$g(x)$-NIL CLEAN RINGS

HANI A. KHASHAN AND ALI H. HANDAM

Abstract

An element in a ring R with identity is called nil clean if it is the sum of an idempotent and a nilpotent, R is called nil clean if every element of R is nil clean. Let $C(R)$ be the center of a ring R and $g(x)$ be a fixed polynomial in $C(R)[x]$. Then R is called $g(x)$-nil clean if every element in R is a sum of a nilpotent and a root of $g(x)$. In this paper, we investigate many properties and examples of $g(x)$-nil clean rings. Moreover, we characterize nil clean rings as $g(x)$-nil clean rings where $g(x) \in(x-(a+1))(x-b) C(R)[x]$, $a, b \in C(R)$ and $b-a \in N(R)$.

1. Introduction

Throughout this paper R denotes an associative ring with identity and all modules are unitary. The group of units, the set of idempotents and the set of nilpotent elements in R are denoted by $U(R), I d(R)$ and $N(R)$ respectively. Following Han and Nicholson [11], an element $r \in R$ is called clean if $r=e+u$ for some $e \in I d(R)$ and $u \in U(R)$. A ring R is called clean if every element of R is clean. The notion of clean rings was first introduced by Nicholson [14] in 1977 in his study of lifting idempotents and exchange rings. Since then, some stronger concepts have been considered (e.g. uniquely clean, strongly clean and some special clean rings), see $[4,6,15,17,18,19,20]$. As well as some weaker ones (e.g. almost clean and weakly clean rings), see [1]. Recently, in 2013, Diesl [9] studied a stronger concept than clean rings, namely, nil-clean rings. They are rings in which every element is a sum of an idempotent element and a nilpotent element. In fact, nil clean rings were firstly presented in [12] as a special case of rings in which every element is a sum of nilpotent and potent elements.

Let $C(R)$ denotes the center of a ring R and $g(x)$ be a polynomial in $C(R)[x]$. Then following Camillo and Simón [5], R is called $g(x)$-clean if for each $r \in R, r=s+u$ where $u \in U(R)$ and $g(s)=0$. Of course $\left(x^{2}-x\right)$-clean rings are precisely the clean rings.

Nicholson and Zhou [16] proved that if $g(x) \in(x-a)(x-b) C(R)[x]$ with $a, b \in C(R)$ and $b, b-a \in U(R)$ and ${ }_{R} M$ is a semisimple left R-module, then $\operatorname{End}\left({ }_{R} M\right)$ is $g(x)$-clean. Recently, Fan and Yang [10], studied more properties of $g(x)$-clean rings. Among many conclusions, they prove that if $g(x) \in(x-a)(x-b) C(R)[x]$ where $a, b \in C(R)$ with $b-a \in U(R)$, then R is a clean ring if and only if R is $(x-a)(x-b)$-clean.

In this paper, we define and study $g(x)$-nil clean rings as a special class of $g(x)$-clean rings. For a ring R and $g(x) \in C(R)[x]$, an element $r \in R$ is called $g(x)$-nil clean if $r=s+b$ for some $b \in N(R)$ and $g(s)=0$. Moreover, R is called $g(x)$-nil clean if every element in R is $g(x)$-nil clean.

[^0]In section 2, we study many properties of $g(x)$-nil clean rings analogous to those of nil clean and $g(x)$-clean rings. In particular, for a commutative ring R, we justify a condition under which the the amalgamated duplication $R \bowtie I$ of a ring R along an ideal I is $g(x)$-nil clean. Also, we consider the idealization $R(M)$ of any R-module M and prove that $R(M)$ is $g(x)$-nil clean ring if and only if R is so.

In section 3, we study $\left(x^{2}+c x+d\right)$-nil clean rings where $c, d \in C(R)$. We give many characterizations for a nil clean ring R in terms of some $g(x)$-nil clean rings. In particular for $n \in \mathbb{N}$, we focus on $\left(x^{2}-(n-1) x\right)$-nil clean and $\left(x^{n}-x\right)$-nil clean rings.

2. $g(x)-$ NIL CLEAN RINGS

In this section, we give some properties of $g(x)$-nil clean rings which are similar to those of $g(x)$-clean rings.
Definition 2.1. Let R be a ring and let $g(x)$ be a fixed polynomial in $C(R)[x]$. An element
$r \in R$ is called $g(x)$-nil clean if $r=b+s$ where $g(s)=0$ and b is a nilpotent of R. We say that R is $g(x)$-nil clean if every element in R is $g(x)$-nil clean.

Clearly, nil clean rings are $\left(x^{2}-x\right)$-nil clean. However, there are $g(x)$-nil clean rings which are not nil clean. For example, it can be easily proved that \mathbb{Z}_{3} is an $\left(x^{3}+2 x\right)$-nil clean ring which is not nil clean. For a non commutative $g(x)$-nil clean ring we have the following example.

Example 2.2. Consider the ring $R=\left\{\left[\begin{array}{cc}a & 2 b \\ 0 & c\end{array}\right]: a, b, c \in \mathbb{Z}_{4}\right\}$. Then one can see that for any $x, y \in R,\left(x-x^{2}\right)\left(y-y^{2}\right)=0$. Hence, R is $\left(x-x^{2}\right)^{2}$-nil clean.

