_{q}(3) \rtimes_{\alpha} \mathbb{Z}_{2}$ is a q-deformation of $\mathcal{K}\left(\widehat{S_{3}}\right)$.
$\widehat{S_{q}(3)}=\widehat{H \rtimes_{\alpha} G}=\left\{\chi_{0} \odot \tau_{0}, \chi_{0} \odot \tau_{1}, \pi\right\}$, where π is a two-dimensional irreducible representation of $S_{q}(3) . \mathcal{K}\left(\widehat{S_{q}(3)}\right)=\left\{\operatorname{ch}\left(\chi_{0} \odot \tau_{0}\right), \operatorname{ch}\left(\chi_{0} \odot \tau_{1}\right), \operatorname{ch}(\pi)\right\}$. The character table is

	$\left(h_{0}, e\right)$	$\left(h_{1}, e\right)$	$\left(h_{2}, e\right)$	$\left(h_{0}, g\right)$	$\left(h_{1}, g\right)$	$\left(h_{2}, g\right)$
$\gamma_{0}=\operatorname{ch}\left(\chi_{0} \odot \tau_{0}\right)$	1	1	1	1	1	1
$\gamma_{1}=\operatorname{ch}\left(\chi_{0} \odot \tau_{1}\right)$	1	1	1	-1	-1	-1
$\gamma_{2}=\operatorname{ch}(\pi)$	1	$-\frac{q}{2}$	$-\frac{q}{2}$	0	0	0

and the structure equations of $\mathcal{K}\left(\widehat{S_{q}(3)}\right)$ are

$$
\gamma_{1} \gamma_{1}=\gamma_{0}, \quad \gamma_{2} \gamma_{2}=\frac{q}{4} \gamma_{0}+\frac{q}{4} \gamma_{1}+\left(1-\frac{q}{2}\right) \gamma_{2}, \quad \gamma_{1} \gamma_{2}=\gamma_{2} .
$$

Example 4 The character hypergroup $\mathcal{K}\left(\widehat{D_{(p, q)}(4)}\right)$ of $D_{(p, q)}(4)=\mathbb{Z}_{(p, q)}(4) \rtimes_{\alpha} \mathbb{Z}_{2}$ is a (p, q)-deformation of $\mathcal{K}\left(\widehat{D_{4}}\right)$.

The structure equations of $\mathcal{K}\left(\widehat{D_{(p, q)}}(4)\right)=\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ are

$$
\begin{aligned}
& \gamma_{1} \gamma_{1}=\gamma_{0}, \quad \gamma_{1} \gamma_{2}=\gamma_{3}, \quad \gamma_{1} \gamma_{3}=\gamma_{2} \\
& \gamma_{2} \gamma_{2}=\gamma_{3} \gamma_{3}=q \gamma_{0}+(1-q) \gamma_{2}, \quad \gamma_{2} \gamma_{3}=q \gamma_{1}+(1-q) \gamma_{3} \\
& \gamma_{4} \gamma_{4}=\frac{p q}{2(1+q)} \gamma_{0}+\frac{p q}{2(1+q)} \gamma_{1}+\frac{p}{2(1+q)} \gamma_{2}+\frac{p}{2(1+q)} \gamma_{3}+(1-p) \gamma_{4}, \\
& \gamma_{1} \gamma_{4}=\gamma_{4}, \quad \gamma_{2} \gamma_{4}=\gamma_{4}, \quad \gamma_{3} \gamma_{4}=\gamma_{4}
\end{aligned}
$$

Example 5 The character hypergroup $\mathcal{K}\left(\widehat{Q_{q}(4)}\right)$ of $Q_{q}(4)=\mathbb{Z}_{(1, q)}(4) \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$ is a q deformation of $\mathcal{K}\left(\widehat{D_{4}}\right)$.

