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Abstract: Goodness of fit has a long time been a problem of research .It has received a 

considerable attention in the statistical literature. Goodness of fit techniques can be described as 

the method of how well a sample of data agrees with a given distribution as its population. 

Goodness of fit techniques is based on measuring in some way the conformity of the sample data 

to the hypothesized distribution or equivalently, its discrepancy from it. The techniques usually 

give formal statistical tests and the data based measures of conformity or discrepancy are 

referred to as test statistics.  In this paper we have studied the performance of the bootstrap based 

procedure of EDF based tests  for testing the goodness of fit for normality of the distribution 

using simulation technique. Some results are calculated to know the performance of bootstrap 

based technique and these are displayed in tables. Discussions and conclusions are made on the 

basis of results obtained. 

     Key words: Bootstrap procedure, Kolmogorov-Smirnov test, Anderson-Darling test,                      
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1. Introduction: 

Goodness-of-fit has been occupying an important place in statistical inference  since long time. 

In short it is a technique of examining how well a sample of data agrees with a given distribution 

as its population. Measures of goodness of fit typically summarize the discrepancy between 

observed values and the expected values under the model in equation. Such measures can be 

used in statistical hypothesis testing, i.e. to test for normality of residuals, to test whether two 

samples are drawn from identical distributions, or whether the outcome frequencies follow a 

specified distribution. Although it is a cornerstone of modern statistical theory, but still no clear 

notion of optimality for more complicated situations. An important but difficult problem is 

evaluating the goodness-of -fit of a model and obtains the P-value. The normal theory of 

likelihood ratio test statistics whose distribution is approximated by a chi-square test is often 

used in practice. But it is known that the chi-square distribution is not so accurate for small 



sample sizes even when the latent factors are normally distributed. Similar results are also 

reported by Anderson-test too. 

Fitting of a probability model to observed data is an important statistical problem from both 

theory and application point of view. There is a multitude of statistical models and procedures 

that rely on the validity of a given data hypothesis, being the normality of the data assumption 

one of the most commonly found in statistical studies. As observed in many models and in 

research on applied statistics and economics, following the normal distribution assumption 

blindly may affect the accuracy of inference and estimation procedures. The evaluation of this 

distributional assumption has been addresses, for example, in Min(2007) where the conditional 

normality assumption in the  sample selection model applied to housing demand is examined, or 

in Lisenfeld and Jung(2000) where the normality assumption has been addressed  in the context 

of stock market data, a type of data that has been found to be typically heavy –tailed in Gel and 

Gastwirth(2008). The analysis of the normality hypothesis can also be found in the 

characterization of error terms in the context of regression analysis models applied to economic 

time-series Giles(2007), Thadewald and Buning(2007), to probit models Wilde(2008) or to other 

types of time series Onder and Zaman(2005), Quddus(2008). In medical research the assumption 

of normality is also very common Schoder, Himmelmann and Wilhelm(2006) and Surucu and 

Koc(2007), but the suitability of this assumption must also be verified with adequate statistical 

tests. The definition of adequate normality tests can, therefore , be seen to be of much 

importance since the acceptance or rejection of the normality assumption of a given data set 

plays a central role in numerous research fields. As such, the problem of testing normality has 

gained considerable importance in both theoretical and empirical research and has led to the 

development of a large number of goodness of fit tests to detect departures from normality. 

Given the importance of this subject and the widespread development of normality tests over the 

years, comprehensive descriptions and power comparisons of such tests have also been the focus 

of attention, thus helping the analyst in the choice of suitable tests for his particular needs. 

