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Abstract.

Nowadays one of the most studied issues in economic or finance field is to get the
best possible return with the minimum risk. Therefore, the objective of the paper is to
select the optimal investment portfolio from SP500 stock market and CBOE Interest
Rate 10-Year Bond to obtain the minimum risk in the financial market.

For this purpose, the paper consists of: 1) the marginal density distribution of the
two financial assets is described with kernel density estimation to get the ”high-picky
and fat-tail” shape; 2) the relation structure of assets is studied with copula function
to describe the correlation of financial assets in a nonlinear condition; 3) value at
Risk (VaR) is computed through the combination of Copula method and Monte Carlo
simulation to measure the possible maximum loss better.

Therefore, through the above three steps methodology, the risk of the portifolio is
described more accuratly than the conventional method, which always underestimates
the risk in the finicial market.

So it is necessary to pay attention to the happening of extreme cases like ”Black
Friday 2008” and appropriate investment allocation is a wise strategy to make diver-
sification and spread risks in financial market.

uzzy regression model, fuzzy random variable, expected value, variance, confidence in-
terval.

1 Introduction In finance market, with fierce volatility, the risk management has be-
come a hot research issue in the study. Especially after the accident happened such as the
closing down of Barings Bank and the bankrupt of Enron Corp, in the analysis of portfolio
the emphasis has moved on the balance between profit and safety.

For the conventional methods, person coefficient is used to measure the correlation
of variables and Risk metrics are common ways to calculate VaR. However, due to the
assumption of the methods are based on normal distribution, the methods deviate from the
real situation more or less.

Therefore, it is necessary to propose a new assets allocation method to evaluate the risk
of portfolio in the financial market.

Firstly, according to Markowitz 1987[17]; Terrance. C. Mills 2002[18], the assumption
that the distribution of assets return rate submits normal distribution always neglects the
happening of extreme conditions, which results in lack of precaution and huge losses in the
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Table 1: Tabe l
Distribution Theory Relation Structure Risk at Value

Conventional Normal Distribution Central Limit Theorem Person Coefficient Risk Metrics
Burgeoning High-picky; Fat-tail Kernel Density Estimation Copula Function Monte Carlo Simulation

end. Meanwhile, lots of experiments have indicated the return curve presents ”high-picky”
and ”fat-tail”. So it is necessary to estimate the probability distribution density of asset
return with kernel smoothing under a wide precondition.

Secondly, from Embrechts 1999[7], based on figuring out the marginal density distribu-
tion of financial assets, the study of relation structure between two financial assets is an
important step in the asset allocation and risk management. In the premise of normal distri-
bution, Pearson correlation is a common option to describe the linear relationship. However,
some defects such as restricted variance, and easy to be distorted show its bounded-ness in
the nonlinear application.

Therefore, from Sklar1959 [30]; Nelsen 1999[19], Copula model is introduced and widely
used as a link function C(u1, u2, · · · , uN ) to define the simultaneous distribution F (x1, x2, · · · , xN )
according to the marginal distribution FX1(x1), FX2(x2), · · · , FXN

(xN ) of random variables
X1, X2, · · · , XN . Namely,

F (x1, x2, · · · , xN ) = C[FX1(x1), FX2(x2), · · · , FXN
(xN )](1)

Copula function is not only the tool to build the joint probability of multi-dimensional
random variables, but also the one to explore the relation structure among random variables.

Thirdly, after better fitting the joint distribution and describing the relation structure,
we can obtain the value in risk of portfolio return more accurately, which has become main
qualitative technology in risk degree.

From the definition of Philippe Jorion [13], Value at Risk (VaR) is aimed to compute
the potential loss of financial assets using distribution function in a certain holding period
and confidence level c. If z and VaR indicate the value of financial assets and the risk value
respectively, then

P (z ≤ V aR) = 1− c(2)

Here Monte Carlo simulation is applied to reckon the yield distribution of portfolio risk
factors, hence the gains and losses could be constructed in the portfolio and the risk value
is estimated in the light of given confidence level.

To sum up, the comparison of the conventional and burgeoning methodologies follows
the next table:

Recently, from C.Perignon2010 [], D.Fantazzini2009 [] and J.Shin2009 [], the burgeoning
methodology has an obvious effect on analyzing the risk of portfolio in the financial market.

The paper is organized as follows. Section 2 presents the kernel density estimation, the
relation structure based on copula model and VaR calculation by Montel Carlo simulation.
The combination of the three methods has an obvious advantage compared with the con-
ventional one with linear premise. Section 3 discusses empirical results according to the
past and present one, respectively. Section 4 discusses the empirical results. Section 5 is
the conclusion.

