
g(x)-NIL CLEAN RINGS

HANI A. KHASHAN AND ALI H. HANDAM

Abstract. An element in a ring R with identity is called nil clean if it is the sum of an
idempotent and a nilpotent, R is called nil clean if every element of R is nil clean. Let
C(R) be the center of a ring R and g(x) be a �xed polynomial in C(R)[x]. Then R is
called g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x). In this
paper, we investigate many properties and examples of g(x)-nil clean rings. Moreover, we
characterize nil clean rings as g(x)-nil clean rings where g(x) 2 (x�(a+1))(x�b)C(R)[x];
a; b 2 C(R) and b� a 2 N(R).

1. Introduction

Throughout this paper R denotes an associative ring with identity and all modules are
unitary. The group of units, the set of idempotents and the set of nilpotent elements in R
are denoted by U(R), Id(R) and N(R) respectively. Following Han and Nicholson [11], an
element r 2 R is called clean if r = e+ u for some e 2 Id(R) and u 2 U(R). A ring R is
called clean if every element of R is clean. The notion of clean rings was �rst introduced
by Nicholson [14] in 1977 in his study of lifting idempotents and exchange rings. Since
then, some stronger concepts have been considered (e.g. uniquely clean, strongly clean
and some special clean rings), see [4, 6, 15, 17, 18, 19, 20]. As well as some weaker ones
(e.g. almost clean and weakly clean rings), see [1]. Recently, in 2013, Diesl [9] studied a
stronger concept than clean rings, namely, nil-clean rings. They are rings in which every
element is a sum of an idempotent element and a nilpotent element. In fact, nil clean rings
were �rstly presented in [12] as a special case of rings in which every element is a sum of
nilpotent and potent elements.

Let C(R) denotes the center of a ring R and g(x) be a polynomial in C(R)[x]. Then
following Camillo and Simón [5], R is called g(x)-clean if for each r 2 R , r = s+ u where
u 2 U(R) and g(s) = 0. Of course (x2 � x)-clean rings are precisely the clean rings.
Nicholson and Zhou [16] proved that if g(x) 2 (x � a)(x � b)C(R)[x] with a; b 2 C(R)

and b; b� a 2 U(R) and RM is a semisimple left R-module, then End(RM) is g(x)-clean.
Recently, Fan and Yang [10], studied more properties of g(x)-clean rings. Among many
conclusions, they prove that if g(x) 2 (x � a)(x � b)C(R)[x] where a; b 2 C(R) with
b� a 2 U(R), then R is a clean ring if and only if R is (x� a)(x� b)-clean.
In this paper, we de�ne and study g(x)-nil clean rings as a special class of g(x)-clean

rings. For a ring R and g(x) 2 C(R)[x], an element r 2 R is called g(x)-nil clean if r = s+b
for some b 2 N(R) and g(s) = 0. Moreover, R is called g(x)-nil clean if every element in
R is g(x)-nil clean.
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In section 2, we study many properties of g(x)-nil clean rings analogous to those of nil
clean and g(x)-clean rings. In particular, for a commutative ring R, we justify a condition
under which the the amalgamated duplication R on I of a ring R along an ideal I is g(x)-nil
clean. Also, we consider the idealization R(M) of any R-module M and prove that R(M)
is g(x)-nil clean ring if and only if R is so.

In section 3, we study (x2 + cx + d)-nil clean rings where c; d 2 C(R). We give many
characterizations for a nil clean ring R in terms of some g(x)-nil clean rings. In particular
for n 2 N, we focus on (x2 � (n� 1)x)-nil clean and (xn � x)-nil clean rings.

2. g(x)- nil clean rings

In this section, we give some properties of g(x)-nil clean rings which are similar to those
of g(x)-clean rings.

De�nition 2.1. Let R be a ring and let g(x) be a �xed polynomial in C(R)[x]. An element

r 2 R is called g(x)-nil clean if r = b+ s where g(s) = 0 and b is a nilpotent of R. We say
that R is g(x)-nil clean if every element in R is g(x)-nil clean.

Clearly, nil clean rings are (x2 � x)-nil clean. However, there are g(x)-nil clean rings
which are not nil clean. For example, it can be easily proved that Z3 is an (x3 + 2x)-nil
clean ring which is not nil clean. For a non commutative g(x)-nil clean ring we have the
following example.

