Criteria for the C-integral

Toshiharu Kawasaki Ichiro Suzuki

Received October 31, 2013; revised March 7, 2014

ABSTRACT. The C-integral was introduced by Bongiorno as a minimal constructive integration process of Riemann type which contains the Lebesgue integral and the Newton integral. Moreover Bongiorno, Piazza and Preiss gave some criteria for the C-integral. On the other hand, Nakanishi gave some criteria for the restricted Denjoy integral. In this paper we will give new criteria for the C-integral in the style of Nakanishi.

1 Introduction and preliminaries Throughout this paper we denote by $(\mathbf{L})(S)$ and $(\mathbf{D}^*)(S)$ the class of all Lebesgue integrable functions and the class of all restricted Denjoy integrable functions from a measurable set $S \subset \mathbb{R}$ into \mathbb{R} , respectively, and we denote by |A| the measure of a measurable set A. We recall that a gauge δ is a function from an interval [a, b] into $(0, \infty)$ and a δ -fine McShane partition is a collection $\{(I_k, x_k) \mid k = 1, \ldots, k_0\}$ of non-overlapping intervals $I_k \subset [a, b]$ satisfying $I_k \subset (x_k - \delta(x_k), x_k + \delta(x_k))$ and $\sum_{k=1}^{k_0} |I_k| = b - a$. If $\sum_{k=1}^{k_0} |I_k| \leq b - a$, then we say that the collection is a δ -fine partial McShane partition.

In [3] Bongiorno, Di Piazza and Preiss gave a minimal constructive integration process of Riemann type which contains the Lebesgue integral and the Newton integral. It is given as follows:

Definition 1.1. A function f from an inteval [a, b] into \mathbb{R} is said to be C-integrable if there exists a number A such that for any positive number ε there exists a gauge δ such that

$$\left|\sum_{k=1}^{k_0} f(x_k) |I_k| - A\right| < \varepsilon$$

for any δ -fine McShane partition $\{(I_k, x_k) \mid k = 1, \dots, k_0\}$ with $\sum_{k=1}^{k_0} d(I_k, x_k) < \frac{1}{\varepsilon}$, where $d(I_k, x_k) = \inf_{x \in I_k} d(x, x_k)$. The constant A is denoted by

$$A = (C) \int_{[a,b]} f(x) dx.$$

We denote by $(\mathbf{C})([a, b])$ the class of all C-integrable functions from [a, b] into \mathbb{R} .

We say that a function f from an interval [a, b] into \mathbb{R} is Newton integrable if there exists a differentiable function F from [a, b] into \mathbb{R} such that F' = f on [a, b]. We denote by $(\mathbf{N})([a, b])$ the class of all Newton integrable functions from [a, b] into \mathbb{R} . In [3] they also gave a criterion for the C-integral as follows:

Theorem 1.1. Let f be a function from an inteval [a, b] into \mathbb{R} . Then $f \in (\mathbf{C})([a, b])$ if and only if there exists $h \in (\mathbf{N})([a, b])$ such that $f - h \in (\mathbf{L})([a, b])$.

²⁰¹⁰ Mathematics Subject Classification. 26A36, 26A39.

Key words and phrases. C-integral, Denjoy integral, Lebesgue integral, Newton integral.

By the theorem above $(\mathbf{C})([a, b])$ is the minimal class which contains $(\mathbf{L})([a, b])$ and $(\mathbf{N})([a, b])$. Moreover it is contained in the class of all restricted Denjoy integrable functions. Now we refer to the following theorems given by Bongiorno [1,2].

Theorem 1.2. Let $f \in (\mathbf{C})([a,b])$. Then for any positive number ε there exists a gauge δ such that

$$\sum_{k=1}^{k_0} \left| f(x_k) |I_k| - (C) \int_{I_k} f(x) dx \right| < \varepsilon$$

for any δ -fine partial McShane partition $\{(I_k, x_k) \mid k = 1, \dots, k_0\}$ with $\sum_{k=1}^{k_0} d(I_k, x_k) < \frac{1}{\epsilon}$.

