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Abstract. We study idempotents and square roots in the upper triangular matrix
Banach algebras over real or complex numbers. We compute explicitly and determine
algebraically the idempotents and the square roots in the cases of size: two by two,
three by three, and four by four. We also consider their equivalence classes by homo-
topy and classify topologically the upper triangular matrix algebras in those cases and
in general by the groups generated by the homotopy classes. Moreover, we consider
some infinite dimensional, Banach algebras obtained as inductive limits of the upper
triangular matrix algebras and obtain several topological classification results for the
inductive limits.

1 Introduction We begin to study idempotents and square roots in the upper triangular
matrix Banach algebras over real or complex numbers. The upper triangular matrix algebras
are typical examples of finite dimensional non self-adjoint Banach algebras over real or
complex numbers. We compute explicitly and determine algebraically idempotents and
square roots of the upper triangular matrix algebras in the cases of size: two by two, three
by three, and four by four. The statements as lists as examples obtained should be useful
and convenient for the readers. We also consider the equivalence classes of the idempotents
and the square roots by homotopy and classify topologically the upper triangular matrix
algebras in the cases and in the general case by the groups generated by the homotopy
classes. Moreover, we consider some infinite dimensional, Banach algebras obtained as
inductive limits of the upper triangular matrix algebras, and obtain several (topological)
classification results for the inductive limits by our V-theory groups mentioned below and
also by the scales for the units

As a contrast, C∗-algebras are self-adjoint Banach algebras over complex numbers with
the C∗-norm condition. The full matrix algebras over complex numbers are typical ex-
amples of finite dimensional C∗-algebras. Projections of C∗-algebras, that are self-adjoint
idempotents, and unitaries of C∗-algebras, with adjoints as inverses, play main roles in the
K-theory for C∗-algebras, and their associated K-theory classes generate K-theory groups
of C∗-algebras ([1], [4] and [5]). By lack of self-adjointness for non self-adjoint Banach
algebras, as candidates as substitute, we consider idempotents and square roots and their
homotopy classes, that generate our named V-theory groups, first introduced in this paper.

As for inductive limit algebras, AF (approximately finite dimensional) C∗-algebras, that
are inductive limits of finite direct sums of full matrix algebras, are classified by K-theory
groups (but K0 only since K1 trivial) as ordered groups with the scales (see the corre-
sponding results in [1], [4], or [5], due to [2]). Our V-theory groups (V0 of V0 and V1) just
correspond to the scales in the C∗-algebra K-theory, in which the symbol V is used for
indicating the sets of equivalence classes of projections of matrix algebras over a C∗-algebra
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and the symbol Σ is used for indicating the scales for a C∗-algebra (see [1]). Note that, by
lack of self-adjointness, there are no non self-adjoint unitaries, and no unitary equivalence
and no stably unitary equivalence as for idempotents in non self-adjoint Banach algebras,
but can be used homotopy in the algebras.

However, the scaled ordered, C∗-algebra K-theory groups (K0) for the inductive limits
of non self-adjoint Banach subalgebras obtained in inductive limits of C∗-algebras, such as
AF-algebras and UHF-algebras, have been already used to classify those non self-adjoint
inductive limit algebras, containing the case we consider here (see [3]). Therefore, our
classification results in application to inductive limit non self-adjont algebras are not new,
but our formulation in terms of non self-adjoint algebras only, V0 as well as V1 (non-trivial
while K1 trivial in that case) seems to be new in this sense, and anyhow to be an equivalent
replacement as another method or attempt.

2 The two by two case We denote by T2(R) the algebra of all upper triangular 2 × 2
matrices over the real field R and by T2(C) the same algebra over the complex field C. We
give the topology on the algebras by the Euclidean norm, for convenience, via T2(R) ∼= R3

and T2(C) ∼= C3 as a space. Let F be either R or C.
Recall that a matrix element A of T2(F ) is said to be an idempotent if A2 = A.

Proposition 2.1. All idempotents of T2(F ) are listed up as(
1 0
0 1

)
,

(
1 b
0 0

)
,

(
0 b
0 1

)
,

(
0 0
0 0

)
for any b ∈ F .

Proof. Let

A =
(

a b
0 c

)
∈ T2(F )

with A2 = A, so that a2 = a, c2 = c, and b(a + c) = b. Hence a = 0 or 1, and c = 0 or
1.

Denote by P2(F ) the set of all idempotents of T2(F ). Define the equivalence relation for
elements of P2(F ) by that two elements of P2(F ) are equivalent if there is a continuous path
within P2(F ) between the two elements. Write by E0(T2(F )) the set of all equivalence classes
by the equivalence relation. Denote by [· · · ] the class of an idempotent P = (· · · ) ∈ P2(F ).

Corollary 2.2. All classes of E0(T2(F )) are listed up as[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]
.

As, possibly, a new notion to simplify the situation, we may introduce, as an attempt,

Definition 2.3. We now define the anti-diagonal transpose Aat of A ∈ T2(F ) by

Aat =
(

c b
0 a

)
for A =

(
a b
0 c

)
.

We denote by T2(F )/ ∼at the set of matrices of T2(F ) identified under the anti-transpose.
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Note that the anti-diagonal transpose corresponds to a permutation on T2(F ) ∼= F 3.
Also, one has

{J2AJ2}t ≡
{(

0 1
1 0

)(
a b
0 c

)(
0 1
1 0

)}t

=
(

c b
0 a

)
= Aat

with {· · · }t the usual transpose, but in M2(F ) the 2 × 2 matrix algebra over F .

Corollary 2.4. All idempotents of T2(F )/ ∼at are listed up as(
1 0
0 1

)
,

(
1 b
0 0

)
,

(
0 0
0 0

)
for any b ∈ F .

Corollary 2.5. All classes of E0(T2(F )/ ∼at) are listed up as[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 0

]
.

Recall that a matrix element A of T2(F ) is said to be a square root if A2 = I2 the 2× 2
identity matrix.

Proposition 2.6. All square roots of T2(F ) are listed up as(
±1 0
0 ±1

)
(compound 4 cases),

(
± 1 b
0 ∓1

)
(not compound 2 cases)

for any b ∈ F non-zero.