Example 2.2. Consider the ring R =

��
a 2b
0 c

�
: a; b; c 2 Z4

�
:Then one can see that

for any x; y 2 R; (x� x2)(y � y2) = 0: Hence, R is (x� x2)2-nil clean.

Proposition 2.3. Every g(x)-nil clean ring is g(x)-clean ring.

Proof. Suppose R is a g(x)-nil clean ring and let x 2 R. Then x � 1 = b + s where b
is nilpotent and g(s) = 0. Thus, x = (b + 1) + s where b + 1 2 U(R). Therefore, R is
g(x)-clean. �

The converse of Proposition 2.3 is not be true in general. For example, one can verify
that Z10 is (x7 � x)-clean ring which is not (x7 � x)-nil clean ring.
Let R and S be rings and � : C(R)! C(S) be a ring homomorphism with �(1R) = 1S.

For g(x) =
nP
i=0

aix
i 2 C(R)[x], we let g?(x) :=

nP
i=0

�(ai)x
i 2 C(S)[x]. In particular, if

g(x) 2 Z[x], then g?(x) = g(x).

Proposition 2.4. Let � : R! S be a ring epimorphism. If R is g(x)-nil clean, then S is
g?(x)-nil clean.

Proof. Let g(x) =
nP
i=0

aix
i 2 C(R)[x] and consider g?(x) :=

nP
i=0

�(ai)x
i 2 C(S)[x]: For every

� 2 S; there exist r 2 R such that �(r) = �: Since R is g(x)-nil clean, there exist s 2 R
and u 2 N(R) such that r = u+ s and g(s) = 0: So � = �(r) = �(u+ s) = �(u)+ �(s) with
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�(u) 2 N(S) and g?(�(s)) =
nP
i=0

�(ai)(�(s))
i =

nP
i=0

�(ai)�(s
i) =

nP
i=0

� (ais
i) = �

�
nP
i=0

ais
i

�
=

�(g(s)) = �(0) = 0: Therefore, S is g?(x)-nil clean. �
Proposition 2.5. If R is a g(x)-nil clean ring and I is an ideal of R, then R = R=I is
g?(x)-nil clean. Moreover, The converse is true if I is nil and the roots of g?(x) lift modulo
I.

Proof. For the �rst statement, we use Proposition 2.4 and the fact that � : R ! R=I
de�ned by �(r) = r = r + I is an epimorphism. Now, suppose R=I is g?(x)-nil clean and
let r 2 R. Then r = s + b where b 2 N(R) and g?(s) = 0. Since the roots of g?(x) lift
modulo I, we may assume that s 2 R with g(s) = 0. Now, r � s is nilpotent modulo I
and I is nil imply that r � s is nilpotent. Therefore, R is g(x)-nil clean. �

Proposition 2.6. Let R1; R2; :::; Rk be rings and g(x) 2 Z[x]: Then R =
kQ
i=1

Ri is g(x)-nil

clean if and only if Ri is g(x)-nil clean for all i 2 f1; 2; :::; ng.

Proof. )) : For each i 2 f1; 2; :::; kg, Ri is a homomorphic image of
kQ
i=1

Ri under the

projection homomorphism. Hence, Ri is g(x)-nil clean by Proposition 2.4.

() : Let (x1; x2; :::; xk) 2
kQ
i=1

Ri . For each i, write xi = ni + si where ni 2 N(Ri),

g(si) = 0. Let n = (n1; n2; :::; nk) and s = (s1; s2; :::; sk). Then it is clear that n 2 N(R)and
g(s) = 0. Therefore, R is g(x)-nil clean. �

In general, the ring of polynomials R[t] over a ring R is not g(x)-clean. This is also true
for commutative g(x)-nil clean rings.

Proposition 2.7. If R is any commutative ring, then the ring of polynomials R[t] is not
nil clean (and hence not (x2 � x)-nil clean).

Proof. SinceR is commutative, N(R[t]) = fa0+a1t+a2t2+� � �+aktk j a0; a1; � � � ; ak 2 N(R)
and k 2 Ng. If t is nil clean, we may write t = a0 + a1t + a2t

2 + � � � + aktk + e where
e 2 Id(R[t]) = Id(R) and a0; a1; � � � ; ak 2 N(R): Hence, 1 = a1 2 J(R) which is a
contradiction. Therefore R[t] is not nil clean. �

Let � : R[[t]] ! R be de�ned by �(f) = f(0). As a consequence of Proposition 2.3, if
R[[t]] is g?(x)-nil clean, then R is g(x)-nil clean.

