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ABSTRACT. An element in a ring R with identity is called nil clean if it is the sum of an
idempotent and a nilpotent, R is called nil clean if every element of R is nil clean. Let
C(R) be the center of a ring R and g(x) be a fixed polynomial in C'(R)[z]. Then R is
called g(z)-nil clean if every element in R is a sum of a nilpotent and a root of g(z). In this
paper, we investigate many properties and examples of g(x)-nil clean rings. Moreover, we
characterize nil clean rings as g(z)-nil clean rings where g(z) € (z—(a+1))(z—b)C(R)][x],
a,be C(R) and b—a € N(R).

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity and all modules are
unitary. The group of units, the set of idempotents and the set of nilpotent elements in R
are denoted by U(R), Id(R) and N(R) respectively. Following Han and Nicholson [11], an
element r € R is called clean if r = e + u for some e € Id(R) and u € U(R). A ring R is
called clean if every element of R is clean. The notion of clean rings was first introduced
by Nicholson [14] in 1977 in his study of lifting idempotents and exchange rings. Since
then, some stronger concepts have been considered (e.g. uniquely clean, strongly clean
and some special clean rings), see [4, 6, 15, 17, 18, 19, 20]. As well as some weaker ones
(e.g. almost clean and weakly clean rings), see [1]. Recently, in 2013, Diesl [9] studied a
stronger concept than clean rings, namely, nil-clean rings. They are rings in which every
element is a sum of an idempotent element and a nilpotent element. In fact, nil clean rings
were firstly presented in [12] as a special case of rings in which every element is a sum of
nilpotent and potent elements.

Let C(R) denotes the center of a ring R and g(z) be a polynomial in C'(R)[x]. Then
following Camillo and Simén [5], R is called g(z)-clean if for each r € R , r = s + u where
u € U(R) and g(s) = 0. Of course (2* — x)-clean rings are precisely the clean rings.

Nicholson and Zhou [16] proved that if g(z) € (x — a)(z — b)C(R)[z] with a,b € C(R)
and b,b —a € U(R) and pM is a semisimple left R-module, then End(gM) is g(z)-clean.
Recently, Fan and Yang [10], studied more properties of g(x)-clean rings. Among many
conclusions, they prove that if g(z) € (z — a)(x — b)C(R)[z] where a,b € C(R) with
b—a € U(R), then R is a clean ring if and only if R is (x — a)(z — b)-clean.

In this paper, we define and study g¢(z)-nil clean rings as a special class of g(z)-clean
rings. For aring R and g(z) € C(R)|x], an element r € R is called g(x)-nil clean if r = s+b
for some b € N(R) and g(s) = 0. Moreover, R is called g(x)-nil clean if every element in
R is g(x)-nil clean.
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In section 2, we study many properties of g(x)-nil clean rings analogous to those of nil
clean and g(x)-clean rings. In particular, for a commutative ring R, we justify a condition
under which the the amalgamated duplication R x I of a ring R along an ideal [ is g(x)-nil
clean. Also, we consider the idealization R(M) of any R-module M and prove that R(M)
is g(x)-nil clean ring if and only if R is so.

In section 3, we study (22 + cz + d)-nil clean rings where ¢,d € C(R). We give many
characterizations for a nil clean ring R in terms of some g(x)-nil clean rings. In particular
for n € N, we focus on (22 — (n — 1)x)-nil clean and (z™ — z)-nil clean rings.

2. g(z)- NIL CLEAN RINGS

In this section, we give some properties of g(x)-nil clean rings which are similar to those
of g(z)-clean rings.

Definition 2.1. Let R be a ring and let g(z) be a fixed polynomial in C'(R)[z]. An element

r € R is called g(z)-nil clean if 7 = b+ s where g(s) = 0 and b is a nilpotent of R. We say
that R is g(z)-nil clean if every element in R is g(x)-nil clean.

Clearly, nil clean rings are (z? — z)-nil clean. However, there are g(z)-nil clean rings
which are not nil clean. For example, it can be easily proved that Zsz is an (2 + 2z)-nil
clean ring which is not nil clean. For a non commutative g(x)-nil clean ring we have the
following example.

a 2b
0
for any z,y € R, (z — 2?)(y — y*) = 0. Hence, R is (x — 2%)?-nil clean.