Remark. In what follows, we make the difference of the compound (or composite) in order
case or not by denoting ±1 usual or ±1 bold as in the statement above.

Proof. Let

A =
(

a b
0 c

)
∈ T2(F )

with A2 = I2, so that a2 = 1, c2 = 1, and b(a + c) = 0. Hence a = 1 or −1, and c = 1 or
−1, and if b is non-zero, then a = −c.

Denote by R2(F ) the set of all square roots of T2(F ). Define the equivalence relation
for elements of R2(F ) by that two elements of R2(F ) are equivalent if there is a continuous
path within R2(F ) between the two elements. Write by E1(T2(F )) the set of all equivalence
classes by the equivalence relation. Denote by [· · · ] the class of a square root R = (· · · ) ∈
R2(F ).

Corollary 2.7. All classes of E1(T2(F )) are listed up as[
±1 0
0 ±1

]
(compound in order 4 cases).
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3 The three by three case We denote by T3(F ) the algebra of all upper triangular
3 × 3 matrices over F , where F is either R or C. We give the topology on the algebra by
the Euclidean norm, for convenience, via T3(F ) ∼= F 6 as a space.

Proposition 3.1. All idempotents of T3(F ) are listed up as0 0 0
0 0 0
0 0 0

 ,

1 x y
0 0 0
0 0 0

 ,

0 x xz
0 1 z
0 0 0

 ,

0 0 y
0 0 z
0 0 1

 ,

1 0 y
0 1 z
0 0 0

 ,

1 x −xz
0 0 z
0 0 1

 ,

0 x y
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1


for any x, y, z ∈ F .

Proof. Let

A =

a x y
0 b z
0 0 c

 ∈ T3(F )

with A2 = A, so that a2 = a, b2 = b, c2 = c, and (a+b)x = x, (b+c)z = z, (a+c)y+xz = y.
Hence a = 0 or 1, and b = 0 or 1, and c = 0 or 1.

If a = b = c = 0, then x = y = z = 0.
If a = 1 and b = c = 0, then z = 0.
If b = 1 and a = c = 0, then y = xz.
If c = 1 and a = b = 0, then x = 0.
Moreover, if a = b = 1 and c = 0, then x = 0.
If a = c = 1 and b = 0, then y = −xz.
If a = 0 and b = c = 1, then z = 0.
If a = b = c = 1, then x = y = z = 0.
These cases correspond to the matrices in the statement in this order.

Denote by P3(F ) the set of all idempotents of T3(F ). Define the equivalence relation for
elements of P3(F ) by that two elements of P3(F ) are equivalent if there is a continuous path
within P3(F ) between the two elements. Write by E0(T3(F )) the set of all equivalence classes
by the equivalence relation. Denote by [· · · ] the class of an idempotent P = (· · · ) ∈ P3(F ).

Corollary 3.2. All classes of E0(T3(F )) are listed up as0 0 0
0 0 0
0 0 0

 ,

1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 0

 ,

1 0 0
0 0 0
0 0 1

 ,

0 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 .

Definition 3.3. We now define the anti-diagonal transpose Aat of A ∈ T3(F ) by

Aat =

c z y
0 b x
0 0 a

 for A =

a x y
0 b z
0 0 c

 .

We denote by T3(F )/ ∼at the set of matrices of T3(F ) identified under the anti-transpose.
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Note that Aat is just the transpose of J3AJ3:

Aat = {J3AJ3}t = J t
3A

tJ t
3 = J3A

tJ3,

with J3 the 3× 3 matrix of (1, 3), (2, 2), (3, 1) components as 1 and other components as 0.

Corollary 3.4. All idempotents of T3(F )/ ∼at are listed up as0 0 0
0 0 0
0 0 0

 ,

1 x y
0 0 0
0 0 0

 ,

0 x xz
0 1 z
0 0 0

 ,

1 0 y
0 1 z
0 0 0

 ,

1 x −xz
0 0 z
0 0 1

 ,

1 0 0
0 1 0
0 0 1


for any x, y, z ∈ F .

Corollary 3.5. All classes of E0(T3(F )/ ∼at) are listed up as0 0 0
0 0 0
0 0 0

 ,

1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

1 0 0
0 1 0
0 0 0

 ,

1 0 0
0 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 .

Proposition 3.6. All square roots of T3(F ) are listed up as±1 0 0
0 ±1 0
0 0 ±1

 ,

±1 x 0
0 ∓1 0
0 0 ±1

 ,

±1 0 0
0 ±1 z
0 0 ∓1

 ,

±1 0 y
0 ±1 0
0 0 ∓1

 ,

±1 x 0
0 ∓1 z
0 0 ±1

 ,

±1 x y
0 ∓1 0
0 0 ∓1

 ,

±1 0 y
0 ±1 z
0 0 ∓1

 ,

±1 x y
0 ∓1 z
0 0 ±1


for any non-zero x, y, z ∈ F , where x, y, z satisfy the equation 2(±1)y + xz = 0 in the last
case, so that y = 2−1(∓1)xz. There are compound or not 8 + 4 + 4 + 4 + 2 + 2 + 2 + 2 = 28
cases.

Proof. Let

A =

a x y
0 b z
0 0 c

 ∈ T3(F )

with A2 = I3 the 3 × 3 identity matrix, so that a2 = 1, b2 = 1, c2 = 1, and (a + b)x = 0,
(b + c)z = 0, (a + c)y + xz = 0. Hence a = ±1, and b = ±1, and c = ±1.

If y = z = 0 and x is non-zero, a = −b.
If x = y = 0 and z is non-zero, b = −c.
If x = z = 0 and y is non-zero, a = −c.
If y = 0 and xz 6= 0, then a = −b and b = −c.
If y 6= 0 and a = −c, then x = 0 or z = 0.
The rest case is that xyz 6= 0 with 2ay + xz = 0.
These cases correspond to the matrices in the statement in this order.
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Denote by R3(F ) the set of all square roots of T3(F ). Define the equivalence relation
for elements of R3(F ) by that two elements of R3(F ) are equivalent if there is a continuous
path within R3(F ) between the two elements. Write by E1(T3(F )) the set of all equivalence
classes by the equivalence relation. Denote by [· · · ] the class of a square root R = (· · · ) ∈
R3(F ).

