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ABSTRACT. Aggregation is the process of fusing a large data in one representative
value. This is done in different ways, through what may be called ‘operators’, every opera-
tor having special characteristics. Expanding study of vague phenomena, through hesitant
fuzzy information of hesitant fuzzy set (HFS) theory and their applications has attracted
useful aggregation techniques. Paper explores the geometric Heronian mean (GHM) un-
der hesitant fuzzy environment and defines some new geometric Heronian mean operators
such as the hesitant fuzzy generalized geometric Heronian mean (HFGGHM) operator and
the weighted hesitant fuzzy generalized geometric Heronian mean (WHFGGHM) opera-
tor. Further, we give definition of hesitant fuzzy geometric Heronian element (HFGHE),
which is a basic calculation unit in HFGGHM and reflects the conjunction between two
aggregated arguments. Properties of the new aggregation operators are reported and their
special cases are considered. Furthermore, based on the WHFGGHM operator, an approach
to deal with multi-criteria decision-making problems under hesitant fuzzy environment is
developed. Finally, a practical example is provided to illustrate the multi-criteria decision-
making process.
Keywords: fuzzy sets; fuzzy multi-sets; intuitionistic fuzzy set; hesitant fuzzy sets.

1. Introduction

Mathematics is known for its quantitative and logically sound foundations. It started
with study of deterministic phenomena. However, the wider world phenomena, all the more
those in man-made world, are not deterministic in nature. Ingenuity of mathematicians
expanded mathematical study to a class of in-deterministic/uncertain phenomena that are
statistical/probabilistic nature. Without sacrificing its quantitative and logically sound
basis, a vast discipline of statistics developed. Moving thus a major step forward in the
study of uncertain phenomena, it was observed that there are uncertain phenomena that
are not statistically stable in which chances of happening of an event can be quantified
in terms of probabilities and distribution-patterns. This presented mathematicians with a
challenge to define phenomena that are uncertain in non-statistical ways. In general these
may be called vague or imprecise. Zadeh [44] was the first to capture this idea in defining
fuzzy sets. Several extensions and generalizations of Zadeh’ fuzzy-sets have since been made
as intuitionistic fuzzy sets [1, 2], interval-valued fuzzy sets [10, 19], type-2 fuzzy sets [45],
type-n fuzzy sets [45], fuzzy multisets [6, 35], vague sets [9], and hesitant fuzzy sets [17, 18],
etc. In a rather natural way, set operations were defined and it was found that these present
a panorama of laws as the defining terms in these sets involve functions, which was not the
case with theory of crisp sets. These studies enriched areas of applications in different ways
[4, 5, 7, 8, 11-16, 20-34, 38-41, 45-50].

The vagueness/fuzziness that appeared to be diluting/loosing precise quantitative tenor
of things in the process, Zadeh and thereafter others defined measures of fuzziness of various
shades over family of fuzzy-sets. These measures of fuzziness are quantitative in nature and
follow the pattern of measures defined in place Shannon’s probabilistic information theory.
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Another age old idea is that of ‘aggregation,’ a process of meaningfully fusing a collection
of values into one representative value. It is, in fact, a multi-faceted avtar of the simple
idea of arithmetical and other means/averages of a given set of numbers. In probabilistic-
statistics, one encounters it at several places – ‘statistical expectations,’ correlation and
regression analysis, etc.

Shannon’s entropy of a probability distribution being average of self-information ar-
guments of its elements is, generally speaking, an aggregation of self-information elements.
With this background, information aggregation in hesitant fuzzy set theory has been studied
with quite some interest by researchers and practitioners in recent years. Xia and Xu [27]
developed some arithmetic and geometric aggregation operators under hesitant fuzzy envi-
ronment, investigated the connections of these operators and applied them to multi-criteria
decision making. To aggregate the hesitant fuzzy information under confidence levels, Xia
et al. [26] developed a series of confidence-induced hesitant fuzzy aggregations operators.
Xu et al. [30] developed several series of aggregation operators for hesitant fuzzy informa-
tion using the quasi-arithmetic means. Gu et al. [11] utilized the hesitant fuzzy weighted
average (HFWA) operator to investigate the evaluation model for risk investment with hes-
itant fuzzy information. Based on the prioritized weighted average (PWA) operator [37,
38], Yu [40] proposed the hesitant fuzzy prioritized weighted average (HFPWA) operator
and the hesitant fuzzy prioritized weighted geometric (HFPWA) operator to aggregate the
hesitant fuzzy information. Wei [22] also developed some prioritized aggregation operators
for aggregating hesitant fuzzy information and then applied them to develop models for
hesitant fuzzy multiple attribute decision making.