Throughout this paper, we say that a function defined on the class of all intervals in [a, b] is an interval function on [a, b]. If an interval function F on [a, b] satisfies $F(I_1 \cup I_2) = F(I_1) + F(I_2)$ for any intervals $I_1, I_2 \subset [a, b]$ with $I_1{}^i \cap I_2{}^i = \emptyset$, where I^i is the interior of I, then it is said to be additive. For an interval function F on [a, b], for a positive number ε , for a gauge δ and $E \subset [a, b]$ let

$$V_{\varepsilon}(F,\delta,E) = \sup \left\{ \sum_{k=1}^{k_0} |F(I_k)| \left| \begin{array}{c} \{(I_k,x_k) \mid k=1,\ldots,k_0\} \text{ is a } \delta\text{-fine partial McShane} \\ \text{partition with } x_k \in E \text{ and } \sum_{k=1}^{k_0} d(I_k,x_k) < \frac{1}{\varepsilon} \end{array} \right\}.$$

Moreover let

$$V_C F(E) = \sup_{\varepsilon} \inf_{\delta} V_{\varepsilon}(F, \delta, E).$$

Theorem 1.3. An interval function F on [a, b] is the primitive of a C-integrable function if and only if $V_C F$ is absolutely continuous with respect to the Lebesgue measure, that is, for any Lebesgue measurable set E, if |E| = 0, then $V_C F(E) = 0$.

Definition 1.2. Let F be an interval function on [a, b]. Then F is said to be C-absolutely continuous on $E \subset [a, b]$ if for any positive number ε there exist a gauge δ and a positive number η such that

$$\sum_{k=1}^{k_0} |F(I_k)| < \varepsilon$$

for any δ -fine partial McShane partition $\{(I_k, x_k) \mid k = 1, \dots, k_0\}$ satisfying

- (α_1) $x_k \in E$ for any k;
- $(\alpha_2) \quad \sum_{k=1}^{k_0} d(I_k, x_k) < \frac{1}{\varepsilon};$
- $(\alpha_3) \quad \sum_{k=1}^{k_0} |I_k| < \eta.$

We denote by $\mathbf{AC}_C(E)$ the class of all C-absolutely continuous interval functions on E. Moreover F is said to be C-generalized absolutely continuous on [a, b] if there exists a sequence $\{E_m\}$ of measurable sets such that $\bigcup_{m=1}^{\infty} E_m = [a, b]$ and $F \in \mathbf{AC}_C(E_m)$ for any m. We denote by $\mathbf{ACG}_C([a, b])$ the class of all C-generalized absolutely continuous interval functions on [a, b]. **Theorem 1.4.** For any $F \in \mathbf{ACG}_C([a, b])$ there exists $\frac{d}{dx}F([a, x])$ for almost every $x \in [a, b]$, and there exists $f \in (\mathbf{C})([a, b])$ such that $f(x) = \frac{d}{dx}F([a, x])$ for almost every $x \in [a, b]$ and

$$F(I) = (C) \int_{I} f(x) dx$$

for any interval $I \subset [a, b]$.

Conversely the interval function F defined above for any $f \in (\mathbf{C})([a,b])$ satisfies $F \in \mathbf{ACG}_C([a,b])$.

On the other hand, in [7, 10] Nakanishi gave the following criteria for the restricted Denjoy integral. Firstly Nakanishi considered the following four criteria for the pair of a function f from [a, b] into \mathbb{R} and an additive interval function F on [a, b].