Example 2.2. Consider the ring R = ta,b,ce Z4} .Then one can see that

Proposition 2.3. Every g(x)-nil clean ring is g(x)-clean ring.

Proof. Suppose R is a g(z)-nil clean ring and let z € R. Then x — 1 = b+ s where b
is nilpotent and g(s) = 0. Thus, x = (b+ 1) + s where b+ 1 € U(R). Therefore, R is
g(x)-clean. O

The converse of Proposition 2.3 is not be true in general. For example, one can verify
that Zg is (7 — x)-clean ring which is not (27 — z)-nil clean ring.
Let R and S be rings and ¢ : C(R) — C(S) be a ring homomorphism with ¢(1g) = 15.
For g(z) = Y a;x' € C(R)[z], we let g*(x) = Y ¢(a;)x' € C(S)[z]. In particular, if
i=0 =0
9(z) € Z[z], then g*(x) = g(x).

Proposition 2.4. Let 0 : R — S be a ring epimorphism. If R is g(x)-nil clean, then S is

g*(z)-nil clean.

Proof. Let g(x) = > a;z" € C(R)[x] and consider g*(z) := Y 0(a;)z* € C(5)[z]. For every
=0 i=

1= 0
a € S, there exist 7 € R such that 6(r) = «. Since R is g(x)-nil clean, there exist s € R
and u € N(R) such that r = u+s and g(s) =0. Soa = 0(r) = 0(u+s) = 0(u) +0(s) with
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8(u) € N(S) and g*(6(s)) = Zﬁ%@(ai)w(s))i _ g%@(ai)@(si) _ Zée (a;5) = 6 (éa5> -
8(g(s)) = 0(0) = 0. Therefore, S is g*(x)-nil clean. B B

Proposition 2.5. If R is a g(z)-nil clean ring and I is an ideal of R, then R = R/I is
g*(z)-nil clean. Moreover, The converse is true if I is nil and the roots of g*(x) lift modulo
I.

Proof. For the first statement, we use Proposition 2.4 and the fact that § : R — R/I
defined by 6(r) = 7 = r 4 I is an epimorphism. Now, suppose R/ is ¢g*(x)-nil clean and
let r € R. Then 7 = 3 + b where b € N(R) and ¢g*(3) = 0. Since the roots of g*(x) lift
modulo 7, we may assume that s € R with g(s) = 0. Now, r — s is nilpotent modulo T
and [ is nil imply that r — s is nilpotent. Therefore, R is g(x)-nil clean. U

k

Proposition 2.6. Let Ry, Ry, ..., Ry be rings and g(x) € Zlx]. Then R =[] R; is g(x)-nil
i=1

clean if and only if R; is g(x)-nil clean for all i € {1,2,....,n}.

k

Proof. =) : For each i € {1,2,....k}, R; is a homomorphic image of [[ R; under the
i=1

projection homomorphism. Hence, R; is g(x)-nil clean by Proposition 2.4.

k
<) : Let (z1,29,...,x;) € [[ R; . For each i, write x; = n; + s; where n; € N(R;),
i=1

g(s;) = 0. Let n = (ny,na,...,nx) and s = (1, Sa, ..., Sx). Then it is clear that n € N(R)and
g(s) = 0. Therefore, R is g(z)-nil clean. O

In general, the ring of polynomials R[t] over a ring R is not g(z)-clean. This is also true
for commutative g(z)-nil clean rings.

Proposition 2.7. If R is any commutative ring, then the ring of polynomials R|[t] is not
nil clean (and hence not (x? — x)-nil clean,).

Proof. Since R is commutative, N(R[t]) = {ag+ait+ast>+- - -+axt® | ag, a1, ,ar € N(R)
and k € N}. If ¢ is nil clean, we may write t = ag + ait + ast® + - - + apt® + e where
e € Id(R[t]) = Id(R) and ag,a,---,ar € N(R). Hence, 1 = a1 € J(R) which is a
contradiction. Therefore R]t] is not nil clean. O

Let 6 : R[[t]] — R be defined by 6(f) = f(0). As a consequence of Proposition 2.3, if
R[[t]] is g*(x)-nil clean, then R is g(x)-nil clean.