Proposition 2.3. Every $g(x)$-nil clean ring is $g(x)$-clean ring.
Proof. Suppose R is a $g(x)$-nil clean ring and let $x \in R$. Then $x-1=b+s$ where b is nilpotent and $g(s)=0$. Thus, $x=(b+1)+s$ where $b+1 \in U(R)$. Therefore, R is $g(x)$-clean.

The converse of Proposition 2.3 is not be true in general. For example, one can verify that \mathbb{Z}_{10} is $\left(x^{7}-x\right)$-clean ring which is not $\left(x^{7}-x\right)$-nil clean ring.

Let R and S be rings and $\phi: C(R) \rightarrow C(S)$ be a ring homomorphism with $\phi\left(1_{R}\right)=1_{S}$. For $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in C(R)[x]$, we let $g^{\star}(x):=\sum_{i=0}^{n} \phi\left(a_{i}\right) x^{i} \in C(S)[x]$. In particular, if $g(x) \in \mathbb{Z}[x]$, then $g^{\star}(x)=g(x)$.

Proposition 2.4. Let $\theta: R \rightarrow S$ be a ring epimorphism. If R is $g(x)$-nil clean, then S is $g^{\star}(x)$-nil clean.

Proof. Let $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in C(R)[x]$ and consider $g^{\star}(x):=\sum_{i=0}^{n} \theta\left(a_{i}\right) x^{i} \in C(S)[x]$. For every $\alpha \in S$, there exist $r \in R$ such that $\theta(r)=\alpha$. Since R is $g(x)$-nil clean, there exist $s \in R$ and $u \in N(R)$ such that $r=u+s$ and $g(s)=0$. So $\alpha=\theta(r)=\theta(u+s)=\theta(u)+\theta(s)$ with
$\theta(u) \in N(S)$ and $g^{\star}(\theta(s))=\sum_{i=0}^{n} \theta\left(a_{i}\right)(\theta(s))^{i}=\sum_{i=0}^{n} \theta\left(a_{i}\right) \theta\left(s^{i}\right)=\sum_{i=0}^{n} \theta\left(a_{i} s^{i}\right)=\theta\left(\sum_{i=0}^{n} a_{i} s^{i}\right)=$ $\theta(g(s))=\theta(0)=0$. Therefore, S is $g^{\star}(x)$-nil clean.
Proposition 2.5. If R is a $g(x)$-nil clean ring and I is an ideal of R, then $\bar{R}=R / I$ is $g^{\star}(x)$-nil clean. Moreover, The converse is true if I is nil and the roots of $g^{\star}(x)$ lift modulo I.

Proof. For the first statement, we use Proposition 2.4 and the fact that $\theta: R \rightarrow R / I$ defined by $\theta(r)=\bar{r}=r+I$ is an epimorphism. Now, suppose R / I is $g^{\star}(x)$-nil clean and let $r \in R$. Then $\bar{r}=\bar{s}+\bar{b}$ where $\bar{b} \in N(\bar{R})$ and $g^{\star}(\bar{s})=\overline{0}$. Since the roots of $g^{\star}(x)$ lift modulo I, we may assume that $s \in R$ with $g(s)=0$. Now, $r-s$ is nilpotent modulo I and I is nil imply that $r-s$ is nilpotent. Therefore, R is $g(x)$-nil clean.

Proposition 2.6. Let $R_{1}, R_{2}, \ldots, R_{k}$ be rings and $g(x) \in \mathbb{Z}[x]$. Then $R=\prod_{i=1}^{k} R_{i}$ is $g(x)$-nil clean if and only if R_{i} is $g(x)$-nil clean for all $i \in\{1,2, \ldots, n\}$.

Proof. $\Rightarrow)$: For each $i \in\{1,2, \ldots, k\}, R_{i}$ is a homomorphic image of $\prod_{i=1}^{k} R_{i}$ under the projection homomorphism. Hence, R_{i} is $g(x)$-nil clean by Proposition 2.4.
$\Leftarrow):$ Let $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \prod_{i=1}^{k} R_{i}$. For each i, write $x_{i}=n_{i}+s_{i}$ where $n_{i} \in N\left(R_{i}\right)$, $g\left(s_{i}\right)=0$. Let $n=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ and $s=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$. Then it is clear that $n \in N(R)$ and $g(s)=0$. Therefore, R is $g(x)$-nil clean.

In general, the ring of polynomials $R[t]$ over a ring R is not $g(x)$-clean. This is also true for commutative $g(x)$-nil clean rings.

Proposition 2.7. If R is any commutative ring, then the ring of polynomials $R[t]$ is not nil clean (and hence not $\left(x^{2}-x\right)$-nil clean).

Proof. Since R is commutative, $N(R[t])=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{k} t^{k} \mid a_{0}, a_{1}, \cdots, a_{k} \in N(R)\right.$ and $k \in \mathbb{N}\}$. If t is nil clean, we may write $t=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{k} t^{k}+e$ where $e \in I d(R[t])=I d(R)$ and $a_{0}, a_{1}, \cdots, a_{k} \in N(R)$. Hence, $1=a_{1} \in J(R)$ which is a contradiction. Therefore $R[t]$ is not nil clean.