Let R be a commutative ring and M an R-module. Nagata [13] introduced the ideal-
ization R(M) of R and M . The idealization of R and M is the ring R(M) = R � M
with multiplication (r1;m1)(r2;m2) = (r1r2; r1m2 + r2m1). This construction has been
extensively studied and has many applications in di¤erent contexts, see [2] and [3].

Note that if (r;m) 2 R(M), then (r;m)k = (rk; krk�1m) for any k 2 N. The proof of
the following lemma is immediate.

Lemma 2.8. Let R be a commutative ring and M an R-module. Then (b;m) is nilpotent
in R(M) if and only if b is nilpotent in R:
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We recall that R naturally embeds into R(M) via r ! (r; 0). Thus any polynomial

g(x) =
nP
i=0

aix
i 2 R[x] can be written as g(x) =

nP
i=0

(ai; 0)x
i 2 R(M)[x] and conversely.

Theorem 2.9. Let R be a commutative ring and M an R-module. Then the idealization
R(M) of R and M is g(x)-nil clean if and only if R is g(x)-nil clean.

Proof. )) : Note that R ' R(M)=(0�M) is a homomorphic image of R(M): Hence R is
g(x)-nil clean by Proposition 2.4.

() : Let g(x) =
nP
i=0

aix
i 2 R[x] and r 2 R. Write r = b + s where b 2 N(R) and

g(s) = 0. Then for m 2 M , (r;m) = (b;m) + (s; 0) where (b;m) 2 N(R(M)) by Lemma
2.8. Moreover, we have

g(s; 0) = a0(1; 0) + a1(s; 0) + a2(s; 0)
2 + :::+ an(s; 0)

n

= a0(1; 0) + a1(s; 0) + a2(s
2; 0) + :::+ an(s

n; 0)

= (a0 + a1s+ a2s
2 + :::+ ans

n; 0) = (g(s); 0) = (0; 0):

Therefore, R(M) is g(x)-nil clean. �

Let R be a commutative ring with identity 1 and let I be a proper ideal of R. The
amalgamated duplication of R along I is de�ned as R on I = f(a; a+ i) : a 2 R and i 2 Ig.
It is easy to check that R on I is a subring with identity (1; 1) of R � R (with the usual
componentwise operations). Moreover, ' : R ! R on I de�ned by '(a) = (a; a) is a ring
monomorphism and so R �= f(a; a) : a 2 Rg � R on I: For more properties of R on I, one
can see [7] and [8]. In the following theorem, we investigate the g(x)-nil cleanness of R on I.

Theorem 2.10. Let R be a commutative ring, I be a proper ideal of R and g(x) =
nP
k=0

akx
k 2 R[x] . If R is g(x)- nil clean ring and I � N(R), then R on I is g(x)- nil clean

ring. Moreover, the converse is true if R on I is domain-like (every zero divisor of R on I
is nilpotent).

Proof. Assume R is g(x)-nil clean. Let (a; a + i) 2 R on I and write a = b + s where
b 2 N(R) and g(s) = 0. Then (a; a + i) = (b + s; b + s + i) = (b; b + i) + (s; s). Since

I � N(R), then (b; b + i) 2 N(R on I). Moreover, we have g((s; s)) =
nP
k=0

(ak; ak)(s; s)
k =

nP
k=0

(ak; ak)(s
k; sk) = (

nP
k=0

aks
k;

nP
k=0

aks
k) = (0; 0). Therefore, R on I is g(x)-nil clean.

Conversely, suppose thatR on I is domain-like g(x)-nil clean. Let (0)�I = f(0; a) : a 2 Ig :
Then clearly (0)�I is an ideal of R on I with R on I=(0)�I ' R. Thus, R is g(x)-nil clean
by Proposition (2.3). Let i be a nonzero element in I and consider (0; i) 2 R on I . Then
(0; i)(i; 0) = (0; 0) and so (0; i) is a zero divisor in R on I. By assumption, (0; i) 2 N(R on I)
and so (0; i)m = (0; 0) for some m � 1. Therefore, im = 0 and I � N(R). �

The proof of the following Lemma is straightforward.

Lemma 2.11. Let R be a ring. For any n 2 N, we have
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N(Tn(R)) =

266664
Nil(R) R R � � � R R
0 Nil(R) R � � � R R
...

...
...
. . .