Let R be a commutative ring and M an R-module. Nagata [13] introduced the ideal-
ization R(M) of R and M. The idealization of R and M is the ring R(M) = R& M
with multiplication (rq,my)(ro, m2) = (rira, 71mg + remy). This construction has been
extensively studied and has many applications in different contexts, see [2] and [3].

Note that if (r,m) € R(M), then (r,m)* = (r* kr*~'m) for any k € N. The proof of
the following lemma is immediate.

Lemma 2.8. Let R be a commutative ring and M an R-module. Then (b,m) is nilpotent
in R(M) if and only if b is nilpotent in R.
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We recall that R naturally embeds into R(M ) via r — (r,0). Thus any polynomial
g(x) = Za,x € R[z] can be written as g(z) = Z(ai, 0)z" € R(M)[z] and conversely.

=0

Theorem 2.9. Let R be a commutative ring and M an R-module. Then the idealization
R(M) of R and M is g(x)-nil clean if and only if R is g(x)-nil clean.

Proof. =) : Note that R ~ R(M)/(0 & M) is a homomorphic image of R(M). Hence R is
g(x)-nil clean by Proposition 2.4.

<) : Let g(x) = Zazzv € R[z] and r € R. Write r = b+ s where b € N(R) and

g(s) = 0. Then for m € M, (r,m) = (b,m) + (s,0) where (b,m) € N(R(M)) by Lemma
2.8. Moreover, we have

g(5,0) = ao(1,0) + ai(s,0) + as(s,0)* + ... + an(s,0)"

= ap(1,0) + ai(s,0) + ax(s%,0) + ... + an(s™, 0)

= (ag + a1s+ azs® + ... + a,s",0) = (g(s), O) = (0,0).

Therefore, R(M) is g(x)-nil clean. O

Let R be a commutative ring with identity 1 and let I be a proper ideal of R. The
amalgamated duplication of R along [ is defined as R x I = {(a,a+1):a € R and i € I}.
It is easy to check that R x [ is a subring with identity (1,1) of R x R (with the usual
componentwise operations). Moreover, ¢ : R — R x [ defined by ¢(a) = (a,a) is a ring
monomorphism and so R = {(a,a) : a € R} C R x I. For more properties of R x I, one
can see [7] and [8]. In the following theorem, we investigate the g(z)-nil cleanness of R x I.

Theorem 2.10. Let R be a commutative ring, I be a proper ideal of R and g(z) =
S apz® € Rlx] . If R is g(x)- nil clean ring and I C N(R), then R x I is g(z)- nil clean
k=0

ring. Moreover, the converse is true if R X I is domain-like (every zero divisor of R ™ [
is milpotent).

Proof. Assume R is g(x)-nil clean. Let (a,a + i) € R x I and write a = b + s where
b€ N(R) and g(s) = 0. Then (a,a+1i) = (b+ s,b+s+1) = (b,b+1i) + (s,s). Since

I C N(R), then (b,b+1i) € N(R w I). Moreover, we have g((s,s)) = > (ax, ax)(s,s)* =
k=0

S~ (an, ag) (8%, %) = (32 aps®, > ags®) = (0,0). Therefore, R x I is g(x)-nil clean.
k=0 = =

{(0,a) :a € I}.

Conversely, suppose that R x [ is domain-like g(z)-nil clean. Let (0)x [ a
(x)-nil clean

Then clearly (0) x I is an ideal of R x [ with R x [/(0) x [ ~ R. Thus, Ris g

by Proposition (2.3). Let ¢ be a nonzero element in I and consider (0,i) € R x I . Then
(0,4)(i,0) = (0,0) and so (0, 7) is a zero divisor in R x I. By assumption, (0,7) € N(R x I)
and so (0,7)™ = (0,0) for some m > 1. Therefore, i" = 0 and I C N(R). O

The proof of the following Lemma is straightforward.