Corollary 3.7. All classes of E1(T3(F )) are listed up as±1 0 0
0 ±1 0
0 0 ±1

 (compound in order 8 cases).

4 The four by four case We denote by T4(F ) the algebra of all upper triangular 4× 4
matrices over F , where F is either R or C. We give the topology on the algebra by the
Euclidean norm, for convenience, via T4(F ) ∼= F 1+2+3+4 = F 10 as a space.

Proposition 4.1. All idempotents of T4(F ) are listed up as the zero matrix and
1 x12 x13 x14

0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 x12 x12x23 x12x24

0 1 x23 x24

0 0 0 0
0 0 0 0

 ,


0 0 x13 x13x34

0 0 x23 x23x34

0 0 1 x34

0 0 0 0

 ,


0 0 0 x14

0 0 0 x24

0 0 0 x34

0 0 0 1

 ,


1 0 x13 x14

0 1 x23 x24

0 0 0 0
0 0 0 0

 ,


1 x12 −x12x23 x14

0 0 x23 x23x34

0 0 1 x34

0 0 0 0

 ,


1 x12 x13 −x12x24 − x13x34

0 0 0 x24

0 0 0 x34

0 0 0 1

 ,


0 x12 x13 x12x24 + x13x34

0 1 0 x24

0 0 1 x34

0 0 0 0

 ,


0 x12 x12x23 x14

0 1 x23 −x23x34

0 0 0 x34

0 0 0 1

 ,


0 0 x13 x14

0 0 x23 x24

0 0 1 0
0 0 0 1

 ,


1 0 0 x14

0 1 0 x24

0 0 1 x34

0 0 0 0

 ,


1 x12 −x12x23 −x12x24

0 0 x23 x24

0 0 1 0
0 0 0 1

 ,


1 0 x13 −x13x34

0 1 x23 −x23x34

0 0 0 x34

0 0 0 1

 ,


0 x12 x13 x14

0 1 0 0
0 0 1 0
0 0 0 1

 ,

for any xi,j ∈ F (i < j), and the identity matrix.

Proof. Let

A =


a1 x12 x13 x14

0 a2 x23 x24

0 0 a3 x34

0 0 0 a4

 ∈ T4(F )

with A2 = A, so that a2
j = aj (1 ≤ j ≤ 4), and (a1 + a2)x12 = x12, (a2 + a3)x23 = x23,

(a3 +a4)x34 = x34, (a1 +a3)x13 +x12x23 = x13, (a2 +a4)x24 +x23x34 = x24, (a1 +a4)x14 +
x12x24 + x13x34 = x14. Hence aj = 0 or 1 (1 ≤ j ≤ 4).

If aj = 0 (1 ≤ j ≤ 4), then xij = 0 (1 ≤ i < j ≤ 4).
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If a1 = 1 and aj = 0 (2 ≤ j ≤ 4), then x23 = x34 = 0, x24 = 0
If a2 = 1 and aj = 0 (j 6= 2), then x34 = 0 and x12x23 = x13, x12x24 = x14.
If a3 = 1 and aj = 0 (j 6= 3), then x12 = 0 and x23x34 = x24, x13x34 = x14.
If a4 = 1 and aj = 0 (j 6= 4), then x12 = x23 = x13 = 0.
Moreover, if a1 = a2 = 1 and a3 = a4 = 0, then x12 = x34 = 0.
If a1 = a3 = 1 and a2 = a4 = 0, then x13 = −x12x23 and x24 = x23x34.
If a1 = a4 = 1 and a2 = a3 = 0, then x23 = 0 and x14 = −x12x24 − x13x34.
If a2 = a3 = 1 and a1 = a4 = 0, then x23 = 0 and x14 = x12x24 + x13x34.
If a2 = a4 = 1 and a1 = a3 = 0, then x13 = x12x23 and x24 = −x23x34.
If a3 = a4 = 1 and a1 = a2 = 0, then x12 = x34 = 0.
Furthermore, if a1 = a2 = a3 = 1 and a4 = 0, then x12 = x23 = x13 = 0.
If a1 = a3 = a4 = 1 and a2 = 0, then x34 = 0, x13 = −x12x23, x14 = −x12x24.
If a1 = a2 = a4 = 1 and a3 = 0, then x12 = 0, x24 = −x23x34, x14 = −x13x34.
If a1 = 0 and a2 = a3 = a4 = 0, then x23 = x34 = x24 = 0.
Finally, if aj = 1 (1 ≤ j ≤ 4), then xij = 0 (1 ≤ i < j ≤ 4).
These cases correspond to the matrices in the statement in this order.

Denote by P4(F ) the set of all idempotents of T4(F ). Define the equivalence relation for
elements of P4(F ) by that two elements of P4(F ) are equivalent if there is a continuous path
within P4(F ) between the two elements. Write by E0(T4(F )) the set of all equivalence classes
by the equivalence relation. Denote by [· · · ] the class of an idempotent P = (· · · ) ∈ P4(F ).

Corollary 4.2. All classes of E0(T4(F )) are listed up as the zero class and
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and the identity class.
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Definition 4.3. We now define the anti-diagonal transpose Aat of A ∈ T4(F ) by

Aat =


a4 x34 x24 x14

0 a3 x23 x13

0 0 a2 x12

0 0 0 a1

 for A =


a1 x12 x13 x14

0 a2 x23 x24

0 0 a3 x34

0 0 0 a4

 .

We denote by T4(F )/ ∼at the set of matrices of T4(F ) identified under the anti-transpose.

Note that Aat is just the transpose of J4AJ4:

Aat = {J4AJ4}t = J4A
tJ4,

with J4 the 4× 4 matrix of (1, 4), (2, 3), (3, 2), (4, 1) components as 1 and other components
as 0.