- (A) For any decreasing sequence $\{\varepsilon_n\}$ tending to 0 there exists an increasing sequence $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} F_n = [a, b];$
 - (2) $f \in (\mathbf{L})(F_n)$ for any n;
 - (3) $\left| \sum_{k=1}^{k_0} \left(F(I_k) (L) \int_{I_k \cap F_n} f(x) dx \right) \right| < \varepsilon_n \text{ for any } n \text{ and for any finite family} \\ \{I_k \mid k = 1, \dots, k_0\} \text{ of non-overlapping intervals in } [a, b] \text{ with } I_k \cap F_n \neq \emptyset.$
- (B) For any decreasing sequence $\{\varepsilon_n\}$ tending to 0 there exist increasing sequences $\{M_n\}$ of non-empty measurable sets and $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} M_n = [a, b];$
 - (2) $F_n \subset M_n$ for any n and $|[a,b] \setminus \bigcup_{n=1}^{\infty} F_n| = 0;$
 - (3) $f \in (\mathbf{L})(F_n)$ for any n;
 - (4) $\left| \sum_{k=1}^{k_0} \left(F(I_k) (L) \int_{I_k \cap F_n} f(x) dx \right) \right| < \varepsilon_n \text{ for any } n \text{ and for any finite family} \\ \{I_k \mid k = 1, \dots, k_0\} \text{ of non-overlapping intervals in } [a, b] \text{ with } I_k \cap M_n \neq \emptyset.$
- (C) There exists an increasing sequence $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} F_n = [a, b];$
 - (2) $f \in (\mathbf{L})(F_n)$ for any n;
 - (3) for any n and for any positive number ε there exists a positive number η such that

$$\left|\sum_{k=1}^{k_0} F(I_k)\right| < \varepsilon$$

for any finite family $\{I_k \mid k = 1, ..., k_0\}$ of non-overlapping intervals in [a, b] satisfying

- (3.1) $I_k \cap F_n \neq \emptyset$ for any k;
- (3.2) $\sum_{k=1}^{k_0} |I_k| < \eta.$

(4) for any *n* and for any interval $I \subset [a, b]$

$$F(I) = (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} F(\overline{J_p}),$$

where I^i is the interior of I, $\{J_p \mid p = 1, 2, ...\}$ is the sequence of all connected components of $I^i \setminus F_n$ and $\overline{J_p}$ is the closure of J_p .

- (D) There exist increasing sequences $\{M_n\}$ of non-empty measurable sets and $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} M_n = [a, b];$
 - (2) $F_n \subset M_n$ for any n and $|[a,b] \setminus \bigcup_{n=1}^{\infty} F_n| = 0;$
 - (3) $f \in (\mathbf{L})(F_n)$ for any n;
 - (4) for any n and for any positive number ε there exists a positive number η such that

$$\left|\sum_{k=1}^{k_0} F(I_k)\right| < \varepsilon$$

for any finite family $\{I_k \mid k=1,\ldots,k_0\}$ of non-overlapping intervals in [a,b] satisfying

- (4.1) $I_k \cap M_n \neq \emptyset$ for any k;
- (4.2) $\sum_{k=1}^{k_0} |I_k| < \eta.$
- (5) for any *n* and for any interval $I \subset [a, b]$

$$F(I) = (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} F(\overline{J_p}),$$

where I^i is the interior of I, $\{J_p \mid p = 1, 2, ...\}$ is the sequence of all connected components of $I^i \setminus F_n$ and $\overline{J_p}$ is the closure of J_p .

It is clear that (A) implies (B) and (C) implies (D). Next Nakanishi gave the following theorems for the restricted Denjoy integral.

Theorem 1.5. Let $f \in (\mathbf{D}^*)([a,b])$ and let F be an additive interval function on [a,b] defined by

$$F(I) = (D^*) \int_I f(x) dx$$

for any interval $I \subset [a, b]$. Then the pair of f and F satisfies (A).

Theorem 1.6. If the pair of a function f from an inteval [a, b] into \mathbb{R} and an additive interval function F on [a, b] satisfies (A), then the pair of f and F satisfies (C). Similarly, if the pair of a function f from an inteval [a, b] into \mathbb{R} and an additive interval function F on [a, b] satisfies (B), then the pair of f and F satisfies (D).