Let $\theta: R[[t]] \rightarrow R$ be defined by $\theta(f)=f(0)$. As a consequence of Proposition 2.3, if $R[t]]$ is $g^{\star}(x)$-nil clean, then R is $g(x)$-nil clean.

Let R be a commutative ring and M an R-module. Nagata [13] introduced the idealization $R(M)$ of R and M. The idealization of R and M is the ring $R(M)=R \oplus M$ with multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$. This construction has been extensively studied and has many applications in different contexts, see [2] and [3].

Note that if $(r, m) \in R(M)$, then $(r, m)^{k}=\left(r^{k}, k r^{k-1} m\right)$ for any $k \in \mathbb{N}$. The proof of the following lemma is immediate.

Lemma 2.8. Let R be a commutative ring and M an R-module. Then (b, m) is nilpotent in $R(M)$ if and only if b is nilpotent in R.

We recall that R naturally embeds into $R(M)$ via $r \rightarrow(r, 0)$. Thus any polynomial $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ can be written as $g(x)=\sum_{i=0}^{n}\left(a_{i}, 0\right) x^{i} \in R(M)[x]$ and conversely.
Theorem 2.9. Let R be a commutative ring and M an R-module. Then the idealization $R(M)$ of R and M is $g(x)$-nil clean if and only if R is $g(x)$-nil clean.

Proof. $\Rightarrow)$: Note that $R \simeq R(M) /(0 \oplus M)$ is a homomorphic image of $R(M)$. Hence R is $g(x)$-nil clean by Proposition 2.4.
$\Leftarrow):$ Let $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ and $r \in R$. Write $r=b+s$ where $b \in N(R)$ and $g(s)=0$. Then for $m \in M,(r, m)=(b, m)+(s, 0)$ where $(b, m) \in N(R(M))$ by Lemma 2.8. Moreover, we have

$$
\begin{aligned}
g(s, 0) & =a_{0}(1,0)+a_{1}(s, 0)+a_{2}(s, 0)^{2}+\ldots+a_{n}(s, 0)^{n} \\
& =a_{0}(1,0)+a_{1}(s, 0)+a_{2}\left(s^{2}, 0\right)+\ldots+a_{n}\left(s^{n}, 0\right) \\
& =\left(a_{0}+a_{1} s+a_{2} s^{2}+\ldots+a_{n} s^{n}, 0\right)=(g(s), 0)=(0,0) .
\end{aligned}
$$

Therefore, $R(M)$ is $g(x)$-nil clean.
Let R be a commutative ring with identity 1 and let I be a proper ideal of R. The amalgamated duplication of R along I is defined as $R \bowtie I=\{(a, a+i): a \in R$ and $i \in I\}$. It is easy to check that $R \bowtie I$ is a subring with identity $(1,1)$ of $R \times R$ (with the usual componentwise operations). Moreover, $\varphi: R \rightarrow R \bowtie I$ defined by $\varphi(a)=(a, a)$ is a ring monomorphism and so $R \cong\{(a, a): a \in R\} \subseteq R \bowtie I$. For more properties of $R \bowtie I$, one can see [7] and [8]. In the following theorem, we investigate the $g(x)$-nil cleanness of $R \bowtie I$.

Theorem 2.10. Let R be a commutative ring, I be a proper ideal of R and $g(x)=$ $\sum_{k=0}^{n} a_{k} x^{k} \in R[x]$. If R is $g(x)$ - nil clean ring and $I \subseteq N(R)$, then $R \bowtie I$ is $g(x)$ - nil clean ring. Moreover, the converse is true if $R \bowtie I$ is domain-like (every zero divisor of $R \bowtie I$ is nilpotent).

Proof. Assume R is $g(x)$-nil clean. Let $(a, a+i) \in R \bowtie I$ and write $a=b+s$ where $b \in N(R)$ and $g(s)=0$. Then $(a, a+i)=(b+s, b+s+i)=(b, b+i)+(s, s)$. Since $I \subseteq N(R)$, then $(b, b+i) \in N(R \bowtie I)$. Moreover, we have $g((s, s))=\sum_{k=0}^{n}\left(a_{k}, a_{k}\right)(s, s)^{k}=$ $\sum_{k=0}^{n}\left(a_{k}, a_{k}\right)\left(s^{k}, s^{k}\right)=\left(\sum_{k=0}^{n} a_{k} s^{k}, \sum_{k=0}^{n} a_{k} s^{k}\right)=(0,0)$. Therefore, $R \bowtie I$ is $g(x)$-nil clean.

Conversely, suppose that $R \bowtie I$ is domain-like $g(x)$-nil clean. Let $(0) \times I=\{(0, a): a \in I\}$. Then clearly $(0) \times I$ is an ideal of $R \bowtie I$ with $R \bowtie I /(0) \times I \simeq R$. Thus, R is $g(x)$-nil clean by Proposition (2.3). Let i be a nonzero element in I and consider $(0, i) \in R \bowtie I$. Then $(0, i)(i, 0)=(0,0)$ and so $(0, i)$ is a zero divisor in $R \bowtie I$. By assumption, $(0, i) \in N(R \bowtie I)$ and so $(0, i)^{m}=(0,0)$ for some $m \geq 1$. Therefore, $i^{m}=0$ and $I \subseteq N(R)$.