The structure equations of $\mathcal{K}\left(\widehat{Q_{q}(4)}\right)=\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ are

$$
\begin{aligned}
& \gamma_{1} \gamma_{1}=\gamma_{0}, \quad \gamma_{1} \gamma_{2}=\gamma_{3}, \quad \gamma_{1} \gamma_{3}=\gamma_{2} \\
& \gamma_{2} \gamma_{2}=\gamma_{3} \gamma_{3}=q \gamma_{0}+(1-q) \gamma_{2}, \quad \gamma_{2} \gamma_{3}=q \gamma_{1}+(1-q) \gamma_{3}, \\
& \gamma_{4} \gamma_{4}=\frac{q}{2(1+q)} \gamma_{0}+\frac{q}{2(1+q)} \gamma_{1}+\frac{1}{2(1+q)} \gamma_{2}+\frac{1}{2(1+q)} \gamma_{3}, \\
& \gamma_{1} \gamma_{4}=\gamma_{4}, \quad \gamma_{2} \gamma_{4}=\gamma_{4}, \quad \gamma_{3} \gamma_{4}=\gamma_{4} .
\end{aligned}
$$

5.3 Deformations of generalized conjugacy class hypergroups

Let $S=H \rtimes_{\alpha} G$ be a semi-direct product hypergroup. Then there exists the canonical conditional expectation E from $M^{b}(S)$ onto the center $Z\left(M^{b}(S)\right)$ of $M^{b}(S)$. Put

$$
\mathcal{K}\left(H \rtimes_{\alpha} G\right):=\left\{E\left(\delta_{(h, g)}\right) ;(h, g) \in H \rtimes_{\alpha} G\right\} .
$$

Proposition 5.2 ([6]) If the action α satisfies the regularity condition, then $\mathcal{K}\left(H \rtimes_{\alpha} G\right)$ becomes a commutative hypergroup with the convolution in the center $Z\left(M^{b}(S)\right)$. Moreover $\hat{\mathcal{K}}\left(H \rtimes_{\alpha} G\right) \cong \mathcal{K}\left(\widehat{H \rtimes_{\alpha} G}\right)$ holds.

S. KAWAKAMI, T. TSURII AND S. YAMANAKA

We call $\mathcal{K}\left(H \rtimes_{\alpha} G\right)$ a generalized conjugacy class hypergroup of $H \rtimes_{\alpha} G$.
Example 6 The generalized conjugacy class hypergroup $\mathcal{K}\left(S_{q}(3)\right)$ of $S_{q}(3)$ is a q-deformation of $\mathcal{K}\left(S_{3}\right)$.

The structure equations of $\mathcal{K}\left(S_{q}(3)\right)=\left\{c_{0}, c_{1}, c_{2}\right\}$ are

$$
\delta_{c_{1}} \circ \delta_{c_{1}}=\frac{q}{2} \delta_{c_{0}}+\left(1-\frac{q}{2}\right) \delta_{c_{1}}, \quad \delta_{c_{2}} \circ \delta_{c_{2}}=\frac{q}{q+2} \delta_{c_{0}}+\frac{2}{q+2} \delta_{c_{1}}, \quad \delta_{c_{1}} \circ \delta_{c_{2}}=\delta_{c_{2}}
$$

Example 7 The generalized conjugacy class hypergroup $\mathcal{K}\left(D_{(p, q)}(4)\right)$ of $D_{(p, q)}(4)$ is a (p, q)-deformation of $\mathcal{K}\left(D_{4}\right)$.

The structure equations of $\mathcal{K}\left(D_{(p, q)}(4)\right)=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right\}$ are

