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1 Introduction Ever since Frechet introduced them in 1928, metric spaces have
come to stay as a basic aspect of abstract analysis. Several important classes of functions
and their modes of convergence typify metric spaces and supplement our understanding of
these classes. Zadeh[22], propounded the theory of fuzzy sets and fuzzy logic, in a path
breaking publication in 1965 to study quantitatively problems involving uncertainty due
to subjective considerations. Since then a number of attempts have been made to endow
fuzzy sets with interesting metrics. A metric being a non-negative real-valued function
it is natural to explore if it could take values in the set of fuzzy real numbers. Notable
contributions along this line are due to Kaleva and Seikkala [12] followed by Felbin [7].
Kaleva [9] had also shown that a fuzzy metric space (in the sense of Kaleva and Seikkala
[12]) has a completion unique up to isometry. In another direction Kramosil and Michalek
[13] defined a fuzzy metric space in analogy with and equivalent to a statistical metric space
as defined by Menger [14]. Inspired by an intermediate function considered by Hausdorff
in defining the Hausdorff distance between closed and bounded subsets of a metric space,
Erceg [6] defined a pseudo quasimetric as a map satisfying some natural conditions from
LX × LX into [0,∞], LX being the set of all maps from a set X into L, a completely
distributive lattice with order-preserving involution. For fuzzy points, a pseudo metric was
defined and studied by Deng [1]. Subsequently Peng Yu Wei [15] simplified the concept
of Erceg’s pseudo quasi metric and also related his concept and results to Erceg’s theory.
Later Rodabaugh [17] and subsequently Jian-Zhong Xiao and Xing-hua Zhu [20] examined
L− fuzzy real line for a completely distributive lattice L, vis-a-vis Erceg’s pseudo metric.

Dubois and Prade [4] defined a fuzzy real number as a continuous function µ : R → [0, 1]
vanishing outside a compact interval [c, d] of real numbers such that for some real numbers
a and b with c ≤ a ≤ b ≤ d, µ increases on [c, a] and decreases on [b, d] and µ(x) is 1 on
[a, b]. Goetschel and Voxman [8] modified the assumption of continuity in the definition of
Dubois and Prade to upper semicontinuity to avoid any inconsistency, while including the
characteristic functions of singleton real numbers. More importantly they defined a metric
for this set of fuzzy real numbers, based on the Hausdorff distance between closed and
bounded subsets. This metric has found applications in the study of fuzzy random variables
(see Puri and Ralescue [16]), fuzzy differential equations (Kaleva [10]) and the calculus of
fuzzy real variables (Kaleva [11]) and has been extensively studied by Diamond and Kloeden
in their monograph [3]. Besides this metric, other metrics on fuzzy real numbers have also
been studied by Voxman [18] (using reducing functions), Yang and Zhang [21] (endograph
metric) and Wu Congxion, Hongliang and Xuekun [19] (sendograph metric). Diamond and
Kloeden ([3], [2]) may be consulted for further details.

The purpose of this paper is to consider a wider class of fuzzy subsets of real numbers
that can be topologized by a family (gauge) of pseudometrics and study its properties.
These fuzzy numbers need not have bounded supports, though their supports intersect a
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fixed closed set. In this way this class of fuzzy numbers serves to supplement the existing
theory of fuzzy real numbers.

2 The space FU (R) We recall the following

Definition 2.1. A fuzzy subset u of a topological space (X, τ) is called upper semi-continuous
if u : X → [0, 1] is a mapping such that [u]α = {x ∈ X : u(x) ≥ α} is a closed subset X
for each α ∈ [0, 1]. A fuzzy subset u : X → [0, 1] is called normal if {x : u(x) = 1} =
{x : u(x) ≥ 1} is nonempty.

We denote the set of all normal upper semi-continuous fuzzy subsets of X by FU (X).
In particular FU (R) is the set of all normal upper semi-continuous mappings of R (with the
normal topology) into [0, 1].

We now prove a representation theorem for members of FU (X), X being a topological
space.

Theorem 2.1. Let (X, τ) be a topological space and u ∈ FU (X), the set of all normal
upper semi-continuous fuzzy subsets of X. For each α ∈ I = [0, 1], let Cα = [u]α = {x ∈
X : u(x) ≥ α}. Then

(i) for each α ∈ I, Cα is a nonempty closed subset of X;

(ii) Cβ ⊆ Cα for 0 ≤ α ≤ β ≤ 1;

(iii) Cα =
⋂∞

i=1 Cαi , for each sequence αi increasing to α in I.