Lemma 2.11. Let R be a ring. For any n € N, we have
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Nil(R)y R R R R
0  Nil(R) R R R
N(T,(R)) = : : Lo : : where T, (R) is the upper
0 0 0 --- Nil(R) R
0 0 0 -~ 0  Ni(R)

triangular matriz ring over R.

Theorem 2.12. Let R be a ring, g(x) = > a;z" € C(R)[z] and n € N. Then R is g(z)-nil
i=0
clean if and only if T,,(R) is g(x)-nil clean.

Proof. <=) : Define f : T,,(R) — R by f(A) = a1; where A = (a;;) € T,,(R). Then clearly

f is a ring epimorphism and R is g(x)-nil clean.

=) : Suppose that R is g(z)-nil clean and let

11 a2 @13 ... G1np-1 Q1n
0 azx a3 ... a2n—-1 A2n,
A= : : o : : € T,(R). Since R is g(x)-nil clean, then
0 0 0 cer Qp—1n—1 Ap—1n
o o0 0 ... 0 G
for every 1 < i < n, there exist u; € N(R) and s; € R such that a; = uy; + s; with
ur bz bz ... bl,n—l bin
0 ug by ... bz,n—1 ban,
g(si) = 0. Write A = B + C where B = : : P : : and
0 0 0 o Up—1n-1 bnfl,n
o o0 0 ... 0 Upn,
S11 0 0
0 S99 0
C = Nk Then B is nilpotent in 7,,(R) and g (C) = aol, + a1C + ... +
0 ... Sun
g(SH) 0 0 0 0 0
0 9(822) R 0 00 0
= : : . 0 = ol Therefore, T,,(R) is g(x)-nil
0 0 9(Snn) 00 0
clean. ]

Theorem 2.13. Let A and B be rings and let M =g M, be a bimodule. If the formal
triangular matriz T = [ ﬁ g ] is g(x)-nil clean, then both, A and B are g(x)-nil clean.

A 0
Proof. Let T = M B

{a O} = [nl 0 ]+[81 0 } where [nl 0 ] E]V(T)a,ndg({s1 0 1):0.
m b ng N3 Sy S3 ng N3 So  S3

Then a = ny + 51 and b = n3 + s3. It is easy to see that n;y € N(A), ny € N(B) and
g(s1) = g(s3) = 0. Therefore, A and B are g(x)-nil clean. O

be g(z)-nil clean. For every a € A, b € B and m € M, write
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3. (2% + cx + d)-N1, CLEAN RINGS

In this section we first consider g(x)-nil clean rings where g(z) = (z — (a + 1))(x — b),
a,b € C(R). Then we turn to some special types of polynomials such as 2" — 1, 2" — x
and z" + x.

For a ring R, a semisimple R-module zpM and a,b € C(R), Nicholson and Zhou [16]
proved that if g(z) € (z — a)(x — b)C(R)[z] where b,b — a € U(R), then End(zpM) is
g(z)-clean. More recently, Fan and Yang proved the following.

Lemma 3.1. [10]. Let R be a ring, a,b € C(R) and g(z) € (z — a)(x — b)C(R)[z] where
b—ae€U(R). Then

(1) R is clean if and only if R is (x — a)(x — b)-clean

(2) If R is clean, then R is g(x)-clean.

Now, we prove the following main result.

Theorem 3.2. Let R be a ring and a,b € C(R).Then R is nil clean and b —a € N(R) if
and only if R is (x — (a + 1))(x — b)-nil clean.

Proof. =) : Let r € R. Since R is nil clean, then % = e+ u , where ¢ = e and

u € N(R). Hence, r =e((b—a) — 1)+ (a+1) +u((b— 3 1) = t + v where ¢ is a root of
(x —(a+1))(x —b) and v € N(R). Indeed,

le(b—a)—1)4+(a+1) = (a+1)][e(b—a) — 1)+ (a+ 1) — b]
= ((b—a)—1)" —e((b—a) = 1)((b—a) - 1) =0
Thus, R is (z — (a + 1))(x — b)-nil clean.
<) : Conversely, suppose R is (x — (a + 1))(z — b)-nil clean. Then a = s + u where
(s—(a+1))(s—=b)=0and u € N(R). Thus, s —a € N(R) andso s —a—1¢€ U(R). It
follows that s = b and b —a € N(R). Now, let r € R. Since R is nil (z — (a + 1))(z — b)-
clean, then 7((b —a) — 1) + (a + 1) = s + u where s is a root of (z — (a + 1))(x — b) and
u € N(R). Hence, r = ‘Z;(Z)tli + a1 Where =5 € N(R) and