$$
\begin{aligned}
& \delta_{c_{1}} \circ \delta_{c_{1}}=\delta_{c_{4}} \circ \delta_{c_{4}}=\frac{p q}{1+p} \delta_{c_{0}}+(1-q) \delta_{c_{1}}+\frac{q}{1+p} \delta_{c_{2}}, \\
& \delta_{c_{2}} \circ \delta_{c_{2}}=p \delta_{c_{0}}+(1-p) \delta_{c_{2}}, \quad \delta_{c_{3}} \circ \delta_{c_{3}}=\frac{p}{1+p} \delta_{c_{0}}+\frac{1}{1+p} \delta_{c_{2}}, \\
& \delta_{c_{1}} \circ \delta_{c_{2}}=\delta_{c_{1}}, \quad \delta_{c_{1}} \circ \delta_{c_{3}}=\delta_{c_{4}}, \quad \delta_{c_{1}} \circ \delta_{c_{4}}=q \delta_{c_{3}}+(1-q) \delta_{c_{4}}, \\
& \delta_{c_{2}} \circ \delta_{c_{4}}=\delta_{c_{4}}, \quad \delta_{c_{2}} \circ \delta_{c_{3}}=\delta_{c_{3}}, \quad \delta_{c_{3}} \circ \delta_{c_{4}}=\delta_{c_{1}} .
\end{aligned}
$$

Example 8 The generalized conjugacy class hypergroup $\mathcal{K}\left(Q_{q}(4)\right)$ of $Q_{q}(4)$ is a q-deformation of $\mathcal{K}\left(Q_{4}\right)$.

The structure equations of $\mathcal{K}\left(Q_{q}(4)\right)=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right\}$ are

$$
\begin{aligned}
& \delta_{c_{1}} \circ \delta_{c_{1}}=\delta_{c_{4}} \circ \delta_{c_{4}}=\frac{q}{2} \delta_{c_{0}}+(1-q) \delta_{c_{1}}+\frac{q}{2} \delta_{c_{2}}, \\
& \delta_{c_{2}} \circ \delta_{c_{2}}=\delta_{c_{0}}, \quad \delta_{c_{3}} \circ \delta_{c_{3}}=\frac{1}{2} \delta_{c_{0}}+\frac{1}{2} \delta_{c_{2}}, \\
& \delta_{c_{1}} \circ \delta_{c_{2}}=\delta_{c_{1}}, \quad \delta_{c_{1}} \circ \delta_{c_{3}}=\delta_{c_{4}}, \quad \delta_{c_{1}} \circ \delta_{c_{4}}=q \delta_{c_{3}}+(1-q) \delta_{c_{4}}, \\
& \delta_{c_{2}} \circ \delta_{c_{4}}=\delta_{c_{4}}, \quad \delta_{c_{2}} \circ \delta_{c_{3}}=\delta_{c_{3}}, \quad \delta_{c_{3}} \circ \delta_{c_{4}}=\delta_{c_{1}} .
\end{aligned}
$$

By the above structure equations, we have the following theorem.
Theorem There are deformations $S_{q}(3)=\mathbb{Z}_{q}(3) \rtimes_{\alpha} \mathbb{Z}_{2}$ of the symmetric group S_{3}, $D_{(p, q)}(4)=\mathbb{Z}_{(p, q)}(4) \rtimes_{\alpha} \mathbb{Z}_{2}$ and $W_{q}(4)=\left(\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)\right) \rtimes_{\beta} \mathbb{Z}_{2}$ of the dihedral group D_{4} and $Q_{q}(4)=\mathbb{Z}_{(1, q)}(4) \rtimes_{\alpha}^{c} \mathbb{Z}_{2}$ of the quaternion group Q_{4} in the category of hypergroups. These deformations have the following properties.
(1) $\mathcal{K}\left(\widehat{S_{q}(3)}\right)=\mathbb{Z}_{2} \vee \mathbb{Z}_{\frac{q}{2}}(2)$ and $\mathcal{K}\left(S_{q}(3)\right)=\mathbb{Z}_{\frac{q}{2}}(2) \vee \mathbb{Z}_{2}$.
(2) $\mathcal{K}\left(\widehat{D_{(p, q)}(4)}\right)$ is a (q, p)-deformation of $\mathcal{K}\left(\widehat{D_{4}}\right)$ and $\mathcal{K}\left(D_{(p, q)}(4)\right)$ is a (p, q)-deformation of $\mathcal{K}\left(D_{4}\right)$. $\mathcal{K}\left(\widehat{Q_{q}(4)}\right)$ is a q-deformation of $\mathcal{K}\left(\widehat{Q_{4}}\right)$ and $\mathcal{K}\left(Q_{q}(4)\right)$ is a q-deformation of $\mathcal{K}\left(Q_{4}\right)$. Moreover $\mathcal{K}\left(\widehat{D_{(1, q)}(4)}\right) \cong \mathcal{K}\left(\widehat{Q_{q}(4)}\right)$ and $\mathcal{K}\left(D_{(1, q)}(4)\right) \cong \mathcal{K}\left(Q_{q}(4)\right)$ although $D_{(1, q)}(4)$ is not isomorphic to $Q_{q}(4)$.
(3) $\mathcal{K}\left(\widehat{W_{q}(4)}\right)$ is not a hypergroup when $q \neq 1$.