Conversely, if in a topological space (X, τ), there is a family of nonempty closed subsets
{Cα : α ∈ I = [0, 1]} satisfying properties (i), (ii) and (iii) above, then there is a unique
u ∈ FU (X) such that [u]α = Cα for each α ∈ [0, 1].

Proof. Since u ∈ FU (X) in an upper semi-continuous map of X into [0, 1], Cα = [u]α in a
closed subset of X for each α ∈ [0, 1]. Since C1 = {x : u(x) ≥ 1} is nonempty, Cα(⊇ C1) is
nonempty for each α ∈ [0, 1]. For 0 ≤ α ≤ β ≤ 1, Cβ ⊆ Cα is obvious. Thus for u ∈ FU (X),
(i), (ii) and (iii) are true.

Conversely, suppose {Cα : α ∈ I = [0, 1]} is a family of subsets of X satisfying (i)-(iii).
Define u : X → [0, 1] by

u(x) = sup{α ∈ I : x ∈ Cα}

Clearly u is a well-defined map of X into [0, 1], since C0 = X. Since C1 6= ∅, u(x) = 1 for
some x ∈ X and so u is normal. For α ∈ I, if x ∈ [u]α, then u(x) ≥ α. Let Ix = {β ∈ I :
x ∈ Cβ} and α

′
= sup Ix, so that α

′
= u(x). Clearly α

′
(= u(x)) ≥ α and by hypothesis

x ∈ Cα′ ⊆ Cα. So [u]α ⊆ Cα. On the other hand if x ∈ Cα, then u(x) = sup Ix = α
′ ≥ α

and consequently x ∈ [uα], so that Cα ⊆ [u]α. Thus each [u]α = Cα for α ∈ I and hence u
is an upper semi-continuous function.

For topological spaces which are sums of an increasing family of proper closed subsets
this representation theorem can be stated in a different form. For this we need the following

Definition 2.2. A topological space (X, τ) is called F− summable if X =
⋃
{Ft : t ∈ P}

satisfying the following conditions:

(i) (P,≤) is a totally ordered set with a least element ô ;

(ii) every nonempty subset of P has a greatest lower bound in P ;
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(iii) each Ft is a nonempty proper closed subset of X and Ft ≥ Fs for t ≥ s, t, s ∈ P .
Further Ft 6= Fs for t > s.

Theorem 2.2. Let X be an F− summable topological space as in Definition 2.2 and u ∈
FU (X). Then for each t ∈ P and α ∈ I = [0, 1], the sets Cα,t = u[α] ∩ Ft satisfy the
following:

(i) Cα,t is a nonempty closed subset of X for all t ≥ t0 ∈ P for all α ∈ [0, 1];

(ii) Cβ,t ⊆ Cα,t for all 0 ≤ α ≤ β ≤ 1 for all t ∈ P ;

(iii) If Cα,t 6= ∅ and αi(∈ [0, 1]) ↑ α then Cα,t′ = ∩∞
i=1Cαi,t

′ for all t
′ ≥ t;

(iv) [u]α = ∪t∈P Cα,t is closed for each α ∈ I.

Conversly, if X is an F− summable topological space (as in Definition 2.2) and Cα,t,
α ∈ [0, 1], t ∈ P is a family of closed subsets of X satisfying (i) − (iv) above. Then
there exists a unique u ∈ FU (X) such that for each α ∈ I and t ∈ p, [ u ]α∩Ft = Cα,t.

Proof. While the proof of necessity part of the theorem is straight-forward, for proving the
sufficiency part, define u : X → [0, 1] by u(x) = sup{α ∈ [0, 1] : x ∈ Cα,t for least t ∈ P}.
Since x ∈ X = ∪t∈P Ft, x ∈ Ft for smallest t ∈ P and 1 ≥ u(x) ≥ 0. Let α0 = u(x).
Then x ∈ Cα0,t0 clearly [u]α ∩ Ft0 = Cα0,t0 . Further [u]α = ∪t≥t0Cα,t is closed, by (iv).
Thus u is upper semi-continuous. Since C1,t is a nonempty closed subset of X for some t0,
[u]1 = ∪t≥t0C1,t is a closed set by (iv) and u is normal. Thus u ∈ FU (X).