<s—(a+1))2 _ (s—(at1)(s—btb—(at1)

(b—a)—1 ((b—a) —1)?

(s—(a+1))(s—b)+(s—(a+1)(b—(a+1) s—(a+1)
((b—a) —1)2 (b—a)—1

Therefore, R is nil clean. O

Next, we give some special cases of Theorem 3.2.

Corollary 3.3. Let R be a ring and a € C(R). Then R is nil clean if and only if R is
(22 — (2a + 1)x + a(a + 1))-nil clean.

Proof. We just take a = b in Theorem 3.2. 0J

For example, we conclude that (z? — 3z + 2)-nil clean rings, (z> — 5z + 6)-nil clean rings
and (22 — 7x + 12)-nil clean rings are equivalent to nil clean rings.
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Lemma 3.4. [9]. If a ring R is nil clean, then 2 is a (central) nilpotent element in R.

As 2 is a central nilpotent in any nil clean ring R, then 2n € N(R) for any integer n.
So the, previous lemma provides us with more characterizations of nil clean rings.

Corollary 3.5. Let R be a ring and n be any integer. For any b € C(R), the following
are equivalent

(1) R is nil clean.
(2) Ris (2% — (2b+ 1 — 2n)z + (b*> + b(1 — 2n))-nil clean.
(3) R is (22 — (20 + 1+ 2n)z + (b* + b(1 + 2n))-nil clean.

Proof. In Theorem 3.2, we take a = b—2n to get (1)<(2) and a = b+2n to get (1)<(3). O

In particular, a ring R is nil clean if and only if R is (2? — (2n + 1)x)-nil clean (
(224 (2n—1)z)-nil clean). For example, (22 +z)-nil clean, (22 + 3z)-nil clean, (z* — 3z)-nil
clean and (22 — 5z)-nil clean rings are all equivalent to nil clean rings.

Remark 3.6. The equivalence of (2% + x)-nil clean rings and nil clean rings is a global
property. That is, it holds for a ring R but it may fail for a single element. For example,
1 € Zy5 is nil clean but it is not (22 + x)-nil clean in Zis.

Remark 3.7. In [10], The authors give more characterizations of clean rings in terms of
g(x)-clean rings under the additional assumption that 2 is a unit. But in a nil clean ring
R, if we assume that 2n + 1 € N(R) for some integer n, then 1 € N(R) by lemma 3.4.
Thus, 1 =0 and R = {0}.

Definition 3.8. A ring R is called g(z)-nil*clean if every 0 # r € R, r = s + b where
be N(R) and ¢(s) = 0.

Of course, every g(x)-nil clean ring is g(z)-nil*clean. On the other hand, the following
are examples of g(z)-nil*clean rings which are not g(x)-nil clean.

Example 3.9. Let p be a prime integer. Then the field Z, is (zP~! — 1)-nil*clean which is
not (z7~! — 1)-nil clean.

Proof. Let 0 # r € Z,. Then r = 0+r where 0 € N(R) and r»~! — 1 = 0 in Z, by Fermat
Theorem. Hence, Z,, is (#P~! — 1)-nil*clean. On the other hand, since Z,, is reduced, then
0 can’t be written as a sum of a nilpotent and a root of z7~! — 1. Therefore 7, is not
(zP~1 — 1)-nil clean. O

Next, we give a general example.

Example 3.10. Let R be a non zero ring, n € N and g(z) = 2" +a, 12" ' +...4+a1x+ag €
C(R)[x] where a9 € U(R). Then R is not g(z)-nil clean. In particular, If R is any non
zero ring and n € N, then R is not (2™ — 1)-nil clean.