 There have been a quite a few works on goodness-of-fit test based on bootstrap as compared to 

other test. Blake(2005) discussed the utility of bootstrap method in normally distributed data of 

violent crime across the states. Matthias von(1997) showed that the parametric bootstrap can be 

used for analyzing goodness-of-fit, even when the data are very sparse. Alberto and Harry (2008) 



provided an overview of the new developments in limited information goodness-of-fit 

assessment of categorical data models. The goodness-of-fit of latent trait models in attitude 

measurement was discussed by Bartholomew and Tzamourani (1999). There are two versions of 

the bootstrap, the (naïve) bootstrap and the parametric bootstrap, of which only the parametric 

bootstrap can be used for goodness-of-fit testing (Bollen & Stine, 1993,Langeheine-1996) 

2.   Goodness of Fit test Based on Empirical Distribution Functions 

2.1       The Kolmogorov-Smirnov test modified by Lilliefors and Stephens 

 Kolmogorov and Smirnov ( 1933,1948  ) developed a one sample goodness of fit test based on 

empirical distribution function(EDF). Kolmogorov-Smirnov(K-S) statistic is popular, although 

other EDF based statistics such as the Cramer-von-Mises(C-vM) and Anderson –Darling(A-D) 

statistics have better sensitivity for some data-model differences. However, the goodness of fit 

probabilities derived from the K-S or other EDF statistics are usually not correct when applied in 

model fitting situations with estimated parameters.  

K-S statistic is no longer distribution –free if some parameters are estimated from the data set 

under consideration. The K-S probabilities are only valid if the model being tested is derived 

independently of the data set at hand. 

          Lilliefors (1967) proposed a modification of Kolmogorov-Smirnov test for normality when 

the mean and the variance are unknown , and must be estimated from the data. The test statistic 

K-S is defined as        
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sxxi  is the cumulative distribution function of the normal distribution with 

parameters estimated from data. The normality hypothesis of the data is then rejected for large 

values of K-S. Table of percentage points are found in Lilliefors(1967). It can also be obtain give 

by  Stephens(1969).  Modification of  K-S statistic given by Stephens(1969) from the Lilliefors 

form is as follows;            

                     KS* = KS( n  - 0.01+0.85/ n  )                                              (2.2) 



 Comparing with the upper tail significance points of the distribution on the null hypothesis; may 

be reject the null hypothesis if value of KS*  exceeds the table value at corresponding 

significance levels. Table of percentage point is available in Stephens(1969). 

2.2.   The Anderson- Darling test 

                Anderson and Darling(1952,1954 ) introduced a new class of quadratic  a test statistics 

. These are given by                    
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Where Fn(x) is empirical distribution function(EDF) , )(x  is the cumulative distribution 

function of the standard normal distribution and )(x  is a weight given by  
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     Where z(i) = (x(i) -
_

x )/s. In order to increase its power when   and   are estimated  from the 

sample, a modification factor has proposed for AD by Stephens(1974) resulting in new statistic 

AD*: 
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 The normality hypothesis of  the data is then rejected for large values of the test statistic.  

Table of percentage points  of this statistic is given by D’Agostino(1986). 

 

3. Goodness fit test Based on  Bootstrap Resampling: 

 Fortunately, there is an alternative to the erroneous use of K-S procedure, although it require a 

numerically intensive calculation for each data set and model addressed. It is based on bootstrap 



resampling, a data-based Monte Carlo method that has been mathematically shown to give valid 

estimates of goodness of fit probabilities under a very wide range of situations. 

We now outline the mathematics underlying bootstrap calculations. Let {F( . ;  ) :  } be a 

family of continuous distributions parameterized by  . We want to test whether the univariate 

data set X1,X2, …., Xn comes from F = F( . ; ) for some   = 0 . The K-S C-vM and A-D 

statistics ( and a few other goodness of fit tests) are continuous functional of the process. Yn(x;
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nX  is the sample mean and 2

ns  is the sample variance based on the data  

X1, X2 , … , Xn . 

            In the case of evaluating goodness of fit for a model where the parameters have  been 

estimated from the data, the bootstrap can be computed in two different ways: the parametric 

bootstrap and the nonparametric bootstrap. The parametric bootstrap may be familiar to a well 

established technique of creating fake datasets realizing the parametric model by Monte Carlo 

realizations of the observed EDF using a “random selection with replacement” procedure. 