Reflecting on the concept of aggregation, it may be noted that the above discussed ag-
gregation operators with hesitant fuzzy information are based on the assumption that all
aggregating arguments are independent However, in real world situations there are always
some degrees of interrelationships between arguments. To deal with this issue, Yu et al.
[39] and Wei et al. [21] developed some hesitant fuzzy correlative operators, such as the
hesitant fuzzy Choquet integral (HFCI) operator, the hesitant fuzzy Choquet ordered aver-
age (HFCOA) operator, the hesitant fuzzy Choquet ordered geometric (HFCOG) operator,
the generalized hesitant fuzzy Choquet ordered average (GHFCOA) operator and the gen-
eralized hesitant fuzzy Choquet ordered geometric (GHFCOG) operator and found their
application to multiple attribute decision making. Motivated by the idea of power aver-
age (PA) operator [36], Zhang [48] developed some hesitant fuzzy power average (HFPA)
operators and hesitant fuzzy power geometric (HFPG) operators for aggregating hesitant
fuzzy correlative information. Further, Zhu et al. [51] and Zhu and Hu [52] extended
the Bonferroni mean (BM) to hesitant fuzzy environment and introduced some hesitant
fuzzy Bonferroni means such as the hesitant fuzzy Bonferroni mean (HFBM), the weighted
hesitant fuzzy Bonferroni mean (WHFBM), the hesitant fuzzy geometric Bonferroni mean
(HFGBM), the weighted hesitant fuzzy geometric Bonferroni mean (WHFGBM) and the
hesitant fuzzy Choquet geometric Bonferroni mean (HFCGBM).

The Heronian mean (HM) is another aggregation technique, which is better suited to
aggregate the exact numerical values [3]. A prominent characteristic of HM is its capability
to capture interrelationships between input arguments. This makes HM useful in various
application fields, such as decision making, information retrieval, pattern recognition, and
data mining etc. The HM is different from power average or Choquet integral. The HM
operator focuses on the aggregated arguments while the Choquet integral or power average
on changing the weight vector of the aggregation operators. Based on HM operator, Yu
[43] defined some generalized HM operators such as generalized geometric Heronian mean
(GGHM), the generalized geometric intuitionistic fuzzy Heronian mean (GGIFHM) and the
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weighted generalized geometric intuitionistic fuzzy Heronian mean (WGGIFHM).

In this paper, we extend the idea of generalized geometric Heronian mean operator to
hesitant fuzzy environment. In order to do so, we propose the hesitant fuzzy generalized
geometric Heronian mean (HFGGHM) operator and the weighted hesitant fuzzy general-
ized geometric Heronian mean (WHFGWBM) operator for aggregating the hesitant fuzzy
correlative information. We study their properties and discuss special cases. We show that
several aggregation operators on hesitant fuzzy sets studied earlier are special cases of our
generalized operator. Also, there are others interesting particular cases that as well arise
from it. Further, we develop an approach for multi-criteria decision making under hesitant
fuzzy information environment.

The paper is organized as follows: In Section 2 some basic concepts related to fuzzy sets,
hesitant fuzzy sets and Heronian mean operators are briefly given. In Section 3 we propose
the hesitant fuzzy generalized geometric Heronian mean (HFGGHM) operator and study
some of their properties. Some special cases of HFGGHM are also discussed in this section.
In Section 4 we introduce the weighted hesitant fuzzy generalized geometric Heronian mean
(HFGGHM) operator and develop an approach for solving multi-criteria decision making
under hesitant fuzzy environment. In Section 5 finally, a numerical example is presented to
illustrate the proposed approach to multi-criteria decision-making and our conclusions are
presented in Section 6.