Corollary 4.4. All idempotents of T4(F )/ ∼at are listed up as the zero matrix and


1 x12 x13 x14

0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 x12 x12x23 x12x24

0 1 x23 x24

0 0 0 0
0 0 0 0

 ,


1 0 x13 x14

0 1 x23 x24

0 0 0 0
0 0 0 0

 ,


1 x12 −x12x23 x14

0 0 x23 x23x34

0 0 1 x34

0 0 0 0

 ,


1 x12 x13 −x12x24 − x13x34

0 0 0 x24

0 0 0 x34

0 0 0 1

 ,


0 x12 x13 x12x24 + x13x34

0 1 0 x24

0 0 1 x34

0 0 0 0

 ,


1 0 0 x14

0 1 0 x24

0 0 1 x34

0 0 0 0

 ,


1 x12 −x12x23 −x12x24

0 0 x23 x24

0 0 1 0
0 0 0 1

 ,

for any xi,j ∈ F (i < j), and the identity matrix.
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Corollary 4.5. All classes of E0(T4(F )/ ∼at) are listed up as the zero class and
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

and the identity class.

Proposition 4.6. All square roots of T4(F ) are listed up as, for any nonzero xij ∈ F ,
±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1

 ,


±1 x12 0 0
0 ∓1 0 0
0 0 ±1 0
0 0 0 ±1

 ,


±1 0 0 0
0 ±1 x23 0
0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 0 0
0 ±1 0 0
0 0 ±1 x34

0 0 0 ∓1

 ,


±1 x12 x13 0
0 ±1 x23 0
0 0 ±1 0
0 0 0 ±1

 ,


±1 0 0 0
0 ±1 x23 x24

0 0 ∓1 x34

0 0 0 ±1

 ,


±1 x12 0 0
0 ∓1 0 0
0 0 ±1 x34

0 0 0 ∓1




not compound in
each bold and italic,

but compound
between both

 ,


±1 x12 x13 0
0 ∓1 x23 x24

0 0 ±1 x34

0 0 0 ∓1


with x12x24+x13x34 = 0, where possible cases in the following are written as matrix forms as
above, and there are impossible case as tuples as below, with non-zero components (x12, x23)
but x13 = 0 or with non-zero components (x23, x34) but x24 = 0 or with more other non-zero
components:

(x12, x23; x14), (x12, x23; x24), (x12, x23; x34),
(x12, x23; x14, x24), (x12, x23; x14, x34), (x12, x23; x24, x34),
or (x12, x23;x14, x24, x34),

and

(x23, x34; x13), (x23, x34; x14), (x23, x34; x13, x14),
(x23, x34; x12, x13), or (x23, x34; x12, x13, x14);
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and moreover, 
±1 0 x13 0
0 ±1 0 0
0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 0 0
0 ±1 0 x24

0 0 ±1 0
0 0 0 ∓1

 ,

and 
±1 x12 x13 0
0 ∓1 0 0
0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 x13 0
0 ±1 x23 0
0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 x13 0
0 ±1 0 0
0 0 ∓1 x34

0 0 0 ±1

 ,


±1 x12 x13 0
0 ∓1 0 0
0 0 ∓1 x34

0 0 0 ±1

 ,

and there is an impossible case with non-zero components (x13, x23, x24, x34) but x14 = 0;
and 

±1 0 0 0
0 ±1 x23 x24

0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 0 0
0 ±1 0 x24

0 0 ±1 x34

0 0 0 ∓1

 ,


±1 x12 0 0
0 ∓1 0 x24

0 0 ±1 0
0 0 0 ±1

 ,


±1 x12 0 0
0 ∓1 0 x24

0 0 ∓1 x34

0 0 0 ±1

 ,

and there is an impossible case with non-zero compoents (x12, x13, x23, x24) but x14 = 0; and
furthermore,

±1 0 0 x14

0 ±1 0 0
0 0 ±1 0
0 0 0 ∓1

 ,


±1 x12 0 x14

0 ∓1 0 0
0 0 ±1 0
0 0 0 ∓1

 ,


±1 0 0 x14

0 ±1 0 x24

0 0 ±1 0
0 0 0 ∓1

 ,


±1 0 x13 x14

0 ±1 0 0
0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 0 x14

0 ±1 0 0
0 0 ±1 x34

0 0 0 ∓1

 ,


±1 0 0 x14

0 ±1 x23 0
0 0 ∓1 0
0 0 0 ∓1




not compound in
each bold and italic,

but compound
between both

 ,

and there are the cases which do not exist, with non-zero components:

(x12, x13, x14, x24, x34) or (x12, x13, x14, x23, x24, x34)
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(the full case); and moreover,
±1 0 x13 0
0 ±1 0 x24

0 0 ∓1 0
0 0 0 ∓1




not compound in
each bold and italic,

but compound
between both

 ,


±1 x12 x13 0
0 ∓1 0 x24

0 0 ∓1 0
0 0 0 ±1

 ,


±1 0 x13 0
0 ±1 x23 x24

0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 x13 0
0 ∓1 0 x24

0 0 ∓1 x34

0 0 0 ±1

 ,


±1 x12 x13 0
0 ∓1 0 x24

0 0 ∓1 x34

0 0 0 ±1

 ,

and the two impossible cases with non-zero components (x12, x13, x23, x24) and (x13, x23, x24, x34);
and furthermore, 

±1 0 x13 x14

0 ±1 0 x24

0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 x13 x14

0 ±1 x23 x24

0 0 ∓1 0
0 0 0 ∓1

 ,

and there are five impossible cases with non-zero components:

(x12, x13, x14, x24), (x12, x13, x14, x23, x24), (x12, x13, x14, x24, x34),
(x13, x14, x24, x34), or (x13, x14, x23, x24, x34);

and 
±1 x12 x13 x14

0 ∓1 0 0
0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 0 x14

0 ±1 0 x24

0 0 ±1 x34

0 0 0 ∓1

 ,


±1 0 x13 x14

0 ±1 x23 0
0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 0 x14

0 ±1 x23 x24

0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 x13 x14

0 ±1 0 0
0 0 ∓1 x34

0 0 0 ±1

 ,


±1 x12 0 x14

0 ∓1 0 x24

0 0 ±1 0
0 0 0 ±1

 ,

and finally, 
±1 x12 x13 x14

0 ∓1 x23 0
0 0 ±1 0
0 0 0 ∓1

 ,


±1 x12 x13 x14

0 ∓1 0 0
0 0 ∓1 x34

0 0 0 ±1

 ,


±1 0 0 x14

0 ∓1 x23 x24

0 0 ±1 x34

0 0 0 ∓1

 ,


±1 x12 0 x14

0 ∓1 0 x24

0 0 ∓1 x34

0 0 0 ±1

 .