Proof. Suppose R is g(z)-nil clean and write 0 = s+b where b € N(R) and g(s) = 0. Then
s(s" 1 +a, 15" %+ ...+ a1) = —ap € U(R) and so s € U(R). Since also s = —b € N(R),
then R = {0}, a contradiction. O
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Remark 3.11. Let R be a ring and g(x) € C(R)[z], The concepts of g(z)-nil clean and
g(x)-nil*clean coincide if there is a non unit root of g(z) such that 0 = s + b for some
b € N(R). In particular, they coincide if all roots of g(z) are non units.

Proposition 3.12. Let R be a ring and n € N. Then R is (2" — 1)-nil*clean if and only
if for every0 #r € R, r =v+b where b € N(R) and v" = 1.

Proof. =) Let 0 # r € R and write r = s+b where b € N(R) and s" —1 = 0. Then s" =1
and the result follows.

<) Conversely, let 0 # r € R and write 7 = s + b where b € N(R) and v" = 1. Then
clearly v is a root of 2" — 1 and R is (™ — 1)-nil*clean. O

It is well known that if a ring R is commutative, then the sum of a nilpotent element
and a unit in R is again a unit. Thus, we have the following Corollary.

Corollary 3.13. Any commutative (z™ — 1)-nil*clean is a field.

Proposition 3.14. Let R be a ring and 2 < n € N. If R is (2"~ — 1)-nil*clean, then R
is (™ — x)-nil clean.

Proof. If r = 0, then clearly r is an (2" — z)-nil clean element. Suppose 0 # r € R. Then
r = v+ b where b € N(R) and v"~! = 1 and so v is a root of " — z. Therefore, R is
(™ — z)-nil clean. O

The converse of Proposition 3.14 is true under a certain condition.

Theorem 3.15. Let R be a ring and let 0 # a € R such that (a+1)R or R(a+1) contain
no non trivial idempotents. Then a is (x" — z)-nil clean if and only if a is (z"* — 1)-nil
clean. In particular, if for every a € R, (a + 1)R or R(a + 1) contain no non trivial
idempotents, then R is (x™ — xz)-nil clean if and only if R is (™1 — 1)-nil* clean

Proof. <) : We use Proposition 3.14.

=) : Suppose a is (" — x)-nil clean and (a + 1)R contains no non trivial idempotents.
Then a = s+ b where b € N(R) and s" = s. Now, as" ! = s+bs" ! and so a(1 —s"!) =
b(1 —s"1). Set y=1+b. Then y € U(R) and (a + 1)(1 — s”’l) =B+ 1)(1-s"1) =
y(1—s""1). This implies that y(1—s"1)y ' = (a+1)(1—s""')y~! € (a+1)R. obviously,
y(1—s""1)y~! is an idempotent. If 1 — s"~1 # 0, then y(1 — s"!)y=! # 0. Thus, (a+1)R
contains a non trivial idempotent, a contradiction. If R(a + 1) contains no non trivial
idempotents, then we get a similar contradiction. Therefore, 1 —s"! = 0 and s is a root of

1 —1. Thus, a is (#" ! —1)-nil clean. The other part of the Theorem follows clearly. [

Recall that for a ring R and n € N, U, (R) denotes the set of elements in R that can be
written as a sum of no more than n units. If R is (2" — 1)-nil*clean and 1 # r € R, then
r—1=wv+0bwhere b€ N(R) and v" = 1 and so r = v + (b+ 1) € Uy(R). Since also
clearly 1 € Uy(R), then R = Uy(R). This result can be generalized as follows.