2. Preliminaries

Definition 1. Fuzzy set [44]: A fuzzy set A in a finite universe of discourse X =
{x1, x2, ..., xn} is defined as

(1) A = {⟨x, µA(x)⟩ |x ∈ X} ,

where µA(x) : X → [0, 1] is the membership function of A and the number µA(x) describing
the degree of membership of x ∈ X in the set A.

An step further, the concept of hesitant fuzzy sets (HFSs) was introduced by Torra and
Narukawa [17] and Torra [18]. An HFS permits the membership degree of an element to
be a set of several possible membership values between 0 and 1. This better describes the
situations where a set of people have hesitancy in providing their preferences over objects
in the process of decision making.

Definition 2. Hesitant Fuzzy Set [18]: Let X = {x1, x2, ..., xn} be a reference set, a set
E defined in X given by

(2) E = {⟨x, hE(x)⟩ |x ∈ X}

where hE (x) is a set of some different values in [0, 1], denoting the possible membership
degrees of the element x ∈ X to the set E, is called a hesitant fuzzy set.

Further, Torra [18] defined the ‘empty hesitant fuzzy set’ and the ‘full hesitant fuzzy set’
as follows:

E◦ = {⟨x, hE◦(x)⟩ |x ∈ X}, where hE◦(x) = {0} ∀x ∈ X,

E∗ = {⟨x, hE∗(x)⟩ |x ∈ X}, where hE∗(x) = {1} ∀x ∈ X.
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For convenience, Xia and Xu [27] named the set h = hE(x) as the hesitant fuzzy element
(HFE) and let HFE(X) represent the family of all hesitant fuzzy elements defined in X.

Definition 3.Algebraic Operations on HFEs: Let h, h1, h2 ∈ HFE(X), Xia and Xu
[26] defined the following operations:

1. hλ =
∪

γ∈h

{
γλ

}
, λ > 0;

2. λh =
∪

γ∈h

{
1− (1− γ)λ

}
, λ > 0;

3. h1 ⊕ h2 =
∪

γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2};

4. h1 ⊗ h2 =
∪

γ1∈h1,γ2∈h2
{γ1γ2}.

Definition 4. Score Function [27]: Let h be a hesitant fuzzy element, the score function
S of an HFE is defined as follows:

(3) S(h) =
1

#h

∑
γ∈h

γ,

where #h is the number of elements in h.

To ranking any two hi, i = 1, 2, we shall use the following definition of Xia & Xu [27]:

Definition 5: Let h1and h2 be two hesitant fuzzy elements with their respective scores
S(h1) and S(h2), then

1. h1 is larger than h2, denoted by h1 > h2 if S(h1) > S(h2).

2. h1 = h2, if S(h1) = S(h2).

Heronian mean (HM), which is one of the aggregation methods, is characterized by the
ability to capture the relevance between the input arguments. The definition of HM is as
follows:

Definition 6. Heronian Mean [3]: For a collection ai, i = 1, 2, · · · , n, of nonnegative real
numbers, their Heronian mean (HM) is defined as:

(4) HM(a1, a2, · · · , an) =
2

n(n+ 1)

n∑
i,j=1

√
aiaj

Based on Definition 6, Yu [42] proposed the geometric Heronian mean (GHM) as follows:

Definition 7. Geometric Heronian Mean [43]: For a collection ai, i = 1, 2, · · · , n, of
nonnegative real numbers, their the geometric Heronian mean (GHM) is defined by:

(5) GHM(a1, a2, · · · , an) =
n∏

i,j=1

(ai + aj
2

) 2
n(n+1)

Further, using the idea of geometric Bonferroni mean [31], Yu [43] also proposed the gener-
alized geometric Heronian mean (GGHM) as follows:
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Definition 8. Generalized Geometric Heronian Mean [43]: Let p, q ≥ 0, p, q do not
take the value 0 simultaneously and let ai, i = 1, 2, · · · , n, be a collection of nonnegative
real numbers, then generalized geometric Heronian mean (GGHM) is given by:

(6) GGHMp,q(a1, a2, · · · , an) =
1

p+ q

n∏
i,j=1

(pai + qaj)
2

n(n+1)

It may be noted that GGHMp,q have the following properties.