    We now outline the mathematics underlying these techniques. Let 
^

nF  be an estimator of F , 

based on  X1, X2, … , Xn . In order to bootstrap, we generate data **
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3.1  Parametric Bootstrap 

The bootstrapping procedure is called parametric if  )(.;
^^

nFF  ; that is, we generate data 
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to the same Gaussian process Y. Consequently , Ln = );()(sup
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** ;()(sup nnxn xFxFnL      have the same limiting distribution. For the K-S statistic, the 

critical values of  Ln can be derived as follows: construct  B resample based on the parametric 

model ( B   1000 ) , arrange the the resulting *

nL  values in increasing order to obtain 90 or 99 

percentile points for getting 90% or 99% critical values. This procedure replaces the incorrect 

use of the standard probability distribution. 

3.2  Nonparametric Bootstrap 

 The nonparametric bootstrap involving resample from the EDF; 
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Is operationally easy to perform but requires an additional step of bias correction  
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** xBxFxFn nnn     have the same limiting distribution. The critical value 

of the distribution of Ln can then be derived as in the case of parametric bootstrap.  

  P Values based on Resampling Methods: P-values for goodness-of-fit statistics can be 

obtained by generating the empirical sampling distribution of goodness-of-fit statistics using a 

resampling method such as the parametric bootstrap method. However, there is strong evidence 

that parametric bootstrap procedures do not yield accurate P-values. Furthermore, resampling 

methods may be very time consuming if the researchers is interested in computing the fit of 

several models. 

4. Simulation Study  

   A simulation study is presented in the following to estimate the level and power of the selected 

normality tests. The effects on the power of the tests due to the sample size, the selected 

significance level and the type of the alternative distribution are shown with the help of 

simulation method. The study carried out for seven (n = 10,15,20,25 ,50 and 100 )sample sizes 

and considering significance levels 0.10,0.05 and 0.01 (for 1 percent level not shown in table due 

to space ) considering the alternative of nonnormal symmetric and  asymmetric . Results 

obtained are shown in different tables given below. Here, normal observations are generate using 

Box-Muller(1958) formula and  for the other distribution method of  inverse integral 

transformation are used. For each result 10,000 repetitions are made. The ratio of number of  test 

statistic value greater than critical value divided by the total number of repetition gives the 

empirical level of test statistic under null case and power of the test statistic under the alternative 

hypothesis .  

 

 

 

 

                    



  Table 1.  Empirical levels of test under normal(0,1) Distribution at 0.05 and 0.10 levels 

Sample  

  Size 

    n 

                                                   Test Statistics 

           K-S                            AD                             KS(Bootstrap)               AD(Bootstrap) 

 =.10    .05                   .10     .05                          .10      .05                      .10      .05     

   10 

   15 

   20 

   25 

   30 

   50 

 100   

.0997   .0467 

.1036   .0430 

.1002   .0548  

.0950   .0494 

.1086   .0598 

.0920   .0480 

.0942   .0492 

.1025   .0521 

.1030   .0527 

.1043   .0510 

.0976   .0518 

.0984   .0526 

.0960   .0450 

.0970   .0525 

.0945   .0475 

.0935   .0435 

.0950   .0480 

.1010   .0530 

.1040   .0565 

.0870   .0380 

.1100   .0545 

.0925   .0500 

.0900   .0535 

.1050   .0485 

.1055   .0520 

.0980   .0535 

.0845   .0410 

.0995   .0495 

           

 Table 2  Empirical power of test  Normal  Vs Cauchy (0,1) Distribution at 0.05 and 0.10 levels 

Sample  

  Size 

    n 

                                               Test Statistics 

           K-S                                 AD                            KS(Bootstrap)                 AD(Bootstrap) 

 =.10    .05                         .10     .05                            .10      .05                   .10      .05     

10 

   15 

   20 

   25 

   30 

   50 

 100    

5274   .4548 

.5755   .5037 

.6206   .5478 

.6512   .5821 

.6862   .6152 

.7538   .6836 

1.000   1.000 

.7355   .6580 

.8495   .7640 

.9050   .8395 

.9545   .9070 

.9740   .9440 

.9995  .9965 

1.000   1.000 

  .5172   .4468 

.5634   .4836 

.6124   .5372 

.6478  .5747 

.6804   .6124 

.7512  .6818 

1.000  1.000 

.7243   .4278 

.8312   .7526 

.8942   .8245 

.9456   .8942 

.9678   .9376 

.9934   .9834 

1.000  1.000 



   Table 3    Empirical power of test  Normal  Vs logistic (0,1) Distribution at 0.05 and 0.10 levels 