The proof of the following Lemma is straightforward.
Lemma 2.11. Let R be a ring. For any $n \in \mathbb{N}$, we have
$N\left(T_{n}(R)\right)=\left[\begin{array}{cccccc}\operatorname{Nil}(R) & R & R & \cdots & R & R \\ 0 & \operatorname{Nil}(R) & R & \cdots & R & R \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \operatorname{Nil}(R) & R \\ 0 & 0 & 0 & \cdots & 0 & \operatorname{Nil(R)}\end{array}\right]$
where $T_{n}(R)$ is the upper
triangular matrix ring over R.
Theorem 2.12. Let R be a ring, $g(x)=\sum_{i=0}^{m} a_{i} x^{i} \in C(R)[x]$ and $n \in \mathbb{N}$. Then R is $g(x)$-nil clean if and only if $T_{n}(R)$ is $g(x)$-nil clean.

Proof. $\Leftarrow)$: Define $f: T_{n}(R) \longrightarrow R$ by $f(A)=a_{11}$ where $A=\left(a_{i j}\right) \in T_{n}(R)$. Then clearly f is a ring epimorphism and R is $g(x)$-nil clean.
$\Rightarrow)$: Suppose that R is $g(x)$-nil clean and let

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1, n-1} & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2, n-1} & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a_{n-1, n-1} & a_{n-1, n} \\
0 & 0 & 0 & \ldots & 0 & a_{n n}
\end{array}\right] \in T_{n}(R) \text {. Since } R \text { is } g(x) \text {-nil clean, then }
$$

for every $1 \leq i \leq n$, there exist $u_{i i} \in N(R)$ and $s_{i i} \in R$ such that $a_{i i}=u_{i i}+s_{i i}$ with $g\left(s_{i i}\right)=0$. Write $A=B+C$ where $B=\left[\begin{array}{cccccc}u_{11} & b_{12} & b_{13} & \ldots & b_{1, n-1} & b_{1 n} \\ 0 & u_{22} & b_{23} & \ldots & b_{2, n-1} & b_{2 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & u_{n-1, n-1} & b_{n-1, n} \\ 0 & 0 & 0 & \ldots & 0 & u_{n n}\end{array}\right]$ and $C=\left[\begin{array}{cccc}s_{11} & 0 & \ldots & 0 \\ 0 & s_{22} & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & s_{n n}\end{array}\right]$. Then B is nilpotent in $T_{n}(R)$ and $g(C)=a_{0} I_{n}+a_{1} C+\ldots+$ $a_{m} C^{m}=\left[\begin{array}{cccc}g\left(s_{11}\right) & 0 & \ldots & 0 \\ 0 & g\left(s_{22}\right) & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & g\left(s_{n n}\right)\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \ldots & 0\end{array}\right]$. Therefore, $T_{n}(R)$ is $g(x)$-nil clean.

Theorem 2.13. Let A and B be rings and let $M={ }_{B} M_{A}$ be a bimodule. If the formal triangular matrix $T=\left[\begin{array}{cc}A & 0 \\ M & B\end{array}\right]$ is $g(x)$-nil clean, then both, A and B are $g(x)$-nil clean.

Proof. Let $T=\left[\begin{array}{cc}A & 0 \\ M & B\end{array}\right]$ be $g(x)$-nil clean. For every $a \in A, b \in B$ and $m \in M$, write $\left[\begin{array}{cc}a & 0 \\ m & b\end{array}\right]=\left[\begin{array}{cc}n_{1} & 0 \\ n_{2} & n_{3}\end{array}\right]+\left[\begin{array}{cc}s_{1} & 0 \\ s_{2} & s_{3}\end{array}\right]$ where $\left[\begin{array}{cc}n_{1} & 0 \\ n_{2} & n_{3}\end{array}\right] \in N(T)$ and $g\left(\left[\begin{array}{cc}s_{1} & 0 \\ s_{2} & s_{3}\end{array}\right]\right)=0$. Then $a=n_{1}+s_{1}$ and $b=n_{3}+s_{3}$. It is easy to see that $n_{1} \in N(A), n_{2} \in N(B)$ and $g\left(s_{1}\right)=g\left(s_{3}\right)=0$. Therefore, A and B are $g(x)$-nil clean.
3. $\left(x^{2}+c x+d\right)$-nil Clean Rings

In this section we first consider $g(x)$-nil clean rings where $g(x)=(x-(a+1))(x-b)$, $a, b \in C(R)$. Then we turn to some special types of polynomials such as $x^{n}-1, x^{n}-x$ and $x^{n}+x$.

For a ring R, a semisimple R-module ${ }_{R} M$ and $a, b \in C(R)$, Nicholson and Zhou [16] proved that if $g(x) \in(x-a)(x-b) C(R)[x]$ where $b, b-a \in U(R)$, then $\operatorname{End}\left({ }_{R} M\right)$ is $g(x)$-clean. More recently, Fan and Yang proved the following.
Lemma 3.1. [10]. Let R be a ring, $a, b \in C(R)$ and $g(x) \in(x-a)(x-b) C(R)[x]$ where $b-a \in U(R)$. Then
(1) R is clean if and only if R is $(x-a)(x-b)$-clean
(2) If R is clean, then R is $g(x)$-clean.