1. GGHMp,q(0, 0, · · · , 0) = 0 and GGHMp,q(1, 1, · · · , 1) = 1;

2. GGHMp,q(a1, a2, · · · , an) = a if ai = a, ∀i;

3. If ai ≤ bi ∀i, thenGGHMp,q(a1, a2, · · · , an) ≤ GGHMp,q(b1, b2, · · · , bn) i.e., GGHMp,q

is monotonic;

4. min
i

{ai} ≤ GGHMp,q(a1, a2, · · · , an) ≤ max
i

{ai}.

In the next section, in respect of hesitant fuzzy environment, we extend the GGHM to
hesitant fuzzy environment and propose:

(i) The hesitant fuzzy generalized geometric Heronian mean (HFGGHM);
(ii) The weighted hesitant fuzzy generalized geometric Heronian mean (WHFGGHM).

3. Hesitant Fuzzy Generalized Geometric Heronian Means

We propose the following definition:

Definition 9.Hesitant Fuzzy Generalized Geometric Heronian Mean : Let p, q > 0
and hi i = 1, 2, · · · , n be a collection of HFEs, the hesitant fuzzy generalized geometric
Heronian mean (HFGGHMp,q) is given by:

(7) HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2

n(n+1)

Next, based on the operational laws of HFEs, we have the following theorem:

Theorem 1: Let p, q > 0 and hi i = 1, 2, · · · , n be a collection of hesitant fuzzy elements,
then the aggregated value by using the HFGGHMp,q operator is also a hesitant fuzzy
element, and

HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2

n(n+1) ,

(8) =
∪

ηi,j∈σi,j;i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)



1
p+q


5



where σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) reflects the interrelationship between hi and
hj , i, j = 1, 2, ... , n.

Proof: Since

(9) σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) =
∪

ηi,j∈σi,j;i≤j

{ηi,j}

which is also a HFE, then Equation (8) can be written as:

(10) HFGGHMp,q (h1, h2, ..., hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σi,j

) 2
n(n+1)

Furthermore, we have

n
⊗

i, j = 1
i ≤ j

(σi,j)
2

n(n+1) =

 n
⊗

i, j = 1
i ≤ j

(
σi,j

)


2
n(n+1)

=
∪

ηi,j∈σi,j;i≤j




n∏

i, j = 1
i ≤ j

ηi,j



2
n(n+1)



=
∪

ηi,j∈σi,j;i≤j




n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)




and then

(11)
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σi,j

) 2
n(n+1) =

∪
ηi,j∈σi,j;i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)



1
p+q


.

This completes the proof of the Theorem 1.

It is noted that, in Theorem 1, σi,j is a basic element in (8), which we call a hesitant fuzzy
geometric Heronian element (HFGHE). Apparently, σi,j represents the interrelationship
between the HFEs hi and hj by two types of conjunction calculations, i.e., “⊕” and “⊗”.
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Further, we discuss some properties of the HFGGHMp,q:

1. Let hi, i = 1, 2, · · · , n, be collection of HFEs. If hi = h for all i, then

(12) HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q
((p+ q)h)2.

Proof: Since hi = h for all i, we have

HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h, h, · · · , h)

=
1

p+ q

n
⊗

i, j = 1
i ≤ j

((ph⊕ qh)⊗ (ph⊕ qh))
2

n(n+1)

=
1

p+ q
((ph⊕ qh)⊗ (ph⊕ qh))

=
1

p+ q
((p⊕ q)h)2.(13)

This proves the property.

Corollary 1: If hi, i = 1, 2, · · · , n, is a collection of the empty HFEs, i.e., hi = h◦ = {0},
then

(14) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h◦, h◦, · · · , h◦) = {0} .

Corollary 2: If hi, i = 1, 2, · · · , n is a collection of the full HFEs, i.e., hi = h∗ = {1},
then

(15) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h∗, h∗, · · · , h∗) = {1} .