...
...

0 0 0 � � � Nil(R) R
0 0 0 � � � 0 Nil(R)

377775 where Tn(R) is the upper

triangular matrix ring over R:

Theorem 2.12. Let R be a ring, g(x) =
mP
i=0

aix
i 2 C(R)[x] and n 2 N. Then R is g(x)-nil

clean if and only if Tn(R) is g(x)-nil clean.

Proof. () : De�ne f : Tn(R) �! R by f(A) = a11 where A = (aij) 2 Tn(R). Then clearly
f is a ring epimorphism and R is g(x)-nil clean.

)) : Suppose that R is g(x)-nil clean and let

A =

266664
a11 a12 a13 : : : a1;n�1 a1n
0 a22 a23 : : : a2;n�1 a2n
...

...
...

. . .
...

...
0 0 0 : : : an�1;n�1 an�1;n
0 0 0 : : : 0 ann

377775 2 Tn(R). Since R is g(x)-nil clean, then

for every 1 � i � n, there exist uii 2 N(R) and sii 2 R such that aii = uii + sii with

g(sii) = 0. Write A = B + C where B =

266664
u11 b12 b13 : : : b1;n�1 b1n
0 u22 b23 : : : b2;n�1 b2n
...

...
...

. . .
...

...
0 0 0 : : : un�1;n�1 bn�1;n
0 0 0 : : : 0 unn

377775 and

C =

2664
s11 0 : : : 0
0 s22 : : : 0
...

...
. . . 0

0 0 : : : snn

3775. Then B is nilpotent in Tn(R) and g (C) = a0In + a1C + :::+

amC
m =

2664
g(s11) 0 : : : 0
0 g(s22) : : : 0
...

...
. . . 0

0 0 : : : g(snn)

3775 =
2664
0 0 : : : 0
0 0 : : : 0
...
...
. . . 0

0 0 : : : 0

3775. Therefore, Tn(R) is g(x)-nil
clean. �

Theorem 2.13. Let A and B be rings and let M =B MA be a bimodule. If the formal

triangular matrix T =
�
A 0
M B

�
is g(x)-nil clean, then both, A and B are g(x)-nil clean.

Proof. Let T =
�
A 0
M B

�
be g(x)-nil clean. For every a 2 A, b 2 B and m 2 M , write�

a 0
m b

�
=

�
n1 0
n2 n3

�
+

�
s1 0
s2 s3

�
where

�
n1 0
n2 n3

�
2 N(T ) and g

��
s1 0
s2 s3

��
= 0.

Then a = n1 + s1 and b = n3 + s3: It is easy to see that n1 2 N(A), n2 2 N(B) and
g(s1) = g(s3) = 0. Therefore, A and B are g(x)-nil clean. �
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3. (x2 + cx+ d)-nil Clean Rings

In this section we �rst consider g(x)-nil clean rings where g(x) = (x � (a + 1))(x � b),
a; b 2 C(R). Then we turn to some special types of polynomials such as xn � 1, xn � x
and xn + x.

For a ring R, a semisimple R-module RM and a; b 2 C(R), Nicholson and Zhou [16]
proved that if g(x) 2 (x � a)(x � b)C(R)[x] where b; b � a 2 U(R), then End(RM) is
g(x)-clean. More recently, Fan and Yang proved the following.

Lemma 3.1. [10]. Let R be a ring, a; b 2 C(R) and g(x) 2 (x � a)(x � b)C(R)[x] where
b� a 2 U(R). Then
(1) R is clean if and only if R is (x� a)(x� b)-clean
(2) If R is clean, then R is g(x)-clean.

Now, we prove the following main result.

Theorem 3.2. Let R be a ring and a; b 2 C(R).Then R is nil clean and b� a 2 N(R) if
and only if R is (x� (a+ 1))(x� b)-nil clean.