2 Method
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2.1 kernel density estimation (KDE) Experiences show that a large gap is formed
between premises of the distribution of financial assets and the complexity in practice. So
an approach like the kernel density estimator mitigates the rigidity of the function that
belongs to a certain group and hence deserves to be applied in the financial issue.

Let X1, X2, · · · , Xn be independent samples obtained from an unknown density function
f(x). f(x) is the formula of kernel density estimator (KDE) (M. Rosenblatt)[28]:

Figure 1: Kernel Density Function

Kernel Density Estimator:

PKDE(x) : f̂(x, h) = (nh)−1
n∑

i=1

K(
x− xi

h
)(3)

K denotes kernel and h is bandwidth; The smooth kernel estimate is a sum of “bumps”
and the kernel function K determines the shape of the bumps. Because of higher efficiency,
Gaussian kernel

KG(u) = (
√
2π)−1exp(−z2

2
) is adopted; the parameter h, also called the “bandwidth,”

determines their width. (M.P.Wand; M.C.Johns)[31]
The bandwidth h plays the role of a scaling factor in determining the spread of the kernel.

And it determines the amount of smoothing applied in estimating f(x). The following is
the “rule of thumb,” which is the most widely used method. (Silveman)[29]

If f(x) is a normal dessity function, then:∫
(f(x)2dx =

3

8
π−0.5σ−5 ≈ 0.212σ−5(4)

normal kernel

K(u) = (
√
2π

−1
exp(

−u2

2
) exp : h = 1.06σn

−1
5(5)

Hjort and Jones (1996)[10] proposed an improved rule obtained by using an Edgeworth
expansion for f(x) around the Gaussian density. Such a rule is given by:

ĥ∗
opt = hAMISE(1 +

35

48
γ̂4 +

35

32
γ̂3 +

385

1024
γ̂4)

−1
5(6)
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2.2 Relation structure based on Copula function According to Sklar theorem, a
multiple joint distribution function could be described with marginal distribution and Cop-
ula model. To portray the relation structure of financial assets, a kind of two phases
method, which is named as kernel density estimation-maximum likelihood method, is used
here. (Bouye 2000)[1]

When random variables are two financial assets A and B, whose observation series of
return rate (rA, rB) is {(rtA, rtB)}Tt=1, the simultaneous distribution function is F (x, y) and
the probability density and distribution function of rA and rB are fA(x), FA(x), and gB(x),
FB(x), and the Copula C : Cα(ut, vt) = C(FA(r

′
A), FB(r

′
B)) = F (r′A, r

′
B).

1) Primarily, kernel density estimation is used to measure the unknown marginal density
of the financial assets. (Devroye 1983[4]; Fan Yao 2003[32])

fA(x) = 1
ThA

∑T
t=1 KA(

x−r′A
hA

);

gB(x) = 1
ThB

∑T
t=1 KB(

y−r′B
hB

);
(7)

When K(·) is the normal kernel:

ui = 1
T

∑T
j=1 ϕ(

rtA−rj
A

hA
);

vi = 1
T

∑T
j=1 ϕ(

rtB−rj
B

hB
);

(8)

2) Next the unknown parameter a in Copula is estimated by maximum likelihood and
examined by frequency histogram graph and Minimum Variance Test to choose a optimal
copula function. (Genest, Rivest 1993)[23]

The partial derivative is taken to the two sides of formula 1

f(x, y) = cα(FX(x; θx), FY (y; θy))fX(x; θx)fY (y; θy),(9)

fX(x; θx) and fY (y; θy) are the marginal density function of f(x, y), θx and θy are the
parameters of marginal density fX(x) and fY (y), α is the parameter of Copula, calpha is

the density function of Copula: calpha(u, v) =
∂2C(u, v)

∂u∂v
Then the formula 8 is taken logarithm:

lnL(θx, θy : α) = ln cα(FX , FY ) + ln fX(x, θx)+
ln fY (y; θy)

(10)

From maximum likelihood (ML) conception, the log-likelihood function is:

l(v) =
∑T

t=1 ln c(FX(Xt; θx), FY ) + ln fx(X; θx)

+
∑T

t=1 ln fY (Yt; θy)
(11)

(V. Durrleman 2000[6]; Roberto De Matteis 2001[3]; Claudio Romano 2002[27])
Then, the parameter of Copula C is estimated with ML method:

α̂ = argmax

T∑
t=1

ln c(ut, vt;α),(12)

c(u, v) is the density of Copula,
To sum up, in the above two illustrated steps of the method, the density distribution of

financial assets could be estimated in a wide postulated condition and a relation structure
especially the tail dependence between them could be described effectively.
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2.3 VaR Calculation Analytical Methods such as Variance-Covariance Approach offer
an instinctive comprehension of the driving factors of risk in a portfolio, which derives from
the risk metrics and obeys the normal distribution. When there are only two assets, the
portfolio variance is: (Harry Markowitz, 1952[15]; Peter Zangari, 1996[33])

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2(13)

And the portfolio VAR is then:

V aRp = ασpW

= α
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2W

(14)

where α is quantile of confidence, w weight, σ the variance of assets, ρ correlation coefficient,
W the original value, respectively.

Withal, for Monte Carlo simulation based on Copula-VaR, on the one hand, Copula
function has the advantage of depicting nonlinear and asymmetric and especially capturing
the tail dependence; on the other hand, an abundance of random data that conform to
historical distribution is generated to simulate the behavior of the return rate of financial
assets by Monte Carlo method.

So the process of portfolio VaR of two assets X and Y based on Copula model and
Monte Carlo simulation is followed: (Rank J, Siegl T, 2003[22]; Romano C, 2002[27])

1) The copula model is chosen to describe the marginal distribution of assets and related
structure C(∗, ∗).

2) The parameter of Copula model is estimated according to the historical data of return
rate of asset X and Y , and hence the distribution function of assets return F (∗), G(∗) and
C(u, v) that are to demonstrate the relation structure between assets could be confirmed.
Thereinto, u = F (Rx), v = G(Ry), which submit to (0, 1) even distribution.

3) Two independent random numbers u and v, which submit (0, 1) even distribution,
are generated. u is the first simulated pseudo random numbers (PRN). For another thing,
Cu(v) = w, another PRN v could be calculated through the reversion function of Cu(v):
v = C−1

u (w).
4) The values of corresponding assets return RX = F−1(u), RY = G−1(v) are obtained

according to the distribution function of assets return F (·), G(·) and u, v;
5) The weight w is given in the portfolio and the return Z of portfolio is calculated:

z = wRX + (1 − w)RY , which provides a possible perspective to the future yield of the
portfolio.

6) (3)-(5) steps are repeated through K times, which means the k kinds of possible
scenarios of the future yield of the portfolio are generated through simulation, which is
amied to obtain the empirical distribution of the future return of the portfolio. For the
given confidence 1− α, the VaR in the portfolio is confirmed from P [Z < −V aRα] = α.

3 Numerical Experiment In the empirical experiment, it is assumed that the portfolio
just includes stock and bond. The analyzed data of the two selected financial assets is from
Standard&Poor’s500 and CBOE Internet Rate 10-Year Bond (2008.7.1-2012.7.3), and the
following is the graph of return rate r: rAt = log[PAt/PAt−1]

First, Kolmogorov-Smirnov test is used to make the test of normality in SPSS, which
shows they don’t satisfy normality; Augmented Dickey-Fuller (ADF) unit root test is aimed
to demonstrate whether it is the stationary time series data, which demonstrates the time
series are the stationary ones.

1) According to the formula 5 6, the bandwidths of SP500 and 10-year bond are 0.0012
and 0.0024, respectively. Through the optimal bandwidth and default Gaussian kernel
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Figure 2: The time series of SP500 return rate

Figure 3: The time series of CBOE Internet Rate 10-Year Bond return rate

function, the density function and cumulative distribution function of the financial assets
could be estimated through invoking KS density function in Matlab.

The following is the comparison of kernel density, frequency histogram and normal
distribution density:

Figure 4: Frequency histogram, kernel density estimation and normal distribution density
of the yield of SP500 stock and 10-year bond

The following is the comparison of the empirical, estimated and theoretical normal
distribution function under the same conditions:

On the basis of the kernel density estimation to the unknown marginal density of the
two financial assets, the parameter of copula model could be estimated.

2) The construction of the bi-variant copula model
Conventionally, Person correlation coefficient is written in the following:

ρxy =
cov(x, y)

(σx, σy)
=

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(15)

[25]
It assumes the variables submit to the multi-variant normal distribution. Then, the

correlation coefficient of SP500 and 10-year bond is 41.97%.
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Figure 5: Empirical, estimated and theoretical normal distribution function graph of the
return rate of SP500 and 10-year bond

According to the kernel density estimation-maximum likelihood method (8)-(11) and
Minimum Variance Test Method

V ar(α) ∼=
4

n
α

3
2 (1 +

√
α)2(16)

(Kendall and Stuart (1967)[14]; Mardia (1970)[16]), Gumbel and Clayton are adopted
[19] and the corresponding Copula parameters are 1.4173 and 0.7515.