Proof (1) We put $\mathbb{Z}_{2}=\left\{b_{0}, b_{1}\right\}$ and $\mathbb{Z}_{\frac{q}{2}}(2)=\left\{c_{0}, c_{1}\right\}$, where $\delta_{b_{1}} \circ \delta_{b_{1}}=\delta_{b_{0}}$ and $\delta_{c_{1}} \circ \delta_{c_{1}}=$ $\frac{q}{2} \delta_{c_{0}}+\left(1-\frac{q}{2}\right) \delta_{c_{1}}(0<q \leq 1)$. The structure of $\mathcal{K}\left(\widehat{S_{q}(3)}\right)$ in Example 3 is the same of the hypergroup join $\mathbb{Z}_{2} \vee \mathbb{Z}_{\frac{q}{2}}(2)$. Hence $\mathcal{K}\left(\widehat{S_{q}(3)}\right)=\mathbb{Z}_{2} \vee \mathbb{Z}_{\frac{q}{2}}(2)$. In a similar way we get $\mathcal{K}\left(S_{q}(3)\right)=\mathbb{Z}_{\frac{q}{2}}(2) \vee \mathbb{Z}_{2}$ as in Example 6.

DEFORMATIONS OF FINITE HYPERGROUPS

(2) The former properties follow directly from above examples $4,7,5$ and 8. Both of $D_{(1, q)}(4)$ and $Q_{q}(4)$ are extension hypergroups of \mathbb{Z}_{2} by $\mathbb{Z}_{(1, q)}(4)$. However $D_{(1, q)}(4)$ is of splitting type but $Q_{q}(4)$ is of non-splitting type. Hence $D_{(1, q)}(4)$ is not isomorphic to $Q_{q}(4)$.
(3) We put $\mathbb{Z}_{q}\left(\widehat{) \times \mathbb{Z}_{q}}(2)=\left\{\chi_{0}, \chi_{1}, \chi_{2}, \chi_{3}\right\}\right.$ and $\widehat{\mathbb{Z}_{2}}=\left\{\tau_{0}, \tau_{1}\right\}$. Then

$$
\widehat{W_{q}(4)}=\left\{\chi_{0} \odot \tau_{0}, \chi_{0} \odot \tau_{1}, \chi_{3} \odot \tau_{0}, \chi_{3} \odot \tau_{1}, \pi\right\}
$$

where π is the two-dimensional irreducible representation of $W_{q}(4)$ given by

$$
\pi=\operatorname{ind}_{\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)}^{W_{q}(4)}\left(\chi_{1} \odot \tau_{0}\right)
$$

Hence,

$$
\mathcal{K}\left(\widehat{W_{q}(4)}\right)=\left\{\operatorname{ch}\left(\chi_{0} \odot \tau_{0}\right), \operatorname{ch}\left(\chi_{0} \odot \tau_{1}\right), \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right), \operatorname{ch}\left(\chi_{3} \odot \tau_{1}\right), \operatorname{ch}(\pi)\right\}
$$