Now, we prove the following main result.
Theorem 3.2. Let R be a ring and $a, b \in C(R)$. Then R is nil clean and $b-a \in N(R)$ if and only if R is $(x-(a+1))(x-b)$-nil clean.

Proof. $\Rightarrow)$: Let $r \in R$. Since R is nil clean, then $\frac{r-(a+1)}{(b-a)-1}=e+u$, where $e^{2}=e$ and $u \in N(R)$. Hence, $r=e((b-a)-1)+(a+1)+u((b-a)-1)=t+v$ where t is a root of $(x-(a+1))(x-b)$ and $v \in N(R)$. Indeed,

$$
\begin{aligned}
& {[e(b-a)-1)+(a+1)-(a+1)][e(b-a)-1)+(a+1)-b] } \\
= & e^{2}((b-a)-1)^{2}-e((b-a)-1)((b-a)-1)=0
\end{aligned}
$$

Thus, R is $(x-(a+1))(x-b)$-nil clean.
$\Leftarrow)$: Conversely, suppose R is $(x-(a+1))(x-b)$-nil clean. Then $a=s+u$ where $(s-(a+1))(s-b)=0$ and $u \in N(R)$. Thus, $s-a \in N(R)$ and so $s-a-1 \in U(R)$. It follows that $s=b$ and $b-a \in N(R)$. Now, let $r \in R$. Since R is nil $(x-(a+1))(x-b)-$ clean, then $r((b-a)-1)+(a+1)=s+u$ where s is a root of $(x-(a+1))(x-b)$ and $u \in N(R)$. Hence, $r=\frac{s-(a+1)}{(b-a)-1}+\frac{u}{(b-a)-1}$ where $\frac{u}{(b-a)-1} \in N(R)$ and

$$
\begin{aligned}
\left(\frac{s-(a+1)}{(b-a)-1}\right)^{2} & =\frac{(s-(a+1))(s-b+b-(a+1))}{((b-a)-1)^{2}} \\
& =\frac{(s-(a+1))(s-b)+(s-(a+1))(b-(a+1))}{((b-a)-1)^{2}}=\frac{s-(a+1)}{(b-a)-1} .
\end{aligned}
$$

Therefore, R is nil clean.
Next, we give some special cases of Theorem 3.2.
Corollary 3.3. Let R be a ring and $a \in C(R)$. Then R is nil clean if and only if R is $\left(x^{2}-(2 a+1) x+a(a+1)\right)$-nil clean.

Proof. We just take $a=b$ in Theorem 3.2.
For example, we conclude that $\left(x^{2}-3 x+2\right)$-nil clean rings, $\left(x^{2}-5 x+6\right)$-nil clean rings and $\left(x^{2}-7 x+12\right)$-nil clean rings are equivalent to nil clean rings.

Lemma 3.4. [9]. If a ring R is nil clean, then 2 is a (central) nilpotent element in R.
As 2 is a central nilpotent in any nil clean ring R, then $2 n \in N(R)$ for any integer n. So the, previous lemma provides us with more characterizations of nil clean rings.

Corollary 3.5. Let R be a ring and n be any integer. For any $b \in C(R)$, the following are equivalent
(1) R is nil clean.
(2) R is $\left(x^{2}-(2 b+1-2 n) x+\left(b^{2}+b(1-2 n)\right)\right.$-nil clean.
(3) R is $\left(x^{2}-(2 b+1+2 n) x+\left(b^{2}+b(1+2 n)\right)\right.$-nil clean.

Proof. In Theorem 3.2, we take $a=b-2 n$ to get (1) $\Leftrightarrow(2)$ and $a=b+2 n$ to get (1) $\Leftrightarrow(3)$.
In particular, a ring R is nil clean if and only if R is $\left(x^{2}-(2 n+1) x\right)$-nil clean ($\left(x^{2}+(2 n-1) x\right)$-nil clean $)$. For example, $\left(x^{2}+x\right)$-nil clean, $\left(x^{2}+3 x\right)$-nil clean, $\left(x^{2}-3 x\right)$-nil clean and $\left(x^{2}-5 x\right)$-nil clean rings are all equivalent to nil clean rings.

Remark 3.6. The equivalence of $\left(x^{2}+x\right)$-nil clean rings and nil clean rings is a global property. That is, it holds for a ring R but it may fail for a single element. For example, $1 \in \mathbb{Z}_{12}$ is nil clean but it is not $\left(x^{2}+x\right)$-nil clean in \mathbb{Z}_{12}.

Remark 3.7. In [10], The authors give more characterizations of clean rings in terms of $g(x)$-clean rings under the additional assumption that 2 is a unit. But in a nil clean ring R, if we assume that $2 n+1 \in N(R)$ for some integer n, then $1 \in N(R)$ by lemma 3.4. Thus, $1=0$ and $R=\{0\}$.

Definition 3.8. A ring R is called $g(x)$-nil* clean if every $0 \neq r \in R, r=s+b$ where $b \in N(R)$ and $g(s)=0$.