2. (Monotonicity). Let hα = (hα1
, hα2

, · · · , hαn
) and hβ = (hβ1

, hβ2
, · · · , hβn

) be two
collections of HFEs, σαi,j = ((phαi ⊕ qhαj ) ⊗ (phαj ⊕ qhαi)) and σβi,j = ((phβi ⊕ qhβj ) ⊗
(phβj

⊕ qhβi
)), if for any γαi

∈ hαi
, γβi

∈ hβi
, we have γαi

≤ γβi
and γαj

≤ γβj
for all

i, j = 1, 2, . . . , n, then

(16) HFGGHMp,q(hα1 , hα2 , . . . , hαn) ≤ HFGGHMp,q(hβ1 , hβ2 , . . . , hβn).

Proof: Since γαi ≤ γβi and γαj ≤ γβj for all i, j = 1, 2, . . . , n, we have

(17) (1− (1− γαi)
p(1− γαj )

q) ≤ (1− (1− γβi)
p(1− γβj )

q),

(18) (1− (1− γαj )
p(1− γαi)

q) ≤ (1− (1− γβj )
p(1− γβi)

q).

Additionally, we obtain

σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

(19)

=
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαi)
p + 1− (1− γαj )

q − (1− (1− γαi)
p)(1− (1− γαj )

q)}
)

⊗
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαj )
p + 1− (1− γαi)

q − (1− (1− γαj )
p)(1− (1− γαi)

q)}
)
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Let ηαi,j
∈ σαi,j;i≤j

and ηβi,j
∈ σβi,j;i≤j

, for all i, j = 1, 2 . . . , n; i ≤ j, then from Equations
(17)-(19), we have

(20)

ηαi,j =
(( ∪

γαi
∈hαi

,γαj
∈hαj

{1−(1−γαi)
p+1−(1−γαj )

q−(1−(1−γαi)
p)(1−(1−γαj )

q)}
)

⊗
( ∪

γαj
∈hαj

,γαi
∈hαi

{1− (1− γαj )
p + 1− (1− γαi)

q − (1− (1− γαj )
p)(1− (1− γαi)

q)}
))

≤ ηβi,j =
(( ∪

γβi
∈hβi

,γβj
∈hβj

{1−(1−γβi)
p+1−(1−γβj )

q−(1−(1−γβi)
p)(1−(1−γβj )

q)}
)

⊗
( ∪

γβj
∈hβj

,γβi
∈hβi

{1− (1− γβj )
p + 1− (1− γβi)

q − (1− (1− γβj )
p)(1− (1− γβi)

q)}
))

thus

(21)

1−
n∏

i, j = 1
i ≤ j

(
ηαi,j

) 2
n(n+1)



1
p+q

≥

1−
n∏

i, j = 1
i ≤ j

(
ηβi,j

) 2
n(n+1)



1
p+q

.

According to Definition 9 and Equation (21), we get

HFGGHMp,q(hα1 , hα2 , . . . , hαn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

(σαi,j )
2

n(n+1)

=
∪

ηαi,j
∈σαi,j;i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(
ηαi,j

) 2
n(n+1)



1
p+q



≤
∪

ηβi,j
∈σβi,j,i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(
ηβi,j

) 2
n(n+1)



1
p+q


=

1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σβi,j

) 2
n(n+1)

= HFGHMp,q(hβ1 , hβ2 , . . . , hβn).(22)

This proves the property.

8



3. (Commutativity). Let hi, i = 1, 2, . . . , n, be collection of HFEs, and (ḣ1, ḣ2, . . . , ḣn) be
any permutation of (h1, h2, . . . , hn), then

(23) HFGGHMp,q(h1, h2, . . . , hn) ≤ HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn).

Proof: Since (ḣ1, ḣ2, . . . , ḣn) is a permutation of (h1, h2, . . . , hn), then

HFGGHMp,q
(
hα1

, hα2
, ..., hαn

)
=

1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σαi,j

) 2
n(n+1)

=
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σ̇αi,j

) 2
n(n+1)

= HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn),(24)

where σi,j; i≤j = ((phi ⊕ qhj) ⊗ (phj ⊕ qhi)) and σ̇i,j; i≤j = (pḣi ⊕ qḣj) ⊗ (pḣj ⊕ qḣi),
i, j = 1, 2, . . . , n.

This proves the property.