Assume that $\mathcal{K}\left(\widehat{W_{q}(4)}\right)$ is a hypergroup for $q \neq 1$. Then
$\operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right) \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right)=a_{0} \operatorname{ch}\left(\chi_{0} \odot \tau_{0}\right)+a_{1} \operatorname{ch}\left(\chi_{0} \odot \tau_{1}\right)+a_{2} \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right)+a_{3} \operatorname{ch}\left(\chi_{3} \odot \tau_{1}\right)+a_{4} \operatorname{ch}(\pi)$,
where $\sum_{j=0}^{4} a_{j}=1$ and $a_{j} \geq 0(j=0,1,2,3,4)$. Since

$$
\begin{gathered}
\operatorname{ch}\left(\chi_{0} \odot \tau_{1}\right)\left(h_{0}, g\right)=-1, \quad \operatorname{ch}\left(\chi_{3} \odot \tau_{1}\right)\left(h_{0}, g\right)=-1, \\
\operatorname{ch}(\pi)\left(h_{0}, g\right)=0 \text { and } \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right) \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right)\left(h_{0}, g\right)=1
\end{gathered}
$$

where h_{0} is the unit of $\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)$ and $\mathbb{Z}_{2}=\{e, g\}, g^{2}=e$, we see that

$$
a_{0}-a_{1}+a_{2}-a_{3}=1
$$

This implies that $a_{1}=0, a_{3}=0, a_{4}=0$. Hence, we get

$$
\operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right) \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right)=a_{0} \operatorname{ch}\left(\chi_{0} \odot \tau_{0}\right)+a_{2} \operatorname{ch}\left(\chi_{3} \odot \tau_{0}\right)
$$

Restricting this equality to $\mathbb{Z}_{q}(2) \times \mathbb{Z}_{q}(2)$, we obtain

$$
\chi_{3} \chi_{3}=a_{0} \chi_{0}+a_{2} \chi_{3} .
$$

This contradicts with the fact :

$$
\chi_{3} \chi_{3}=q^{2} \chi_{0}+q(1-q) \chi_{1}+q(1-q) \chi_{2}+(1-q)^{2} \chi_{3} .
$$

Hence, $\mathcal{K}\left(\widehat{W_{q}(4)}\right)$ is not a hypergroup when $q \neq 1$.

Acknowledgement The authors are thankful to Professors Yoshimichi Ueda, Shigeru Yamagami, Herbert Heyer, Yoshikazu Katayama and Moto O'uchi for their stimulating discussions and valuable suggestions.