Then, the correlations of stock and bond could be obtained from function relationship
between Kendall and Copula parameter: 29.44% and 27.3% respectively here, which is
similar to 31.26% from Kendall rank correlation.

Then, through the parsing expression of the correlation coefficient in tail, the correlation
coefficient in up-tail and low-tail could be measured according to Gumbel and Clayton
function:

Gumbel : λup = 2− 2
1
α = 0.37(17)

Clayton : λlo = 2− 2
1
α = 0.40(18)

Fig 6 also shows the similar characteristic in the end of the diagonal.
Then, the VaR value could be computed by the combination of copula model and Montel

Carlo simulation like the algorithm step (1)-(6) in 2.3.
3) VaR computation
For the analytical formula (13), the assumption is that c = 95%(a = 1.65) and the

original value W is set to 1:
When W1 = W2 = 0.5(c = 95%, a = 1.65),

VaR value is equal to 0.01336;(19)

When VaR is minimum, the proportion ofW1 SP500 andW2 10-year bond is respectively
equal to 80.5% and 19.5%, and

VaR is 0.000055(20)

According to the Monte Carlo simulation (1)-(6), when W1 = W2 = 0.5, from Gumble
or Clayton model:

VaR=0.0135;(21)
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Figure 6: Bibariate frequency histogram

From the following graph, it is concluded that the ratio of stock and bond reaches 85%
to 15%, the value at risk could be minimum,

which is about 0.0122;(22)

Figure 7: Stock weight-VaR

4 Discussions 1) From the time series graph Figs 2 and 3, the volatility of the two return
rate series have the obvious ”cluster” phenomenon, which means big fluctuations follow big
ones and small fluctuation follow small ones, and there is a certain similarity between them,
which shows some interaction exists in it.

From Figs 4 and 5, we can get the negative skewness and high kurtosis, which demon-
strates falling days are less than rising days, but the falling average range is higher than
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Table 2: VaR of different portions
W1 W2

(stock weight) (bond weight) VAR
0.00 1.00 0.0191
0.10 0.90 0.0178
0.20 0.80 0.0165
0.30 0.70 0.0154
0.40 0.60 0.0143
0.50 0.50 0.0135
0.60 0.40 0.0128
0.70 0.30 0.0124
0.80 0.20 0.0123
0.85 0.15 0.0122
0.90 0.10 0.0123
1.00 0.00 0.0126

the rising one and return rate happen near the separate average value. So compared with
normal distribution, kernel density estimation is a better way to describe the feature of ”fat
tail and high picky” in the real situation.

2) Through the comparison between Person correlation coefficient and correlation coef-
ficient from copula model, the value of Person one is higher than the one from copula model
and Kendall correlation, which shows that the former overestimates the relation between
stock market and bond

Contrary to the inability to capture the relevance in tail from linear perspective, the
correlation coefficient in tail well describes the possibility of consistency in bond market
when the exception situations happen in stock market such as boom or slump.

3) In the VaR comparsion part, it implies that 50% stock-50% bond portfolio has a 95%
chance of losing the maximum value 0.01336 and 0.0135 under the above two methods when
1 is invested.

Through the contrast of the VaR results from analytical method and Monte Carlo sim-
ulation, it is found that the VaR value in assumption of the normal distribution is less than
the one by Monte Carlo, which means the former underestimates the financial risk easily.

Meanwhile, to obtain the safest asset security, it is a wise strategy for a robust investor to
allocate 80%−85% capital to stock market and 15%−20% one to 10-year bond theoretically
according to results of the minimum VaR computation.

5 Conclusions In the analysis of portfolio, there is an importance in the study of relation
structure between financial assets, which results in how to capture the principal of change
between them especially in the tail with better correlation model.

In this paper, through kernel density estimation-maximum likelihood two steps, Gumbel
and Clayton copula model are adopted to model the correlation between stock and bond.
Then, VaR is analyzed based on it and the optimal allocation in the portfolio could be
confirmed by Montel Carlo simulation.

By comparison between the present methods introduced in this paper and the conven-
tional methods which is based on the normal distribution, it is concluded that the latter one
always underestimate the happening of risk and the value of risk, which should be brought
to the forefront.
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