4. (Boundedness). Let hi, i = 1, 2, . . . , n be collection of HFEs, h+
i =

∪
γi∈hi

max {γi},
h−
i =

∪
γi∈hi

min {γi}, γ+ ∈ h+
i , γ

− ∈ h−
i , and σi,j = (phi ⊕ qhj) =

∪
ηi,j∈σi.j

{
ηi.j

}
=∪

γi∈hi,γj∈hj
{1− (1− γi)

p
(1− γj)

q}, then

(25)
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ−)p+q

)2
) 1

p+q

}
≤ HFGGHMp,q(h1, h2, . . . , hn)

≤
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ+

)p+q
)2

) 1
p+q

}
.

Proof: Since γ− ≤ γi ≤ γ+ and γ− ≤ γj ≤ γ+ ∀ i, j = 1, 2, . . . , n, then

(26) 1−
(
1− γ−)p+q ≤ 1− (1− γi)

p
(1− γj)

q ≤ 1−
(
1− γ+

)p+q

(27) 1−
(
1− γ−)p+q ≤ 1− (1− γj)

p
(1− γi)

q ≤ 1−
(
1− γ+

)p+q

and
σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

=

 ∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γi)
p
(1− γj)

q}

⊗

 ∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γj)
p
(1− γi)

q}



(28) ≥

 ∪
γ−∈h−

i

{(
1−

(
1− γ−)p+q

)2
} .
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Similarly, we have

(29) σi,j; i≤j ≤

 ∪
γ+∈h+

i

{(
1−

(
1− γ+

)p+q
)2

} .

According to Definition 9, Equations (28) and (29), we obtain

∪
γ−∈h−

i

{
1−

(
1−

(
1−

(
1− γ−)p+q

)2
) 1

p+q

}
≤ HFGGHMp,q (h1, h2, . . . , hn)

(30) ≤
∪

γ+∈h+
i

{
1−

(
1−

(
1−

(
1− γ+

)p+q
)2

) 1
p+q

}
.

This proves the property.

Some special cases of HFGGHMp,q for different values of parameters p and q.

(i) If q → 0 (or p → 0), then the HFGGHMp,q reduces to

lim
q→0

HFGHMp,q (h1, h2, . . . , hn) =
1

p

n
⊗

i, j = 1
i ≤ j

(phi ⊗ phj)
2

n(n+1) ,

(31) =
∪

γ
i
∈h

i
,γ

j
∈h

i


1−

1−
n∏

i, j = 1
i ≤ j

((1− (1− γi)
p
) (1− (1− γj)

p
))

2
n(n+1)



1
p


,

which we call the generalized hesitant fuzzy geometric Heronian mean (GHFGHM).

(ii) If p = 1 and q → 0, then the HFGGHMp,q reduces to

lim
q→0

HFGHM1,q(h1, h2, . . . , hn) =
n
⊗

i, j = 1
i ≤ j

(hi ⊗ hj)
2

n(n+1) ,

(32) =
∪

γ
i
∈h

i
,γ

j
∈h

i


n∏

i, j = 1
i ≤ j

((1− (1− γi)) (1− (1− γj)))
2

n(n+1)


,

which we call the hesitant fuzzy geometric Heronian mean (GHFGHM).
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(iii) If p = 2 and q → 0, then the HFGGHMp,q reduces to

lim
q→0

HFGHM2,q (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

(2hi ⊗ 2hj)
2

n(n+1) ,

(33) =
∪

γ
i
∈h

i
,γ

j
∈h

i


1−

1−
n∏

i, j = 1
i ≤ j

((
1− (1− γi)

2
)(

1− (1− γj)
2
)) 2

n(n+1)



1
2


,

which we call the hesitant fuzzy square geometric Heronian mean (HFSGHM).

(iv) If p = q = 1, let σ1,1
i,j; i≤j = ((hi ⊕ hj)⊗ (hj ⊕ hi)) =

∪
εi,j∈σ1,1

i,j;i≤j
{εi,j}, theHFGGHMp,q

reduces to

HFGHM1,1 (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

((hi ⊕ hj)⊗ (hj ⊕ hi))
2

n(n+1)

(34) =
∪

εi,j∈σ1,1
i,j;i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(εi,j)
2

n(n+1)



1
2


which we call the hesitant fuzzy interrelated square geometric Heronian mean (HFISGHM).