Proof. )) : Let r 2 R. Since R is nil clean, then r�(a+1)
(b�a)�1 = e + u , where e2 = e and

u 2 N(R). Hence, r = e((b� a)� 1) + (a+ 1) + u((b� a)� 1) = t+ v where t is a root of
(x� (a+ 1))(x� b) and v 2 N(R). Indeed,

[e(b� a)� 1) + (a+ 1)� (a+ 1)][e(b� a)� 1) + (a+ 1)� b]
= e2((b� a)� 1)2 � e((b� a)� 1)((b� a)� 1) = 0

Thus, R is (x� (a+ 1))(x� b)-nil clean.
() : Conversely, suppose R is (x � (a + 1))(x � b)-nil clean. Then a = s + u where

(s� (a+ 1))(s� b) = 0 and u 2 N(R). Thus, s� a 2 N(R) and so s� a� 1 2 U(R). It
follows that s = b and b� a 2 N(R). Now, let r 2 R. Since R is nil (x� (a+ 1))(x� b)-
clean, then r((b � a) � 1) + (a + 1) = s + u where s is a root of (x � (a + 1))(x � b) and
u 2 N(R). Hence, r = s�(a+1)

(b�a)�1 +
u

(b�a)�1 where
u

(b�a)�1 2 N(R) and�
s� (a+ 1)
(b� a)� 1

�2
=

(s� (a+ 1))(s� b+ b� (a+ 1))
((b� a)� 1)2

=
(s� (a+ 1))(s� b) + (s� (a+ 1))(b� (a+ 1))

((b� a)� 1)2 =
s� (a+ 1)
(b� a)� 1 .

Therefore, R is nil clean. �

Next, we give some special cases of Theorem 3.2.

Corollary 3.3. Let R be a ring and a 2 C(R). Then R is nil clean if and only if R is
(x2 � (2a+ 1)x+ a(a+ 1))-nil clean.

Proof. We just take a = b in Theorem 3.2. �

For example, we conclude that (x2� 3x+2)-nil clean rings, (x2� 5x+6)-nil clean rings
and (x2 � 7x+ 12)-nil clean rings are equivalent to nil clean rings.
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Lemma 3.4. [9]. If a ring R is nil clean, then 2 is a (central) nilpotent element in R.

As 2 is a central nilpotent in any nil clean ring R, then 2n 2 N(R) for any integer n.
So the, previous lemma provides us with more characterizations of nil clean rings.

Corollary 3.5. Let R be a ring and n be any integer. For any b 2 C(R), the following
are equivalent

(1) R is nil clean.

(2) R is (x2 � (2b+ 1� 2n)x+ (b2 + b(1� 2n))-nil clean.
(3) R is (x2 � (2b+ 1 + 2n)x+ (b2 + b(1 + 2n))-nil clean.

Proof. In Theorem 3.2, we take a = b�2n to get (1),(2) and a = b+2n to get (1),(3). �

In particular, a ring R is nil clean if and only if R is (x2 � (2n + 1)x)-nil clean (
(x2+(2n�1)x)-nil clean). For example, (x2+x)-nil clean, (x2+3x)-nil clean, (x2�3x)-nil
clean and (x2 � 5x)-nil clean rings are all equivalent to nil clean rings.

Remark 3.6. The equivalence of (x2 + x)-nil clean rings and nil clean rings is a global
property. That is, it holds for a ring R but it may fail for a single element. For example,
1 2 Z12 is nil clean but it is not (x2 + x)-nil clean in Z12.

Remark 3.7. In [10], The authors give more characterizations of clean rings in terms of
g(x)-clean rings under the additional assumption that 2 is a unit. But in a nil clean ring
R, if we assume that 2n + 1 2 N(R) for some integer n, then 1 2 N(R) by lemma 3.4.
Thus, 1 = 0 and R = f0g.

De�nition 3.8. A ring R is called g(x)-nil�clean if every 0 6= r 2 R, r = s + b where
b 2 N(R) and g(s) = 0.

Of course, every g(x)-nil clean ring is g(x)-nil�clean. On the other hand, the following
are examples of g(x)-nil�clean rings which are not g(x)-nil clean.

Example 3.9. Let p be a prime integer. Then the �eld Zp is (xp�1� 1)-nil�clean which is
not (xp�1 � 1)-nil clean.

Proof. Let 0 6= r 2 Zp. Then r = 0+ r where 0 2 N(R) and rp�1 � 1 = 0 in Zp by Fermat
Theorem. Hence, Zp is (xp�1 � 1)-nil�clean. On the other hand, since Zp is reduced, then
0 can�t be written as a sum of a nilpotent and a root of xp�1 � 1. Therefore Zp is not
(xp�1 � 1)-nil clean. �

Next, we give a general example.

Example 3.10. Let R be a non zero ring, n 2 N and g(x) = xn+an�1xn�1+:::+a1x+a0 2
C(R)[x] where a0 2 U(R). Then R is not g(x)-nil clean. In particular, If R is any non
zero ring and n 2 N, then R is not (xn � 1)-nil clean.