3 A topology on a subspace of FU (R) Let (X, d) be a metric space and FU (X) the
set of all normal upper semi-continuous fuzzy subsets of X. For a fixed element a of X, let
Bn denote the closed ball in X centered at a and radius rn and Hn be the Hausdorff metric
on the nonempty closed subsets of Bn for each n ∈ N. As Bn is bounded, the Hausdorff
distance Hn induced by d is well-defined on the family of nonempty closed subsets of Bn.
We recall the following

Definition 3.1. Let dλ be a pseudometric on a nonempty set X for each λ ∈ Λ. The family
D = {dλ : λ ∈ Λ} is called separating if for x, y ∈ X with x 6= y, there exists λ0 ∈ Λ such that
dλ0(x, y) > 0. The topology τ(D) with the subbase {B(x; dλ, t) : x ∈ X,λ ∈ Λ and ε > 0}
is called the topology on X induced by the family D. D is called a gauge and a topological
space whose topology admits a gauge structure is called a gauge space.

Definition 3.2. Let (X,D) be a gauge space and (xn), a sequence in D is called Cauchy if
limn,m→∞dλ(xn, xm) = 0 for each dλ ∈ D. If every Cauchy sequence in (X,D) converges
to a limit, (X,D) is called sequentially complete.

We also recall the following

Theorem 3.1. (see Dugundji [5]) A topological space is a gauge space if and only if it
is completely regular (or Tychonoff). A gauge space is metrizable if and only if it has a
countable gauge.

With these preliminaries, we can provide a metric topology on CL1(X) for any metric
space (X, d), that have a non-void intersection with B(a; r1).
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Theorem 3.2. Let (X, d) be a metric space. Then Hn is a pseudo-metric on CL1(X),
the set of all nonvoid closed subsets of X, that have a non-void intersection with B(a; r1)
for each n ∈ N, where Hn(A,B) = H(A ∩ Bn, B ∩ Bn) for A, B ∈ CL1(X), H being the
Hausdorff distance induced by d. Then CL1(X) is a gauge space with the gauge {Hn : x ∈
N} and is metrizable assuming that ltn→∞rn = ∞ and

∑ rn

2n converges. If X is complete
then CL1(X) is also complete.

Proof. Since Hn is the Hausdorff metric on CL(Bn), Hn is a pseudo-metric on CL(X) for
each n ∈ N. For A 6= B in CL(X), A∩Bn 6= B∩Bn for some n = n0. So Hn0(A,B) = r > 0.
Thus {Hn : n ∈ N} is a countable separating family of pseudometrics on CL1(X). Thus
CL1(X) is a metrizable gauge space, in view of Theorem 3.1. Since Hn(A,B) ≤ rn for
all A,B ∈ CL1(X) and n ∈ N, and

∑∞
1

rn

2n converges. H(A, B) =
∑∞

1
Hn(A,B)

2n defines a
metric on CL1(X). Further, this metric topology is the same as the gauge topology (we
take Hn(A,B) = 0 whenever Fn ∩ A or Fn ∩ B = φ).

Let {Cn} be a Cauchy sequence in CL1(X). Without loss of generality, we can assume
that

∑∞
1 H(Ci, Ci+1) < ∞. For C1 and C2 we can find n1 so that C1∩Fn1 and C2∩Fn1 6= φ.

So for x1 ∈ C1 ∩ Fn1 , noting that Hn1
2n1 is the Hausdorff metric on Fn1 induced by d

2n1 , we
can find x2 ∈ C2 ∩ Fn1 such that

d(x1,x2)
2n1 < 1

2n1 (Hn1(C1, C2) + 1).

For this n1, we can find n2 > n1 so that C2 ∩ Fn2 and x3 ∈ C3 ∩ Fn2 6= φ. Since 1
2n2 d

induces 1
2n2 Hn2 , a Hausdorff metric on Fn2 , we can find C3 ∩ Fn3 so that

d(x2,x3)
2n2 < 1

2n2 (Hn2(C2, C3) + 1
2 ).