Further, to consider the importance of aggregated arguments, we define a weighted hesitant
fuzzy generalized geometric Heronian mean (WHFGGHM) operator as follows:

Definition 10: Let hi, i = 1, 2, . . . , n, be a collection of HFEs, and w = (w1, w2, . . . , wn)
T

be the weight vector of hi where wi indicates the importance degree of hi, satisfying wi ≥
0, i = 1, 2, . . . , n and

∑n
i=1 wi = 1. For any p, q > 0, the weighted hesitant fuzzy generalized

geometric Heronian mean (WHFGGHMp,q) is given by:

(35)

WHFGGHMp,q(h1, h2, . . . , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) .

In view of Equation (35), we prove a result in the following theorem:

Theorem 2. Let p, q > 0, and hi, i = 1, 2, . . . , n be a collection of HFEs with weight
vector w = (w1, w2, . . . , wn)

T satisfying wi ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 wi = 1. Then the
aggregated value using the WHFGGHM is also an HFE, and

WHFGGHMp,q (h1, h2, ..., hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) ,
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(36) =
∪

ηi,j∈σi,j;i≤j


1−

1−
n∏

i, j = 1
i ≤ j

(ηi,j)

2wiwj

(1+wi)



1
p+q


and σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) reflects the interrelationship between hi and hj ,
i, j = 1, 2, . . . , n.

Proof : This theorem is easy to prove on lines similar to that of Theorem 1.

Note: If w = ( 1n ,
1
n , . . . ,

1
n )

T then WHFGGHMp,q in (36) reduces to HFGGHM in (8).

In the following section, we suggest application of the proposed WHFGGHMp,q operator
to multi criteria decision making problems with hesitant fuzzy information and give an il-
lustrative numerical example.

4. An Approach to Multi Criteria Decision Making under Hesitant Fuzzy
Environment

For a multi criteria decision making problem, let A = (A1, A2, . . . , Am) be a set of m
alternatives and C = (C1, C2, . . . , Cn) be a set of n criteria, whose weight vector is w =
(w1, w2, . . . , wn)

T such that wj ∈ [0, 1] and
∑n

j=1 wi = 1. The decision makers provide all
the possible values that the alternative Ai satisfies the criterion Cj represented by HFEs
hij =

∪
γij∈hij

{γij}, and all hij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n , construct the hesitant fuzzy

decision matrix H = [hij ]m×n:

Table 1: Hesitant fuzzy decision matrix H = [hij ]m×n

C1 C2 . . . Cn

A1 h11 h12 . . . h1n

A2 h21 h21 . . . h2n

. . . . . . . . . . . . . . .
Am hm1 hm2 . . . hmn

To harmonize the data,first step is to look at the criteria.These in general can be of different
types. If all the criteria C = (C1, C2, . . . , Cn) are of the same type, then the criteria values
do not need harmonization. However if these involve different scales and /or units, there is
need to be convert them all to the same scale and/or unit. Just to make this point clear, let
us consider two types of criteria, namely, (i) cost type and the (ii) benefit type. Considering
their natures, a benefit criterion (the bigger the values better is it) and cost criterion (the
smaller the values the better is it) are of rather opposite type. In such cases, we need to
first transform the criteria values of cost type into the criteria values of benefit type. So,
transform the hesitant fuzzy decision matrix H = [hij ]m×n into the normalized hesitant
fuzzy decision matrix B = [bij ]m×n by the method given by Zhu and Xu [52], where

(37) bij =

{
hij for benefit criterion Cj

hc
ij , for cost criterion Cj

, i = 1, 2, ..., m ; j = 1, 2, ..., n,

where hc
ij =

∪
γij∈hij

{1− γij} is the complement of hij .
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With criteria harmonized and using the WHFGGHM operator, we now formulate an al-
gorithm to solve multi criteria decision making problem with hesitant fuzzy information:

Algorithm:

Step 1: Use the WHFGGHM operator to aggregate all the performance values bij , j =
1, 2, . . . , n, of the ith row, and get the overall performance value bi corresponding to the
alternative Ai, i = 1, 2, . . . ,m:

(38) bi = WHFGGHMp,q
w (hi1, hi2, . . . , hin).