Of course, every $g(x)$-nil clean ring is $g(x)$-nil*clean. On the other hand, the following are examples of $g(x)$-nil ${ }^{*}$ clean rings which are not $g(x)$-nil clean.

Example 3.9. Let p be a prime integer. Then the field Z_{p} is $\left(x^{p-1}-1\right)$-nil ${ }^{*}$ clean which is not $\left(x^{p-1}-1\right)$-nil clean.

Proof. Let $0 \neq r \in Z_{p}$. Then $r=0+r$ where $0 \in N(R)$ and $r^{p-1}-1=0$ in Z_{p} by Fermat Theorem. Hence, Z_{p} is $\left(x^{p-1}-1\right)$-nil ${ }^{*}$ clean. On the other hand, since Z_{p} is reduced, then 0 can't be written as a sum of a nilpotent and a root of $x^{p-1}-1$. Therefore Z_{p} is not ($x^{p-1}-1$)-nil clean.

Next, we give a general example.
Example 3.10. Let R be a non zero ring, $n \in \mathbb{N}$ and $g(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in$ $C(R)[x]$ where $a_{0} \in U(R)$. Then R is not $g(x)$-nil clean. In particular, If R is any non zero ring and $n \in \mathbb{N}$, then R is not ($x^{n}-1$)-nil clean.

Proof. Suppose R is $g(x)$-nil clean and write $0=s+b$ where $b \in N(R)$ and $g(s)=0$. Then $s\left(s^{n-1}+a_{n-1} s^{n-2}+\ldots+a_{1}\right)=-a_{0} \in U(R)$ and so $s \in U(R)$. Since also $s=-b \in N(R)$, then $R=\{0\}$, a contradiction.

Remark 3.11. Let R be a ring and $g(x) \in C(R)[x]$, The concepts of $g(x)$-nil clean and $g(x)$-nil ${ }^{*}$ clean coincide if there is a non unit root of $g(x)$ such that $0=s+b$ for some $b \in N(R)$. In particular, they coincide if all roots of $g(x)$ are non units.

Proposition 3.12. Let R be a ring and $n \in \mathbb{N}$. Then R is $\left(x^{n}-1\right)$-nil clean if and only if for every $0 \neq r \in R, r=v+b$ where $b \in N(R)$ and $v^{n}=1$.

Proof. $\Rightarrow)$ Let $0 \neq r \in R$ and write $r=s+b$ where $b \in N(R)$ and $s^{n}-1=0$. Then $s^{n}=1$ and the result follows.
$\Leftarrow)$ Conversely, let $0 \neq r \in R$ and write $r=s+b$ where $b \in N(R)$ and $v^{n}=1$. Then clearly v is a root of $x^{n}-1$ and R is $\left(x^{n}-1\right)$-nil ${ }^{*}$ clean.

It is well known that if a ring R is commutative, then the sum of a nilpotent element and a unit in R is again a unit. Thus, we have the following Corollary.

Corollary 3.13. Any commutative $\left(x^{n}-1\right)$-nil clean is a field.
Proposition 3.14. Let R be a ring and $2 \leq n \in \mathbb{N}$. If R is $\left(x^{n-1}-1\right)$-nil ${ }^{*}$ clean, then R is $\left(x^{n}-x\right)$-nil clean.

Proof. If $r=0$, then clearly r is an $\left(x^{n}-x\right)$-nil clean element. Suppose $0 \neq r \in R$. Then $r=v+b$ where $b \in N(R)$ and $v^{n-1}=1$ and so v is a root of $x^{n}-x$. Therefore, R is $\left(x^{n}-x\right)$-nil clean.

The converse of Proposition 3.14 is true under a certain condition.
Theorem 3.15. Let R be a ring and let $0 \neq a \in R$ such that $(a+1) R$ or $R(a+1)$ contain no non trivial idempotents. Then a is $\left(x^{n}-x\right)$-nil clean if and only if a is $\left(x^{n-1}-1\right)$-nil clean. In particular, if for every $a \in R,(a+1) R$ or $R(a+1)$ contain no non trivial idempotents, then R is $\left(x^{n}-x\right)$-nil clean if and only if R is $\left(x^{n-1}-1\right)$-nil* clean

Proof. $\Leftarrow)$: We use Proposition 3.14.
$\Rightarrow)$: Suppose a is $\left(x^{n}-x\right)$-nil clean and $(a+1) R$ contains no non trivial idempotents. Then $a=s+b$ where $b \in N(R)$ and $s^{n}=s$. Now, $a s^{n-1}=s+b s^{n-1}$ and so $a\left(1-s^{n-1}\right)=$ $b\left(1-s^{n-1}\right)$. Set $y=1+b$. Then $y \in U(R)$ and $(a+1)\left(1-s^{n-1}\right)=(b+1)\left(1-s^{n-1}\right)=$ $y\left(1-s^{n-1}\right)$. This implies that $y\left(1-s^{n-1}\right) y^{-1}=(a+1)\left(1-s^{n-1}\right) y^{-1} \in(a+1) R$. obviously, $y\left(1-s^{n-1}\right) y^{-1}$ is an idempotent. If $1-s^{n-1} \neq 0$, then $y\left(1-s^{n-1}\right) y^{-1} \neq 0$. Thus, $(a+1) R$ contains a non trivial idempotent, a contradiction. If $R(a+1)$ contains no non trivial idempotents, then we get a similar contradiction. Therefore, $1-s^{n-1}=0$ and s is a root of $x^{n-1}-1$. Thus, a is $\left(x^{n-1}-1\right)$-nil clean. The other part of the Theorem follows clearly.