Thus proceeding we get a sequence of elements (xk) ∈ Cn ∩ Fnk
so that

(1)
d(xk, xk+1)

2nk
<

1
2nk

(Hnk
(Ck, Ck+1) +

1
2k

).

Since
∑∞

i=1 H(Ci, Ci+1) is convergent,∑∞
k=1 Hnk

(Cnk
, Cnk+1) + 1

2k

converges. From (1) it follows that d(xk, xk+1) < Hnk
(Cnk

, Cnk+1)+
1
2k and so

∑∞
k=1 d(xk, xk+1)

is finite. Hence {xn} is a Cauchy sequence that converges to some element x by the com-
pleteness of X. Since xk ∈ Ck for each k, xn ∈ ∪n≥kCn for all n ≥ k. So x∗ = limn>kxn,
x∗ ∈

⋃
k≥n Ck for all k. Thus x∗ ∈ ∩∞

n=1(
⋃∞

k≥n Ck).

Define C = ∩∞
n=1(

⋃∞
k≥n Ck). Then C is nonempty and closed and is the closure of the

set of all limit points of {xn}. We now show that H(C,Cn) → 0 as n → ∞. For any
ε > 0 given, let n = N(ε) be chosen so that

∑∞
n=N(ε)[H(Cn, Cn+1) + 1

2n ] < ε
2 . Let x∗ ∈ C

and x0 be the limit of sequence (xn) so that d(x∗, x0) < ε
2 . Then the distance of x∗ from

Ck = d(x∗, Ck) is

≤ d(x∗, x0) +
∑∞

n=k d(xn, xn+1)

< d(x∗, x0) +
∑∞

n=k[H(Cn, Cn+1) + 1
2n ]

< ε
2 + ε

2 = ε for k ≥ N(ε).

Since any xk ∈ Ck can be the starting point of such a convergent sequence (xn) converging
to x0,

d(xk, x0) ≤
∑∞

n≥k d(xn, xn+1) <
∑∞

n≥k[H(Cn, Cn+1) + 1
2n ]
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< ε
2 , for all k ≥ N(ε).

So it follows that H(C,Ck) = max{supx∗∈Cd(x∗, Ck), supxk∈Ck
d(xk, C)} < ε for k ≥ N(ε).

Thus limk→∞Ck = C in CL1(X). Thus for a complete metric space (X, d) that is the
countable union of closed spheres B(a; rn) where (rn) increases to ∞ with

∑ rn

2n < ∞, the
set of all non-void closed subsets of X that intersect B(a; r1) (and hence B(a; rn) for all
n) can be given a complete metric using the Hausdorff metric on ⊂ B(a; rn). Consider a
subclass F 1

U (R) of FU (R) comprising upper semicontinuous functions u : R → [0, 1] such
that [u]1 ⊆ [−r1, r1] where R = ∪∞

n=1[−rn, rn], 0 < rn, limn→∞rn = ∞ and
∑ rn

2n < +∞.
Clearly for such functions the level sets need not be compact nor convex. Although for such
functions, the level of normality has to lie in [−r1, r1], by choosing r1 sufficiently large many
fuzzy numbers with compact support can be found in F 1

U (R). The following theorem shows
that F 1

U (R) and more generally F 1
U (X) admits a complete metric so that analysis can be

carried out in F 1
U (X).

Theorem 3.3. Let (X, d) be a complete metric space. Suppose X = ∪∞
n=1 B(a; rn) where

B(a; rn) is the closed sphere centered at a and radius rn with limn→∞rn = + ∞ and∑∞
1

rn

2n < ∞. Let F 1
U (X) be the set u of all normal upper semicontinuous fuzzy subsets of

X, so that [u]1 ∩B(a, r1) 6= ∅. Then F 1
U (X) is a complete metric space under the metric 4

defined by 4(u, v) = sup0≤α≤1H([u]α, [v]α) where H(A,B) =
∑∞

n=1
Hn(A,B)

2n (as defined
in Theorem 3.2), for A,B ∈ CL1(X).