In total, with respect to the off diagonal part, there are 41 distinct possible cases and 23
distinct impossible cases in 64 = 26 all the cases. In more details, together with the diagonal
part of components compound or not, there are possible {24+3(23)+2(22)+2·2+2}+{2(23)+
3(22)+2}+{3(22)+2}+{23+4(22)+2·2}+{2·2+4(2)}+{2(2)}+{4(2)+2(22)+4(2)} = 166
cases.
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Proof. Let

A =


a1 x12 x13 x14

0 a2 x23 x24

0 0 a3 x34

0 0 0 a4

 ∈ T4(F )

with A2 = I4 the 4 × 4 identity matrix, so that a2
j = 1 (1 ≤ j ≤ 4), and (a1 + a2)x12 = 0,

(a2 + a3)x23 = 0, (a3 + a4)x34 = 0, (a1 + a3)x13 + x12x23 = 0, (a2 + a4)x24 + x23x34 = 0,
(a1 + a4)x14 + x12x24 + x13x34 = 0. Hence aj = ±1 (1 ≤ j ≤ 4).

If x12 6= 0 and xij = 0 otherwise, then a1 + a2 = 0.
If x23 6= 0 and xij = 0 otherwise, then a2 + a3 = 0.
If x34 6= 0 and xij = 0 otherwise, then a3 + a4 = 0.
If x12 6= 0, x23 6= 0, then (a1 + a3)x13 6= 0 and a1 + a2 = 0 and a2 + a3 = 0.
If x23 6= 0, x34 6= 0, then (a2 + a4)x24 6= 0 and a2 + a3 = 0 and a3 + a4 = 0.
If x12 6= 0, x34 6= 0, and xij = 0 otherwise, then a1 + a2 = 0 and a3 + a4 = 0.
There is another case with x12x23x34 6= 0, so that (a1 +a3)x13 6= 0 and (a2 +a4)x24 6= 0.
Note that x12x23 6= 0 implies x13 6= 0 and also that x23x34 6= 0 implies x24 6= 0, so that

several impossible cases with x12x23 6= 0 but x13 = 0 and with x23x34 6= 0 but x24 = 0 are
obtained.

Moreover, if x13 6= 0 and xij = 0 otherwise, then a1 + a3 = 0. Also, if x24 6= 0 and
xij = 0 otherwise, then a2 + a4 = 0.

And if x13 6= 0, x12x23 = 0, and xij = 0 otherwise, then a1 +a3 = 0 and either a1 +a2 or
a2 + a3 = 0. In addition, there are two possible cases with x34 6= 0 and another impossible
case with x34 6= 0.

And if x24 6= 0, x23x34 = 0, and xij = 0 otherwise, then a2 + a4 = 0 and either
a2 + a3 = 0 or a3 + a4 = 0. In addition, there are two possible cases with x12 6= 0 and
another impossible case with x12 6= 0.

Furthermore, if x14 6= 0 and xij = 0 otherwise, so that x12x24 + x13x34 = 0, then
a1 + a4 = 0. In addition, there are some other cases with x12 6= 0 or x24 6= 0; x13 6= 0 or
x34 6= 0; x23 6= 0 and more in what follows. But if (a1 + a4)x14 6= 0, then x12x24 6= 0 if and
only if x13x34 6= 0, which implies a contradiction in sigh on the diagonal, so that impossible
are the case with (x12, x13, x14, x24, x34) and the full case.

Moreover, if x13x24 6= 0 and xij = 0 otherwise, then a1 + a3 = 0 and a2 + a4. In
addition, there are other four possible cases with several other non-zero components and
two impossible cases.

Furthermore, if x13x14x24 6= 0 and xij = 0 otherwise, then a1 + a4 = 0, a1 + a3 = 0 and
a2 + a4 = 0. In addition, there are one more possible case with x23 6= 0 and five impossible
cases by the contradiction of signs on the diagonal.

And there are the possible cases with x12x13x14 6= 0 or x14x24x34 6= 0 and with
x13x14x23 6= 0 or x14x23x24 6= 0, and the possible cases with x13x14x34 6= 0 or x12x14x24 6= 0,
so that a1 + a4 6= 0.

Finally, there are four cases that complement the list above in all the cases, with a1+a3 6=
0, a1 + a4 6= 0, a2 + a4 6= 0, and a1 + a4 6= 0, respectively.

These possible and impossible cases correspond respectively to the matrices and the
tuples in the statement in this order.

Denote by R4(F ) the set of all square roots of T4(F ). Define the equivalence relation
for elements of R4(F ) by that two elements of R4(F ) are equivalent if there is a continuous
path (or a homotopy) within R4(F ) between the two elements. Write by E1(T4(F )) the set
of all equivalence classes by the equivalence relation. Denote by [· · · ] the class of a square
root R = (· · · ) ∈ R4(F ).
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Corollary 4.7. All classes of E1(T4(F )) are listed up as
±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1

 (compound in order 16 cases).

Proof. Note that any square root in the list of Proposition 4.6 has a homotopy class within
R4(F ), equal to one of the 24 = 16 homotopy classes in the statement, by deforming off-
diagonal components to zero.

5 The general case by homotopy We denote by Tn(F ) the algebra of all upper trian-
gular n×n matrices over F , where F is either R or C. We give the topology on the algebra
by the Euclidean norm, for convenience, via Tn(F ) ∼= F 1+2+3+4+···+n = F 2−1n(n+1) as a
space.

Denote by Pn(F ) the set of all idempotents of Tn(F ). Define the equivalence relation
for elements of Pn(F ) by that two elements of Pn(F ) are equivalent if there is a continuous
path (or a homotopy) within Pn(F ) between the two elements. Write by E0(Tn(F )) the
set of all equivalence classes by the equivalence relation. Denote by [· · · ] the class of an
idempotent P = (· · · ) ∈ Pn(F ).

Let {eij}n
i,j=1,i≤j be the matrix unit for Tn(F ).