Theorem 1.7. If the pair of a function f from an inteval [a, b] into \mathbb{R} and an additive interval function F on [a, b] satisfies (D), then $f \in (\mathbf{D}^*)([a, b])$ and

$$F(I) = (D^*) \int_I f(x) dx$$

holds for any interval $I \subset [a, b]$.

By Theorems 1.5, 1.6 and 1.7 we obtain the following criteria for the restricted Denjoy integral.

Theorem 1.8. A function f from an interval [a, b] into \mathbb{R} is restricted Denjoy integrable if and only if there exists an additive interval function F on [a,b] such that the pair of f and F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of (A), (B), (C) and (D), then

$$F(I) = (D^*) \int_I f(x) dx$$

holds for any interval $I \subset [a, b]$.

In this paper, motivated by the results above, we will give new criteria for the C-integral similar to Theorems 1.5, 1.6, 1.7 and 1.8.

2 Main results Firstly we consider the following four criteria for the pair of a function f from [a, b] into \mathbb{R} and an additive interval function F on [a, b].

- $(A)_C$ For any decreasing sequence $\{\varepsilon_n\}$ tending to 0 there exists an increasing sequence $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} F_n = [a, b];$
 - $f \in (\mathbf{L})(F_n)$ for any n; (2)
 - (3)for any *n* there exists a gauge δ such that . .

$$\left|\sum_{k=1}^{k_1} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| < \varepsilon_n$$

for any finite family $\{I_k \mid k = 1, ..., k_0, k_0 + 1, ..., k_1, 0 \le k_0 \le k_1\}$ of non-overlapping intervals in [a, b] which consists of a finite family $\{I_k \mid k =$ $1, \ldots, k_0$ with $I_k \cap F_n \neq \emptyset$ and a δ -fine partial McShane partition $\{(I_k, x_k) \mid$ $k = k_0 + 1, \ldots, k_1$ satisfying

- (3.1) $x_k \in F_n \text{ for any } k = k_0 + 1, \dots, k_1;$ (3.2) $\sum_{k=k_0+1}^{k_1} d(I_k, x_k) < \frac{1}{\varepsilon_n}.$
- (B)_C For any decreasing sequence $\{\varepsilon_n\}$ tending to 0 there exist increasing sequences $\{M_n\}$ of non-empty measurable sets and $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} M_n = [a, b];$
 - (2) $F_n \subset M_n$ for any n and $|[a,b] \setminus \bigcup_{n=1}^{\infty} F_n| = 0;$
 - (3) $f \in (\mathbf{L})(F_n)$ for any n;

(4) for any *n* there exists a gauge δ such that

$$\left|\sum_{k=1}^{k_1} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| < \varepsilon_n$$

for any finite family $\{I_k \mid k = 1, \ldots, k_0, k_0 + 1, \ldots, k_1, 0 \leq k_0 \leq k_1\}$ of non-overlapping intervals in [a, b] which consists of a finite family $\{I_k \mid k = 1, \ldots, k_0\}$ with $I_k \cap M_n \neq \emptyset$ and a δ -fine partial McShane partition $\{(I_k, x_k) \mid k = k_0 + 1, \ldots, k_1\}$ satisfying

(4.1)
$$x_k \in M_n$$
 for any $k = k_0 + 1, \dots, k_1;$
(4.2) $\sum_{k=k_0+1}^{k_1} d(I_k, x_k) < \frac{1}{\varepsilon_n}.$

- $(C)_C$ There exists an increasing sequence $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} F_n = [a, b];$
 - (2) $f \in (\mathbf{L})(F_n)$ for any n;
 - (3) for any n and for any positive number ε there exist a positive number η and a gauge δ such that

$$\left|\sum_{k=1}^{k_0} F(I_k)\right| < \varepsilon$$

for any δ -fine partial McShane partition $\{(I_k, x_k) \mid k = 1, \dots, k_0\}$ in [a, b] satisfying