Proof. Suppose R is g(x)-nil clean and write 0 = s+b where b 2 N(R) and g(s) = 0. Then
s(sn�1 + an�1s

n�2 + :::+ a1) = �a0 2 U(R) and so s 2 U(R). Since also s = �b 2 N(R),
then R = f0g, a contradiction. �
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Remark 3.11. Let R be a ring and g(x) 2 C(R)[x], The concepts of g(x)-nil clean and
g(x)-nil�clean coincide if there is a non unit root of g(x) such that 0 = s + b for some
b 2 N(R). In particular, they coincide if all roots of g(x) are non units.

Proposition 3.12. Let R be a ring and n 2 N. Then R is (xn � 1)-nil�clean if and only
if for every 0 6= r 2 R, r = v + b where b 2 N(R) and vn = 1.

Proof. )) Let 0 6= r 2 R and write r = s+ b where b 2 N(R) and sn�1 = 0. Then sn = 1
and the result follows.

() Conversely, let 0 6= r 2 R and write r = s + b where b 2 N(R) and vn = 1. Then
clearly v is a root of xn � 1 and R is (xn � 1)-nil�clean. �

It is well known that if a ring R is commutative, then the sum of a nilpotent element
and a unit in R is again a unit. Thus, we have the following Corollary.

Corollary 3.13. Any commutative (xn � 1)-nil�clean is a �eld.

Proposition 3.14. Let R be a ring and 2 � n 2 N. If R is (xn�1 � 1)-nil�clean, then R
is (xn � x)-nil clean.

Proof. If r = 0, then clearly r is an (xn � x)-nil clean element. Suppose 0 6= r 2 R. Then
r = v + b where b 2 N(R) and vn�1 = 1 and so v is a root of xn � x. Therefore, R is
(xn � x)-nil clean. �

The converse of Proposition 3.14 is true under a certain condition.

Theorem 3.15. Let R be a ring and let 0 6= a 2 R such that (a+1)R or R(a+1) contain
no non trivial idempotents. Then a is (xn � x)-nil clean if and only if a is (xn�1 � 1)-nil
clean. In particular, if for every a 2 R, (a + 1)R or R(a + 1) contain no non trivial
idempotents, then R is (xn � x)-nil clean if and only if R is (xn�1 � 1)-nil�clean

Proof. () : We use Proposition 3.14.
)) : Suppose a is (xn � x)-nil clean and (a+ 1)R contains no non trivial idempotents.

Then a = s+ b where b 2 N(R) and sn = s. Now, asn�1 = s+ bsn�1 and so a(1� sn�1) =
b(1 � sn�1). Set y = 1 + b. Then y 2 U(R) and (a + 1)(1 � sn�1) = (b + 1)(1 � sn�1) =
y(1�sn�1). This implies that y(1�sn�1)y�1 = (a+1)(1�sn�1)y�1 2 (a+1)R. obviously,
y(1� sn�1)y�1 is an idempotent. If 1� sn�1 6= 0, then y(1� sn�1)y�1 6= 0. Thus, (a+1)R
contains a non trivial idempotent, a contradiction. If R(a + 1) contains no non trivial
idempotents, then we get a similar contradiction. Therefore, 1�sn�1 = 0 and s is a root of
xn�1�1. Thus, a is (xn�1�1)-nil clean. The other part of the Theorem follows clearly. �

Recall that for a ring R and n 2 N, Un(R) denotes the set of elements in R that can be
written as a sum of no more than n units. If R is (xn � 1)-nil�clean and 1 6= r 2 R, then
r � 1 = v + b where b 2 N(R) and vn = 1 and so r = v + (b + 1) 2 U2(R). Since also
clearly 1 2 U2(R), then R = U2(R). This result can be generalized as follows.