Theorem 5.1. All classes of E0(Tn(F )) are listed up as the zero class and the classes [eii]
for 1 ≤ i ≤ n, and [eii + ejj ] for 1 ≤ i < j ≤ n, and [eii + ejj + ekk] for 1 ≤ i < j < k,
and moreover, in general, [ei1i1 + ei2i2 + · · · + eis,is ] for 1 ≤ i1 < i2 < · · · < is ≤ n with
3 ≤ s ≤ n−1, and the class of the n×n identity matrix, and there are 2n homotopy classes
in all.

Proof. One can prove the claim by induction. Indeed, let P ∈ Pn(F ). Then there are two
cases of the block decomposition for P :

P =
(

1 c
0n−1 Q

)
or P =

(
0 c

0n−1 Q

)
with Q ∈ Pn−1(F ), c a 1× (n− 1) row vector and 0n−1 the (n− 1)× 1 column zero vector,
such that Q2 = Q and cQ = 0t

n−1 the transpose of 0n−1. By induction, the class [Q] for Q
is one of the classes listed as in the statement in the case of n− 1. And then in both of two
cases, the class [P ] can be one of the classes listed as in the statement just in the case of n,
by deforming c to the 1 × (n − 1) row zero vector within Pn(F ) by a continuous path (i.e.
a homotopy).

We define the semigroup 〈E0(Tn(F ))〉 generated by E0(Tn(F )) with the addition given
by [p]+[q] = [p+q] for p, q ∈ Pn(F ) if p is orthogonal to q, i.e. if pq = 0 and by [p]+[p] = 2[p]
and by [p]+ [q] = [p−p∧ q]+2[p∧ q]+ [q−p∧ q] if pq 6= 0, where p∧ q means the projection
corresponding to the intersection of their ranges. It follows that the semigroup 〈E0(Tn(F ))〉
becomes an additive semigroup with the zero class as the identity element by this operation.

We define an abelian group V0(Tn(F )) to be the Grothendieck group of the semigroup
〈E0(Tn(F ))〉. We say that V0(Tn(F )) is the V0-group of Tn(F ).

Corollary 5.2. We obtain
V0(Tn(F )) ∼= Zn.
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Proof. Indeed, the group V0(Tn(F )) is generated by the classes [e11], [e22], · · · , and [enn],
and the isomorphism is given by the correspondence:

n∑
j=1

aj [ejj ] ↔ (a1, a2, · · · , an) ∈ Zn.

Corollary 5.3. The class of Banach algebras of all upper triangular matrices over real
or complex numbers is classified by their V-groups in the sense that Tn(F ) ∼= Tm(F ) as a
Banach algebra if and only if V0(Tn(F )) ∼= V0(Tm(F )) as a group.

Denote by Rn(F ) the set of all square roots of Tn(F ). Define the equivalence relation
for elements of Rn(F ) by that two elements of Rn(F ) are equivalent if there is a continuous
path (or a homotopy) within Rn(F ) between the two elements. Write by E1(Tn(F )) the set
of all equivalence classes by the equivalence relation. Denote by [· · · ] the class of a square
root R = (· · · ) ∈ Rn(F ).

Theorem 5.4. All classes of E1(Tn(F )) are listed up as

[(±e11) + (±e22) + · · · + (±enn)],

2n classes in all.

Proof. One can prove the claim by induction. Indeed, let R ∈ Rn(F ). Then there are two
cases of the block decomposition for R:

R =
(

±1 c
0n−1 S

)
with S ∈ Rn−1(F ), c a 1× (n− 1) row vector and 0n−1 the (n− 1)× 1 column zero vector,
such that S2 = In−1 the (n−1)× (n−1) identity matrix and ±c+ cS = 0t

n−1 the transpose
of 0n−1. By induction, the class [S] for S is one of the classes listed as in the statement in
the case of n − 1. And then in both of two cases, the class [R] can be one of the classes
listed as in the statement just in the case of n, by deforming c to the 1 × (n − 1) row zero
vector within Rn(F ) by a continuous path (i.e. a homotopy).

We define the group V1(Tn(F )) generated by E1(Tn(F )) with the multiplication given
by [r] · [s] = [rs] for r, s ∈ Rn(F ). It follows that the group V1(Tn(F )) is an abelian group
with the class of the n × n identity matrix In as the unit. We say that V1(Tn(F )) is the
V1-group of Tn(F ).

Let Z2 = Z/2Z the cyclic group of order 2. Denote by ⊕ the diagonal sum.

Corollary 5.5. We obtain

V1(Tn(F )) ∼= (Z2)n ≡ ΠnZ2.

Proof. Indeed, the group V1(Tn(F )) is generated by the classes [−1 ⊕ In−1], [1 ⊕ −1 ⊕
In−2], · · · , and [In−1 ⊕−1], and the isomorphism is given by the correspondence:

Πn
j=1[Ij−1 ⊕ aj ⊕ In−j ] = [a1 ⊕ a2 ⊕ · · · ⊕ an]

↔ (a1, a2, · · · , an) ∈ (Z2)n,

where each aj is 1 or −1 and I0 is removed to be empty.

Corollary 5.6. The class of Banach algebras of all upper triangular matrices over real
or complex numbers is classified by their V-groups in the sense that Tn(F ) ∼= Tm(F ) as a
Banach algebra if and only if V1(Tn(F )) ∼= V1(Tm(F )) as a group.
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6 Inductive limits by V-theory There is a canonical unital inclusion map in,m from
Tn(F ) to Tm(F ) if n divides m as m = kn for some k a positive integer, defined as in,m(p) =
⊕kp the k-fold diagonal sum. Note that there are some other embeddings in the diagonal.

Let T∞(F ) = lim−→Tnj (F ) be the inductive limit of {Tnj (F )}∞j=1 with unital connecting
maps inj ,nj+1 for an increasing sequence {nj}∞j=1 of positive integers such that nj divides
nj+1 with nj+1 = kjnj for some kj a positive integer. Then T∞(F ) becomes a unital
Banach algebra as a Banach algebra completion of the infinite union ∪∞

j=1Tnj (F ) of Tnj (F ).
Note that T∞(F ) does depend on the choice of a family of connecting maps in general, as
a non-trivial known fact (see [3, Exercises 6.3]).