Proposition 3.16. let R be a ring, n € N and g(z) = 2" + a, 12" ' + ... + @17 + ap €
C(R)[x] where 1 £ a9 € N(R). If R is g(x)-nil*clean, then R = Us(R). In particular, if R
is (x" 2+ 2" 3 + ..+ x + 1)-nil* clean, then R = Us(R) is (z™ — x)-nil clean.
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Proof. Let 1 # r € R and write r—1 = s+b where b € N(R) and s"+a,_18" ' +...+a1s+
a9 =0. Thenr = s+ (b+1) where b+1 € U(R). Moreover, s(s" ' +a, 15" ?+..+a;) =
—ag € U(R) and so s € U(R). Thus, r € Uy(R). Since also 1 € Us(R), then R = U(R).
In particular, suppose R is (z""2 + "3 + ... + x + 1)-nil* clean, then R = Uy(R) by
taking ag = 1 € U(R). Now, if 7 = 0, then r is clearly an (2" — x)-nil clean element. Let
0#r € R and write r = s + b where b € N(R) and s" 2 + s" 3+ ... + s+ 1 = 0. Then
s"—s=s(s—1)(s"?2+s"3+..+s+1)=0and so Ris (2" — z)-nil clean. O

By choosing n = 4 in the previous proposition, we conclude that if R is (2? + z + 1)-
nil*clean, then R = Ux(R) is (z* — x)-nil clean.

In the next Proposition, we determine conditions under which the group ring RG is
(™ — x)-nil clean for some integer n.

Proposition 3.17. Let R be a Boolean ring and G any cyclic group of order p (prime).
Then RG is (¢ — x)- nil clean ring.

Proof. Let G =< g > be a cyclic group of order p and x = ag+a1g+asg®+...+apym_19™ ! €

m—1

RG. Using mathematical induction, it can be shown that 22 = > aig2k*i, k=1,2,.... It
i=0
m—1 )
follows from Fermat theorem that 2°~* = 14-np for some n € N. So, 2% = 3 a,9% * =
=0
m—1 m—1
S a;gtPe = S g,g" = . Thus, RG is (z¥ — z)-nil clean ring. O
i=0 i=0

Next we give examples showing that (2™ — x)-nil cleanness of a ring R does not imply
nil cleanness of R whether n is odd or even.

Example 3.18. The field Z3 is (2 —z)-nil clean which is not nil clean. Also, by Proposition
3.17 the group ring Z,(C3) is (z* — z)-nil clean which is not nil clean.

Proposition 3.19. Let R be a ring and n € N. Then R is (az®" — bx)-nil clean if and
only if R is (ax®" + bx)-nil clean.

Proof. =) : Suppose R is (ax®" — bx)-nil clean and let € R. Then —r = u + s where
u € N(R) and as*® — bs = 0. Thus, r = (—u) + (—s) where —u € N(R) and a(—s)*" +
b(—s) = as® — bs = 0. Therefore, R is (az*" + bx)-nil clean.

<) : Suppose R is (ax*" + bz)-nil clean and let 7 € R. Then —r = u+ s where u € N(R)
and as®" + bs = 0. Thus, r = (—u) + (—s) where —u € N(R) and a(—s)*" — b(—s) =
as®™ + bs = 0. Therefore, R is (az** — bx)-nil clean. O

By Proposition 3.19, we conclude that Zy(Cs) is also (z* + x)-nil clean. On the other
hand, the equivalence in Proposition 3.19 need not be true if we replace the even power 2n
by an odd power 2n+1. By a simple calculations, we can see that the field Zj is (2 —z)-nil
clean ((2° — z)-nil clean) but not (z3 + z)-nil clean ((z° + x)-nil clean). However, we don’t

know whether (2" 4 x)-nil cleanness implies the (2™ — x)-nil cleanness of R or not.

Recall that a ring R is called unit n-regular if for any a € R, a = a(ua)” for some
u € U(R). In [10], the authors ask about the relation between the following conditions on
aring R
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(1) R is (2™ — x)-clean for all n > 3.
(2) R is a unit n-regular.

In general, condition (1) does not imply condition (2) for odd or even integer n. For
example, the ring Z, is (z3 — x)-clean which is not unit 3-regular and the ring Zg is
(2% — x)-clean which is not unit 4-regular. However, we still don’t know whether condition
(2) implies condition (1) or not. On the other hand if we replace (2™ — x)-cleanness by
(2" — z)-nil cleanness in condition (1), then non of the two conditions implies the other.
For example, Z, is also (z*—z)-nil clean which is not unit 4-regular and Zs is unit 4-regular
which is not (z* — z)-nil clean.
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