Recall that for a ring R and $n \in \mathbb{N}, U_{n}(R)$ denotes the set of elements in R that can be written as a sum of no more than n units. If R is ($x^{n}-1$)-nil ${ }^{*}$ clean and $1 \neq r \in R$, then $r-1=v+b$ where $b \in N(R)$ and $v^{n}=1$ and so $r=v+(b+1) \in U_{2}(R)$. Since also clearly $1 \in U_{2}(R)$, then $R=U_{2}(R)$. This result can be generalized as follows.

Proposition 3.16. let R be a ring, $n \in \mathbb{N}$ and $g(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in$ $C(R)[x]$ where $1 \pm a_{0} \in N(R)$. If R is $g(x)$-nil* clean, then $R=U_{2}(R)$. In particular, if R is $\left(x^{n-2}+x^{n-3}+\ldots+x+1\right)$-nil clean, then $R=U_{2}(R)$ is $\left(x^{n}-x\right)$-nil clean.

Proof. Let $1 \neq r \in R$ and write $r-1=s+b$ where $b \in N(R)$ and $s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+$ $a_{0}=0$. Then $r=s+(b+1)$ where $b+1 \in U(R)$. Moreover, $s\left(s^{n-1}+a_{n-1} s^{n-2}+\ldots+a_{1}\right)=$ $-a_{0} \in U(R)$ and so $s \in U(R)$. Thus, $r \in U_{2}(R)$. Since also $1 \in U_{2}(R)$, then $R=U_{2}(R)$. In particular, suppose R is ($x^{n-2}+x^{n-3}+\ldots+x+1$)-nil* clean, then $R=U_{2}(R)$ by taking $a_{0}=1 \in U(R)$. Now, if $r=0$, then r is clearly an $\left(x^{n}-x\right)$-nil clean element. Let $0 \neq r \in R$ and write $r=s+b$ where $b \in N(R)$ and $s^{n-2}+s^{n-3}+\ldots+s+1=0$. Then $s^{n}-s=s(s-1)\left(s^{n-2}+s^{n-3}+\ldots+s+1\right)=0$ and so R is $\left(x^{n}-x\right)$-nil clean.

By choosing $n=4$ in the previous proposition, we conclude that if R is $\left(x^{2}+x+1\right)$ nil ${ }^{*}$ clean, then $R=U_{2}(R)$ is $\left(x^{4}-x\right)$-nil clean.

In the next Proposition, we determine conditions under which the group ring $R G$ is $\left(x^{n}-x\right)$-nil clean for some integer n.

Proposition 3.17. Let R be a Boolean ring and G any cyclic group of order p (prime). Then $R G$ is $\left(x^{2^{p-1}}-x\right)$ - nil clean ring.

Proof. Let $G=<g>$ be a cyclic group of order p and $x=a_{0}+a_{1} g+a_{2} g^{2}+\ldots+a_{m-1} g^{m-1} \in$ $R G$. Using mathematical induction, it can be shown that $x^{2^{k}}=\sum_{i=0}^{m-1} a_{i} g^{2^{k} * i}, k=1,2, \ldots$. It follows from Fermat theorem that $2^{p-1}=1+n p$ for some $n \in \mathbb{N}$. So, $x^{2^{p-1}}=\sum_{i=0}^{m-1} a_{i} g^{2^{p-1} * i}=$ $\sum_{i=0}^{m-1} a_{i} g^{(1+n p) * i}=\sum_{i=0}^{m-1} a_{i} g^{i}=x$. Thus, $R G$ is $\left(x^{2^{p-1}}-x\right)$-nil clean ring.

Next we give examples showing that $\left(x^{n}-x\right)$-nil cleanness of a ring R does not imply nil cleanness of R whether n is odd or even.

Example 3.18. The field \mathbb{Z}_{3} is $\left(x^{3}-x\right)$-nil clean which is not nil clean. Also, by Proposition 3.17 the group ring $\mathbb{Z}_{2}\left(C_{3}\right)$ is $\left(x^{4}-x\right)$-nil clean which is not nil clean.

Proposition 3.19. Let R be a ring and $n \in \mathbb{N}$. Then R is $\left(a x^{2 n}-b x\right)$-nil clean if and only if R is $\left(a x^{2 n}+b x\right)$-nil clean.