Proposition 6.1. Let T∞(F ) = lim−→Tnj (F ). We obtain

V0(T∞(F )) ∼= lim−→Znj ∼= lim−→{Z[
1
nj

] ⊕ · · · ⊕ Z[
nj

nj
]}

as inductive limits of scaled ordered groups, with [1] = limj→∞{[ 1
nj

] + · · · + [nj

nj
]} as scale.

Also,

V1(T∞(F )) ∼= lim−→Πnj Z2
∼= lim−→{Z2[

1
nj

] ⊕ · · · ⊕ Z2[
nj

nj
]}

with [1] = limj→∞{[ 1
nj

] + · · · + [nj

nj
]}.

Proof. The inclusion map inj ,nj+1 induces the injective group homomorphism:

(inj ,nj+1)∗ : V0(Tnj (F )) → V0(Tnj+1(F )),

so that (inj ,nj+1)∗ maps Znj ∼= Z[ 1
nj

]⊕· · ·⊕Z[nj

nj
] injectively to Znj+1 ∼= Z[ 1

nj+1
]⊕· · ·⊕Z[nj+1

nj+1
]

by Corollary 5.2, where we have (inj ,nj+1)∗([p]) = [⊕kj p] for [p] ∈ V0(Tnj (F )), so that the
class [p] is identified with [⊕kj p] and with their limit class in V0(T∞(F )), and each k-th
coordinate base for Znj is identified with k

nj
for 1 ≤ k ≤ nj . Therefore,

V0(T∞(F )) ∼= lim−→Znj ∼= lim−→{Z[
1
nj

] ⊕ · · · ⊕ Z[
nj

nj
]}.

Also, induced is the injective group homomorphism:

(inj ,nj+1)∗ : V1(Tnj (F )) → V1(Tnj+1(F )),

so that (inj ,nj+1)∗ maps Πnj Z2
∼= Z2[ 1

nj
]⊕ · · · ⊕Z2[

nj

nj
] injectively to Πnj+1Z2

∼= Z2[ 1
nj+1

]⊕
· · · ⊕ Z2[

nj+1
nj+1

] by Corollary 5.5 and by the same reason as above.

Next, let lim−→⊕k
j=1Tnj,k

(F ) be a unital inductive limit of finite direct sums ⊕k
j=1Tnj,k

(F )
with unital connecting maps ik,k+1 such that each nj,k+1 is a weighted sum of nj,k, so that
nj,k+1 =

∑k
s=1 ms,kns,k for some integers ms,k ≥ 0 and ik,k+1(xl) = ⊕k

s=1[⊕
ms,k

j=1 xl] for
xl ∈ Tnl,k

(F ). The diagram for such connecting maps is known as the Bratteli diagram (cf.
[3] and [4]).

Proposition 6.2. We obtain

V0(lim−→⊕k
j=1Tnj,k

(F )) ∼= lim−→⊕k
j=1Znj,k ∼= lim−→{⊕k

j=1(⊕
nj,k

s=1Z[
s

nj,k
])}
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as inductive limits of scaled ordered groups, with [1] = limk→∞{⊕k
j=1(⊕

nj,k

s=1 [ s
nj,k

])} as scale.
Also,

V1(lim−→⊕k
j=1Tnj,k

(F )) ∼= lim−→⊕k
j=1(Z2)nj,k ∼= lim−→{⊕k

j=1(⊕
nj,k

s=1Z2[
s

nj,k
])}

with [1] = limk→∞{⊕k
j=1(⊕

nj,k

s=1 [ s
nj,k

])}.
Moreover, the V-theory groups V0 or V1 with the scaled unit classes are complete in-

variants for unital inductive limits of finite direct sums of upper triangular matrix Banach
algebras.

Proof. The last consequence follows from the classification theorem for unital AF C∗-
algebras which contain canonically those non self-adjoint inductive limits as only subal-
gebras, by the same way as in [3].

On the other hand, let {nj}∞j=1 be an increasing sequence of positive integers. We now
denote by K∞(F ) the inductive limit of Tnj (F ) by the non-unital inclusion maps given
by x 7→ x ⊕ Onj+1−nj for x ∈ Tnj (F ), where Onj+1−nj is the zero square matrix of size
nj+1 − nj . Then K∞(F ) becomes a Banach algebra as a Banach algebra completion of the
infinite union of Tnj (F ). Note that K∞(F ) does not depend on the choice of a family of
connecting maps. Also, K∞(F ) is a non-unital algebra, so that it has no square roots.

For a non-unital Banach algebra B, one may define its V1-group to be that of the
unitization B+ by F , so that V1(B) = V1(B+), as one way.

But, on the other way, for a non-unital Banach algebra which can be written as an
inductive limit of unital Banach algebras, which may or not depend on a choice of a family
of connecting maps, we this time define its V-theory group V1 to be inductive limits of their
V-theory groups V1, so that the continuity in inductive limits do hold even in the non-unital
case, depending on the choice.

Proposition 6.3. We obtain

V0(K∞(F )) ∼= lim
j→∞

⊕nj Z,

and V1(K∞(F )) = lim−→V1(Tnj (F )) = lim−→(Z2)nj .

Proof. Note that
V0(K∞(F )) ∼= V0(lim−→Tnj (F )) ∼= lim−→⊕nj Z,

where nj → ∞ as j → ∞.

In general,

Proposition 6.4. Our V0-theory group is always continuous, with respect to inductive
limit Banach algebras, and the V1-theory group is continuous only for unital inductive limit
Banach algebras with unital connecting maps.

Proof. It should follows from continuity of K-theory groups for inductive limits of C∗-
algebras (see [5]), by the similar way. But omitted.

Remark. A more general theory for V-theory groups may be continued to be investigated
somewhere else in the future.

Let {Nj}∞j=1 be an increasing sequence of positive integers. Denote by lim−→⊕k
j=1Tnj (F )

a canonical inductive limit of the block diagonal sums ⊕k
j=1Tnj (F ) of Tnj (F ) (1 ≤ j ≤ k)

in TNk
(F ) with

∑k
j=1 nj = Nk and nk = Nk − Nk−1 and n1 = N1, where the non-unital
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connecting maps are given by x 7→ x ⊕ 0nk+1 for x in the k-fold diagonal sum. Then the
inductive limit is non-unital and is an infinite direct sum of block diagonal components, so
that lim−→⊕k

j=1Tnj
(F ) ∼= ⊕∞

j=1Tnj
(F ). As well, let lim−→TNk

(F ) be a non-unital inductive limit
of TNk

(F ) by the same way as above.