Sample  

  Size 

    n 

                                                      Test Statistics 

           K-S                              AD                          KS(Bootstrap)              AD(Bootstrap) 

 =.10    .05                .10     .05                            .10      .05                    .10      .05        

   10 

   15 

   20 

   25 

   30 

   50 

 100   

.1415   .0755 

.1435   .0800   

.1835   .1080 

.1885   .1145 

.2055   .1125 

.2260   .1370 

.2590   .1755 

.5955  .4710 

.7060  .5860 

.8025  .6900 

.8680  .7685 

.9135  .8465 

.9820  .9530 

1.000  1.000 

.1344  .0662 

.1378  .0752 

.1778  .0948 

.1790  .1064 

.2042  .8356 

.2212  .1272 

.2578   .1752 

.5726  .4674 

.6784  .5752 

.7898  .6856 

.8594  .7544 

.9034  .8268 

.9812  .9510 

.9910  .9890 

Table 4   Empirical power of test  Normal  Vs  Exponential  ( 1 ) Distribution at 0.05 and 0.10 levels 

Sample  

  Size 

    n 

                                                 Test Statistics 

           K-S                            AD                             KS(Bootstrap)             AD(Bootstrap) 

 =.10    .05                    .10     .05                           .10      .05                  .10      .05     

   10 

   15 

   20 

   25 

   30 

   50 

 100   

.5410  .3920 

.7040  .5310 

.7920  .7195 

.8660  .7805 

.9275  .8745 

.9900  .9705 

1.0 1.000 

 

1.000   .9880  

 1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

.5328   .3841 

.6878  .5244 

.7856  .7054 

.8566  .7784 

.9128  .8646 

.9884  .9674 

1.000   1.000 

1.000  .9765 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 



   Table 5.   Empirical power of test  Normal  Vs  lognormal (0,1) Distribution at 0.05 and 0.10 levels 

Sample  

  Size 

    n 

                                                     Test Statistics 

           K-S                         AD                               KS(Bootstrap)                    AD(Bootstrap) 

 =.10    .05                   .10     .05                            .10      .05                           .10      .05    

   10 

   15 

   20 

   25 

   30 

   50 

 100  

.6880  .5610 

.8495  .7505 

.9080  .8650 

.9520  .9200 

.9815  .9625 

1.000  .9985 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000   1.000 

.6742    .5578 

.8365   .7455 

.8884   .8568 

.9478   .9146 

.9776   .9568 

1.000   .9924 

1.000   1.000 

1.000  .9855 

1.000 1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000  1.000 

1.000   1.000 

 

5. Conclusion 

We investigate the KS statistics and Anderson-Darling statistics when location and scale 

parameters are unknown and studied the power of both the exact and bootstrap test against 

different alternatives, viz. Cauchy ,exponential, lognormal and logistic distribution. The tables 

presented here lead to the following conclusions. 

1. The estimates of powers of exact tests are lightly larger than those of the bootstrap tests 

in case of K-S test, but it is hard to say which test is more powerful because the 

estimating are subject to variability. In case of Anderson –Darling test both the exact and 

bootstrap based test power  are almost similar. 

2. The difference between the powers of two tests gets smaller as the sample size n 

increases. When n>10 both tests have very similar powers. This conclusion is also 

verified by the strong correlation between the exact and bootstrap p-values. 

3. Both kinds of tests appear to be unbiased when the sample sizes is large enough. 

From the study we may conclude that test based on bootstrap technique be used for goodness of 

fit of normality without any hesitation. More work can be done using bootstrap technique to 



know the performance of the tests based on bootstrap with various situations.In future we hope  

extend more research on this line. 
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