References

[1] Bloom, W.R. and Heyer, H. : Harmonic Analysis of Probability Measures on Hypergroups, 1995, Walter de Gruyter, de Gruyter Studies in Mathmatics 20.
[2] Heyer, H., Jimbo, T., Kawakami, S. and Kawasaki, K. : Finite commutative hypergroups associated with actions of finite abelian groups, Bull. Nara Univ. Educ., Vol. 54 (2005), No. 2, pp.23-29.
[3] Heyer, H. and Kawakami, S. : Extensions of Pontryagin hypergroups, PMS(Probability and Mathematical Statstics), Vol. 26 (2006), Fasc. 2, pp.245-260.
[4] Heyer, H. and Kawakami, S. : A cohomology approach to the extension problem for commutative hypergroups, Semigroup Forum, Vol. 83 (2011), No. 3, pp.371-394.
[5] Heyer, H. and Kawakami, S. : An Imprimitivity Theorem for Representations of a Semi-direct Product Hypergroup, Journal of Lie Theory, Vol. 24 (2014), pp.159-178.
[6] Heyer, H., Katayama, Y., Kawakami, S. and Kawasaki, K. : Extensions of finite commutative hypergroups, Scientiae Mathematicae Japonicae, Vol. 65 (2007), No. 3, pp.373-385.
[7] Ito, W. and Kawakami, S. : Crossed Products of Commutative Finite Hypergroups, Bull. Nara Univ. Educ., Vol. 48 (1999), No. 2, pp.1-6.
[8] Ichihara, R. and Kawakami, S. : Strong hypergroups of order four arising from extensions, Scientiae Mathematicae Japonicae, Vol. 68 (2008), No. 3, pp.371-381.
[9] Ichihara, R. and Kawakami, S. : Estimation of the orders of hypergroup extensions, Scientiae Mathematicae Japonicae, Vol. 72 (2010), No. 1, pp.307-317.
[10] Ichihara, R., Kawakami, S. and Sakao, M. : Hypergroup extensions of finite abelian groups by hypergroups of order two, Nihonkai Mathematical Journal,Vol. 21 (2010), No. 1, pp.47-71.
[11] Kawakami, S. : Extensions of commutative hypergroups, Infinite Dimesional Harmonic Analysis, World Scientific, 2008, pp.135-148.
[12] Kawakami, S., Kawasaki, K. and Yamanaka, S. : Extensions of the Golden hypergroup by finite abelian groups, Bull. Nara Univ. Educ., Vol. 57 (2008), No. 2, pp.1-10.
[13] Kawakami, S. and Mikami, I. : Hypergroup extensions of the group of order two by the Golden hypergroup, Bull. Nara Univ. Educ., Vol. 57 (2008), No. 2, pp.11-16.
[14] Kawakami, S., Mikami, I., Tsurii, T. and Yamanaka, S. : Actions of Finite Hypergroups and Applications to Extension Problem, Bull. Nara Univ. Educ., Vol. 60 (2011), No. 2, pp.19-28.
[15] Kawakami, S., Sakao, M. and Takeuchi, T. : Non-splitting extensions of hypergroups of order two, Bull. Nara Univ. Educ., Vol. 56 (2007), No. 2, pp.7-13.
[16] Kawakami, S., Sakao, M., Tsurii, T. and Yamanaka, S. : Signed Actions of Finite Hypergroups and the Extension Problem, Bull. Nara Univ. Educ., Vol. 61 (2012), No. 2, pp.13-24.
[17] Kawakami, S., Sakao, M. and Yamanaka, S. : Extensions of hypergroups of order two by locally compact abelian groups, Bull. Nara Univ. Educ., Vol. 59 (2010), No.2, pp.1-6.
[18] Kawakami, S. and Yamanaka, S. : Extensions of the Golden hypergroup by locally compact abelian groups, Acta Sci. Math., Vol. 78 (2012), pp.351-368.
[19] K.A.Ross and D.Xu : Hypergroup Deformations and Markov Chains, Journal of Theoretical Probability, Vol7(1994), No. 4, pp.813-830.
[20] Sunder, V.S. and Wildberger, N.J : Action of hypergroups and examples, Harmonic Analysis and Hypergroups, Birkhauser, 1998, pp.145-163.
[21] M.Voit : Substitution of open subhypergroups, Hokkaido Math. J. Vol. 23 (1994), pp.143-183.
[22] Wildberger, N.J. : Finite commutative hypergroups and applications from group theory to conformal field theory, Applications of Hypergroups and Related Measure Algebras, Amer. Math. Soc., Providence, 1994, pp.413-434.

DEFORMATIONS OF FINITE HYPERGROUPS

[23] Wildberger, N.J. : Strong hypergroups of order three, Journal of Pure and Applied Algebra 174(2002), No. 1, pp.95-115.
[24] S.L.Woronowicz : Compact Matrix Pseudogroups, Comm. Math. Phys. Volume 111, Number 4 (1987), pp.613-665.
[25] D.Xu : Hypergroup Deformations of $Z(p)$ and finite ensembles, Preprint 1992.

```
Satoshi Kawakami : Nara University of Education
Department of Mathematics
Takabatake-cho
Nara, 630-8528
Japan
e-mail : kawakami@nara-edu.ac.jp
Tatsuya Tsurii : Graduate School of Science of the Osaka Prefecture University
1-1 Gakuen-cho, Nakaku, Sakai
Osaka, 599-8531
Japan
e-mail : dw301003@edu.osakafu-u.ac.jp
Satoe Yamanaka : Nara University of Education
Department of Mathematics
Takabatake-cho
Nara, 630-8528
Japan
e-mail : s.yamanaka516@gmail.com
```


[^0]: 2010 Mathematics Subject Classification. 20N20, 20B05, 20 C 05.