Proposition 6.5. We obatin

V0(lim−→⊕k
j=1Tnj (F )) ∼= lim−→⊕k

j=1Znj ∼= lim−→ZNk ∼= V0(lim−→TNk
(F )),

as an inductive limit of groups, but not as an inductive limit of scaled ordered groups, with

[1] = lim
k→∞

{[1n1 ] + · · · + [1nk
]} and [1] = lim

k→∞
{[1Nk

]}

as the scales of the respective (extended) unit classes. Also,

V1(lim−→⊕k
j=1Tnj (F )) = lim−→⊕k

j=1(Z2)nj ∼= lim−→(Z2)Nk ∼= V1(lim−→TNk
(F ))

as an inductive limit of groups, but not as an inductive limit of scaled oredered groups.
Consequently,

lim−→⊕k
j=1Tnj (F ) 6∼= lim−→TNk

(F ).

Proof. The last consequence follows from the classification theory for non self-adjoint Ba-
nach algebras viewed as sub-Banach algebras of AF C∗-algebras and UHF-algebras (see [3]
in details).

To distinguish non-unital inductive limits of block diagonal sums of {Tnj (F )}∞j=1 for any
sequence {nj}∞j=1 of positive integers, we introduce a notion as follows. We may say that the
sequence {nj}∞j=1 of positive integers is a sequence of block diagonal sums of {Tnj (F )}∞j=1.
We define that two sequences {an}∞n=1 and {bn}∞n=1 of positive integers is equivalent up
to inductive permutation if for any m a positive interger, there are positive intergers k
and k′ such that k, k′ ≥ m and the finite sequence {a1, · · · , ak} is the same sequence as
{b1, · · · , bk′} by subtracting finitely many l and l′ elements so that k − l = k′ − l′ = m and
by a permutation of m elements left, so that the respective unions of left elements are the
respective sequences.

Proposition 6.6. Two non-unital inductive limits of block diagonal sums of {Tnj (F )}∞j=1

and {Tmj (F )}∞j=1 for two sequences {nj}∞j=1 and {mj}∞j=1 of positive integers, respectively,
are isomorphic as Banach algebras if and only if these sequences are equivalent up to in-
ductive permutation.

Proof. The equivalence between those sequences {nj}∞j=1 and {mj}∞j=1 implies that there ex-
ist isomorphisms of corresponding finite block diagonal sums of {Tnj (F )}∞j=1 and {Tmj (F )}∞j=1

by permutation of their direct summands, inductively. Therefore, there exists an isomor-
phism between those inductive limits by the density of unions of isomorphic finite block
diagonal sums in the inductive limits.

Conversely, the isomorphism denoted by Φ between the inductive limits denoted by I
and K implies that each finite block diagonal sum of I is mapped into a finite block diagonal
sum of K by Φ. Therefore, it follows that there is the equivalence between the sequences.

Let I be a non-unital inductive limit of block diagonal sums of {Tnj (F )}∞j=1 for a se-
quence {nj}∞j=1 of positive integers. Then the (inductive or extended) unit I associated to
I (but not in I) is equal to

lim−→⊕k
j=1Inj , Inj ∈ Tnj (F ) the units.
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We say that the limit is the inductive partition of the (extended) unit I. Or we may call it
the scale of the inductive limit I, and write ΣI. Similarly as in the case of sequences above,
we define that two inductive partitions lim−→⊕k

j=1Inj
and lim−→⊕k

j=1Imj
of the respective units

associated to two inductive limits L and K of {Tnj (F )}∞j=1 and {Tmj (F )}∞j=1, respectively,
are equivalent up to inductive permutation if for any m a positive interger, there are positive
intergers k and k′ such that k, k′ ≥ m and the element ⊕k

j=1Inj is identified with the
element ⊕k′

j=1Imj by subtracting finitely many l and l′ diagonal sum components so that
k − l = k′ − l′ = m and by a permutation of m diagonal sum components left, so that the
respective left components add up to the respective units. In this case, we write ΣI ∼ ΣK.

Corollary 6.7. Non-unital inductive limits I and K of block diagonal sums of {Tnj (F )}∞j=1

and {Tmj (F )}∞j=1 for two sequences {nj}∞j=1 and {mj}∞j=1 of positive integers, respectively,
are isomorphic as Banach algebras if and only if the respective inductive partitions of units
lim−→⊕k

j=1Inj and lim−→⊕k
j=1Imj are equivalent up to inductive permutation, i.e., ΣI ∼ ΣK.

Proof. The respective inductive partitions of units lim−→⊕k
j=1Inj and lim−→⊕k

j=1Imj are by
definition, equivalent up to inductive permutation if and only if the sequences {nj}∞j=1 and
{mj}∞j=1 are equivalent up to inductive permutation.

Remark. Those isomorphisms between the inductive limits are given by permutations,
that are essentially equivalent to taking unitary equivalences, that are not allowed in the
inductive limits. Namely, the isomorphisms exist in the self-adjoint world. If not allowed,
i.e., in the non self-adjoint world, the inductive limits can not be isomorphic except the
trivial cases. Note also that block diagonal sums are essentially equivalent to direct sums.

We may call the unital or non-unital, inductive limits of finite direct sums of the upper
triangular matrix algebras as ATM algebras, in the sense of being approximately triangular
matrix algebras. As a summary,

Corollary 6.8. Two non-unital ATM algebras are isomorphic if and only if their scales are
equivalent in our sense, where we suppose that permutations are allowed in isomorphisms.

As well,

Corollary 6.9. Two unital or non-unital ATM algebras are isomorphic if and only if their
scaled V-theory groups are isomorphic.

Proof. Note that the unital case can be proved within the same context as in the non-unital
case above, without using the classification result in C∗-algebras.

Remark. This is a sort of classification result in non self-adjoint Banach algebras corre-
sponding to that of AF C∗-algebras. However, our method for the classification is similar
to that of the C∗-algebra case, and the results should be the same essentially as contents.
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