Proof. $\Rightarrow)$: Suppose R is $\left(a x^{2 n}-b x\right)$-nil clean and let $r \in R$. Then $-r=u+s$ where $u \in N(R)$ and $a s^{2 n}-b s=0$. Thus, $r=(-u)+(-s)$ where $-u \in N(R)$ and $a(-s)^{2 n}+$ $b(-s)=a s^{2 n}-b s=0$. Therefore, R is $\left(a x^{2 n}+b x\right)$-nil clean.
$\Leftarrow)$: Suppose R is $\left(a x^{2 n}+b x\right)$-nil clean and let $r \in R$. Then $-r=u+s$ where $u \in N(R)$ and $a s^{2 n}+b s=0$. Thus, $r=(-u)+(-s)$ where $-u \in N(R)$ and $a(-s)^{2 n}-b(-s)=$ $a s^{2 n}+b s=0$. Therefore, R is $\left(a x^{2 n}-b x\right)$-nil clean.

By Proposition 3.19, we conclude that $\mathbb{Z}_{2}\left(C_{3}\right)$ is also $\left(x^{4}+x\right)$-nil clean. On the other hand, the equivalence in Proposition 3.19 need not be true if we replace the even power $2 n$ by an odd power $2 n+1$. By a simple calculations, we can see that the field \mathbb{Z}_{3} is $\left(x^{3}-x\right)$-nil clean $\left(\left(x^{5}-x\right)\right.$-nil clean) but not $\left(x^{3}+x\right)$-nil clean $\left(\left(x^{5}+x\right)\right.$-nil clean). However, we don't know whether $\left(x^{n}+x\right)$-nil cleanness implies the $\left(x^{n}-x\right)$-nil cleanness of R or not.

Recall that a ring R is called unit n-regular if for any $a \in R, a=a(u a)^{n}$ for some $u \in U(R)$. In [10], the authors ask about the relation between the following conditions on a ring R
(1) R is $\left(x^{n}-x\right)$-clean for all $n \geq 3$.
(2) R is a unit n-regular.

In general, condition (1) does not imply condition (2) for odd or even integer n. For example, the ring \mathbb{Z}_{4} is $\left(x^{3}-x\right)$-clean which is not unit 3 -regular and the ring \mathbb{Z}_{8} is $\left(x^{4}-x\right)$-clean which is not unit 4-regular. However, we still don't know whether condition (2) implies condition (1) or not. On the other hand if we replace $\left(x^{n}-x\right)$-cleanness by $\left(x^{n}-x\right)$-nil cleanness in condition (1), then non of the two conditions implies the other. For example, \mathbb{Z}_{4} is also $\left(x^{4}-x\right)$-nil clean which is not unit 4-regular and \mathbb{Z}_{3} is unit 4-regular which is not $\left(x^{4}-x\right)$-nil clean.

References

[1] M. -S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mount. J. Math. 36 (2006), 783-798.
[2] M. M. Ali, Idealization and Theorems of D. D. Anderson, Comm. Algebra, 34 (2006), 4479-4501.
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Comm. Algebra, 1(1) (2009), 3-56.
[4] G. Borooah, A. J. Diesl, T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (1)(2008), 281-296.
[5] V. P. Camillo, J. J. Simón, The Nicholson-Varadarajan theorem on clean linear transformations, Glasgow Math. J. 44 (2002), 365-369.
[6] H. Chen, On uniquely clean rings, Comm. Algebra, 39 (2011), 189-198.
[7] M. Chhiti, N. Mahdou, Homological dimension of the amalgamated duplication of a ring along a pure ideal, Afr. Diaspora J. Math. (N. S.) 10, no. 1, (2010), 1-6.
[8] M. D'Anna, M. Fontana, An amalgamated duplication of a ring along an ideal, J. Algebra Appl. 6 (3)(2007), 443-459.
[9] A. J. Diesl, Nil clean rings, Journal of Algebra, 383 (2013), 197-211.
[10] L. Fan, X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, Comm. Algebra. 36 (2008), 269-278.
[11] J. Han and W. K. Nicholson, Extensions of clean rings, Communications in Algebra 29(6) (2001), 2589-2595.
[12] Y. Hirano, H. Tominaga and A. Yaqub, On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element, 30 (1988).
[13] A. Lambert, T. G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40(2000), 327-337.
[14] W. K. Nicholson, Lifting idempotents and exchange rings, Transactions of the American Mathematical Society 229 (1977), 269-278.
[15] W. K. Nicholson, Strongly clean rings and Fitting's lemma. Comm. Alg. 27 (1999), 3583-3592.
[16] W. K. Nicholson, Y. Zhou, Endomorphisms that are the sum of a unit and a root of a fixed polynomial, Canad. Math. Bull. 49 (2006), 265-269.
[17] Z. Wang and J. Chen, A note on clean rings, Algebra Colloquium, 14 (3)(2007), 537-540.
[18] G. Xiao, W. Tong, n-clean rings and weakly unit stable range rings. Comm. Alg. 33 (2003),1501-1517.
[19] G. Xiao, W. Tong, n-clean rings, Algebra Colloquium. 13 (4)(2006), 599-606.
[20] Y. Q. Ye, Semiclean rings, Comm. Algebra 31 (2003), 5609-5625.

Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Al Mafraq, JorDAN

E-mail address: hakhashan@aabu.edu.jo

Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Al Mafraq, JorDAN

E-mail address: ali.handam@windowslive.com

[^0]: 2000 Mathematics Subject Classification. 16N40, 16U99.
 Key words and phrases. clean ring, $g(x)$-clean ring, nil clean ring, $g(x)$-nil clean ring.