Proposition 3.16. let R be a ring, n 2 N and g(x) = xn + an�1xn�1 + ::: + a1x + a0 2
C(R)[x] where 1� a0 2 N(R). If R is g(x)-nil�clean, then R = U2(R). In particular, if R
is (xn�2 + xn�3 + :::+ x+ 1)-nil�clean, then R = U2(R) is (xn � x)-nil clean.
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Proof. Let 1 6= r 2 R and write r�1 = s+b where b 2 N(R) and sn+an�1sn�1+ :::+a1s+
a0 = 0. Then r = s+(b+1) where b+1 2 U(R). Moreover, s(sn�1+an�1sn�2+ :::+a1) =
�a0 2 U(R) and so s 2 U(R). Thus, r 2 U2(R). Since also 1 2 U2(R), then R = U2(R).
In particular, suppose R is (xn�2 + xn�3 + ::: + x + 1)-nil� clean, then R = U2(R) by
taking a0 = 1 2 U(R). Now, if r = 0; then r is clearly an (xn � x)-nil clean element. Let
0 6= r 2 R and write r = s + b where b 2 N(R) and sn�2 + sn�3 + ::: + s + 1 = 0. Then
sn � s = s(s� 1)(sn�2 + sn�3 + :::+ s+ 1) = 0 and so R is (xn � x)-nil clean. �

By choosing n = 4 in the previous proposition, we conclude that if R is (x2 + x + 1)-
nil�clean, then R = U2(R) is (x4 � x)-nil clean.
In the next Proposition, we determine conditions under which the group ring RG is

(xn � x)-nil clean for some integer n.

Proposition 3.17. Let R be a Boolean ring and G any cyclic group of order p (prime).
Then RG is (x2

p�1 � x)- nil clean ring.

Proof. Let G =< g > be a cyclic group of order p and x = a0+a1g+a2g2+:::+am�1gm�1 2

RG. Using mathematical induction, it can be shown that x2
k
=

m�1P
i=0

aig
2k�i; k = 1; 2; ::: . It

follows from Fermat theorem that 2p�1 = 1+np for some n 2 N: So, x2p�1 =
m�1P
i=0

aig
2p�1�i =

m�1P
i=0

aig
(1+np)�i =

m�1P
i=0

aig
i = x: Thus, RG is (x2

p�1 � x)-nil clean ring. �

Next we give examples showing that (xn � x)-nil cleanness of a ring R does not imply
nil cleanness of R whether n is odd or even.

Example 3.18. The �eld Z3 is (x3�x)-nil clean which is not nil clean. Also, by Proposition
3.17 the group ring Z2(C3) is (x4 � x)-nil clean which is not nil clean.

Proposition 3.19. Let R be a ring and n 2 N. Then R is (ax2n � bx)-nil clean if and
only if R is (ax2n + bx)-nil clean.

Proof. )) : Suppose R is (ax2n � bx)-nil clean and let r 2 R. Then �r = u + s where
u 2 N(R) and as2n � bs = 0. Thus, r = (�u) + (�s) where �u 2 N(R) and a(�s)2n +
b(�s) = as2n � bs = 0. Therefore, R is (ax2n + bx)-nil clean.
() : Suppose R is (ax2n+bx)-nil clean and let r 2 R. Then �r = u+s where u 2 N(R)

and as2n + bs = 0. Thus, r = (�u) + (�s) where �u 2 N(R) and a(�s)2n � b(�s) =
as2n + bs = 0. Therefore, R is (ax2n � bx)-nil clean. �

By Proposition 3.19, we conclude that Z2(C3) is also (x4 + x)-nil clean. On the other
hand, the equivalence in Proposition 3.19 need not be true if we replace the even power 2n
by an odd power 2n+1. By a simple calculations, we can see that the �eld Z3 is (x3�x)-nil
clean ((x5�x)-nil clean) but not (x3+x)-nil clean ((x5+x)-nil clean). However, we don�t
know whether (xn + x)-nil cleanness implies the (xn � x)-nil cleanness of R or not.
Recall that a ring R is called unit n-regular if for any a 2 R, a = a(ua)n for some

u 2 U(R). In [10], the authors ask about the relation between the following conditions on
a ring R
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(1) R is (xn � x)-clean for all n � 3:
(2) R is a unit n-regular.

In general, condition (1) does not imply condition (2) for odd or even integer n. For
example, the ring Z4 is (x3 � x)-clean which is not unit 3-regular and the ring Z8 is
(x4�x)-clean which is not unit 4-regular. However, we still don�t know whether condition
(2) implies condition (1) or not. On the other hand if we replace (xn � x)-cleanness by
(xn � x)-nil cleanness in condition (1), then non of the two conditions implies the other.
For example, Z4 is also (x4�x)-nil clean which is not unit 4-regular and Z3 is unit 4-regular
which is not (x4 � x)-nil clean.
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