Proof. Clearly F 1
U (X) is nonempty, as the characteristic function of B(a, r1) is in F 1

U (X).
For u ∈ F 1

U (X), for all α ∈ [0, 1], the closed sets [u]α ⊇ [u]1 and the nonempty set [u]1 ⊆
B(a, r1). So for u, v ∈ F 1

U (X), for 0 ≤ α ≤ 1,

H([u]α, [v]α) =
∑∞

n=1
Hn([u]α,[v]α)

2n ≤
∑∞

n=1
rn

2n = k < ∞,

for sup0≤α≤1H([u]α, [v]α) = 4(u, v) ≤ k is well-defined. Also for 0 ≤ α ≤ 1, u, v, w ∈
F 1

U (X)

H([u]α, [v]α) ≤ H([u]α, [w]α) + H([w]α, [v]α)

and so 4(u, v) ≤ 4(u,w) + 4(w, v). Thus (F 1
U (X),4) is a metric space.

For proving the completeness of F 1
U (X) under 4, consider a Cauchy sequence un in

F 1
U (X). So given ε > 0, we can find M(ε) ∈ N such that 4(uk, um) < ε for all k,m ≥ M(ε).

Let H1
n(u, v) = sup0≤α≤1Hn([u]α, [v]α) for each n ∈ N. Since the gauge {H1

n : n ∈ N}
generates 4 and {un} is Cauchy with respect to {H1

n : n ∈ N}, it follows that {[u]αn ∩ Bn}
is uniformly Cauchy in α for a fixed n and being a Cauchy sequence of closed sets in the
complete space CL(Bn), [u]αn∩Bn converges to Cα∩Bn for each n uniformly in α in CL(Bn).
Clearly the family of closed sets {Cα ∩ Bn : α ∈ [0, 1], n ∈ N} satisfies the conditions of
Theorem 2.2 and so there exists a function u in F 1

U (X) for which [u]α = ∪∞
n=1C

α∩Bn = Cα

is closed for 0 ≤ α ≤ 1. Further H1
n(u, um) → 0 as m → ∞ for each n ∈ N. Thus F 1

U (X) is
complete.

Remark 3.1. If we specialise X to R or Rn (n > 1), the F 1
U (X) is a special space of

fuzzy numbers whose support can be unbounded. It will also contain all fuzzy numbers with
support lying in a prescribed interval. In a sense this can supplement the space (En, d∞)
considered notably by Kaleva [10] and Kloeden and Diamond [3].
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4 An alternative approach While the space F 1
U (X) complements E1 or En with

d∞ for X = R1 or Rn respectively, F 1
U (R) or F 1

U (Rn) does not contain E1 or En. However,
this situation can be remedied in the following manner: for a metric space (X, d), the metric
topology induced is the same as the topology induced by the bounded metric d∗ defined by
d∗ = min{1, d(x, y)} for x, y ∈ X so that (X, d∗) is complete whenever (X, d) is complete.
The following theorem is easy to prove.

Theorem 4.1. Let (X, d) be a metric space and d∗ be defined by d∗(x, y) = min{1, d(x, y)}
for x, y ∈ X. Then (X, d∗) is a metric space and H∗ be the Hausdorff metric induced by d∗

on CL(X), the set of all non-void closed subsets of X. If d is complete, then d∗ is complete,
Further (CL(X),H∗) is also complete.

This enables us to define a metric on FU (X), the space of normal upper semi-continuous
fuzzy subsets of metric space (X, d) into [0, 1]. Again the proof of the following theorem is
straight forward.

Theorem 4.2. Let (X, d) be a complete metric space. Then FU (X), the space of all normal
upper semi-continuous fuzzy subsets of X is a complete metric space with the metric D∗

defined by D∗ = sup0≤α≤1H
∗([u]α, [v]α) for u, v ∈ FU (X), H∗ being the Hausdorff metric

on CL(X) induced by d∗ = min{1, d}.

Remark 4.1. Besides D∗, other bounded metrics homeomorphic to d can be used to gen-
erate Hausdorff metrics on CL(X). This, in turn can be used to metrize FU (X), the space
of normal upper semi-continuous fuzzy subsets of X.

Remark 4.2. If (X, d) is a real normed linear space, then taking rn = n ∈ N and a = 0,
the zero vector, it can be seen that the maps φt defined by

(2) φt(x) =


1 x = 1,

t x ∈ [0, 1),
0 otherwise

are in F 1
U (R) and 4(φt, φs) ≥ 1

2 . Consequently F 1
U (X) containing an isometric copy of

F 1
U (R) is not separable.
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