Step 2: By Definition 3, calculate the scores S(bi) of bi and rank the overall performance
values bi, i = 1, 2, . . . ,m.

Step 3: Rank the alternativesAi, i = 1, 2, . . . ,m, in accordance with bi, i = 1, 2, . . . ,m, in
descending order and select the most desirable alternative(s).

We demonstrate the above proposed algorithm to a real life multi-criteria decision making
through following illustrative example.

Example[52]: Consider a factory site selection problem for new buildings. After pre-
elimination process, only three alternatives Ai, i = 1, 2, 3, are being considered for further
evaluation and selection. The decision makers take into account three criteria to decide
the best site: C1: price, C2: environment, and C3: location. The weights of criteria are
w = (0.5, 0.3, 0.2)T . Next let the characteristics of the alternative Ai, i = 1, 2, 3, with
respect to the criteria Cj , j = 1, 2, 3, be represented by the HFEs hij =

∪
γij∈hij

{γij},
where γij indicates that the alternative Ai satisfies the criterion Cj . All hij , i, j = 1, 2, 3,
are contained in shown in the following hesitant fuzzy decision matrix H = [hij ]3×3:

Table 2: Hesitant fuzzy decision matrix H = [hij ]3×3

C1 C2 C3

A1 {0.6, 0.7, 0.8} {0.25} {0.4, 0.5}
A2 {0.4} {0.4, 0.5} {0.3, 0.55, 0.6}
A3 {0.2, 0.4} {0.6, 0.5} {0.7, 0.5}

Considering that all the criteria Cj , j = 1, 2, 3, are of the benefit type, then the pref-
erence values of the alternatives Ai, i = 1, 2, 3, do not need harmonization, therefore,
B = [bij ]m×n = [hij ]3×3.

Step 1: Using the WHFGGHM operator (here, we take p = q = 1) to aggregate all the
preference values bij , j = 1, 2, 3 of the ith row and get the overall performance values bi
corresponding to the alternative Ai as

b1 = {0.2795, 0.2836, . . . , 0.3803, 0.3849} ,

b2 = {0.2052, 0.2145, . . . , 0.2902, 0.2913} ,

b3 = {0.2066, 0.2045, . . . , 0.2941, 0.2883} .
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Step 2: We calculate the scores of all the alternatives according to bi, i = 1, 2, 3:

S (b1) = 0.3325, S (b2) = 0.2542, S (b3) = 0.2538.

Step 3: Since S(b1) > S(b2) > S(b3), by Definition 4, the ranking of the HFEs bi, i =
1, 2, 3, that is, b1 > b2 > b3, and thus, the ranking of the alternatives Ai, i = 1, 2, 3, is
A1 > A2 > A3. Hence A1 is the best alternative.

Next, if we take p = 1 and q = 3 in WHFGGHM operator, then

b1 = {0.2805, 0.2911, . . . , 0.3687, 0.3722} ,

b2 = {0.2805, 0.2911, . . . , 0.3644, 0.3644} ,

b3 = {0.2262, 0.2254, . . . , 0.3552, 0.3512} .

and the scores of all the alternatives are

S (b1) = 0.3449, S (b2) = 0.3292, S (b3) = 0.2907.

Thus, the ranking of the alternatives Ai, i = 1, 2, 3, now is A1 > A2 > A3. Hence A1 is still
the best alternative.

4. Conclusions

In this paper, we extended the idea of aggregation and considering a wider range of aggre-
gating operators, introduced Hesitant Fuzzy Generalized Geometric Heronian Mean (HFG-
GHM) operator and also that of Weighted Hesitant Fuzzy Generalized Geometric Heronian
Mean (WHFGGHM) operator. Properties of the proposed operators are studied and their
special cases are examined. Furthermore, we have applied the WHFGGHM operator to
multi criteria decision making with hesitant fuzzy numbers. Finally, an illustrative example
is given to verify the developed method and to demonstrate its practicality and effectiveness.
The work has scope for extensive further application and results on these new measures.
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