(3.1) $x_k \in F_n$ for any k; (3.2) $\sum_{k=1}^{k_0} d(I_k, x_k) < \frac{1}{2}$

$$3.2) \quad \sum_{k=1}^{k} d(I_k, x_k) < \frac{1}{\varepsilon};$$

- (3.3) $\sum_{k=1}^{\kappa_0} |I_k| < \eta.$
- (4) for any *n* and for any interval $I \subset [a, b]$

$$F(I) = (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} F(\overline{J_p}),$$

where I^i is the interior of I, $\{J_p \mid p = 1, 2, ...\}$ is the sequence of all connected components of $I^i \setminus F_n$ and $\overline{J_p}$ is the closure of J_p .

- (D)_C There exist increasing sequences $\{M_n\}$ of non-empty measurable sets and $\{F_n\}$ of closed sets such that
 - (1) $\bigcup_{n=1}^{\infty} M_n = [a, b];$
 - (2) $F_n \subset M_n$ for any n and $|[a,b] \setminus \bigcup_{n=1}^{\infty} F_n| = 0;$
 - (3) $f \in (\mathbf{L})(F_n)$ for any n;
 - (4) for any n and for any positive number ε there exist a positive number η and a gauge δ such that

$$\left|\sum_{k=1}^{k_0} F(I_k)\right| < \varepsilon$$

for any δ -fine partial McShane partition $\{(I_k, x_k) \mid k = 1, \dots, k_0\}$ in [a, b] satisfying

(4.1)
$$x_k \in M_n$$
 for any k ;

(4.2) $\sum_{k=1}^{k_0} d(I_k, x_k) < \frac{1}{\varepsilon};$

(4.3)
$$\sum_{k=1}^{n} |I_k| < \eta.$$

(5) for any *n* and for any interval $I \subset [a, b]$

$$F(I) = (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} F(\overline{J_p}),$$

where I^i is the interior of $I, \{J_p \mid p = 1, 2, ...\}$ is the sequence of all connected components of $I^i \setminus F_n$ and $\overline{J_p}$ is the closure of J_p .

It is clear that $(A)_C$ implies $(B)_C$ and $(C)_C$ implies $(D)_C$. Now we give the following theorems for the C-integral.

Theorem 2.1. Let $f \in (\mathbf{C})([a, b])$ and let F be an additive interval function on [a, b] defined by

$$F(I) = (C) \int_I f(x) dx$$

for any interval $I \subset [a, b]$. Then the pair of f and F satisfies $(A)_C$.

Proof. Since f is C-integrable, it is restricted Denjoy integrable. Let $\{\varepsilon_n\}$ be a decreasing sequence tending to 0. By Theorem 1.5 for $\{\frac{\varepsilon_n}{2}\}$ there exists an increasing sequence $\{F_n\}$ of closed sets such that (1) and (2) hold. Moreover

$$\left|\sum_{k=1}^{k_0} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| < \frac{\varepsilon_n}{2}$$

for any finite family $\{I_k \mid k = 1, ..., k_0\}$ of non-overlapping intervals in [a, b] with $I_k \cap F_n \neq \emptyset$. Since f is C-integrable, $f - f\chi_{F_n}$ is also C-integrable, where χ_{F_n} is the characteristic function of F_n . Since $f - f\chi_{F_n} = 0$ on F_n , by Theorem 1.2 there exists a gauge δ such that

$$\begin{aligned} \left| \sum_{k=k_0+1}^{k_1} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| \\ &= \left| \sum_{k=k_0+1}^{k_1} (C) \int_{I_k} (f - f\chi_{F_n})(x) dx \right| \\ &= \left| \sum_{k=k_0+1}^{k_1} \left((C) \int_{I_k} (f - f\chi_{F_n})(x) dx - (f - f\chi_{F_n})(x_k) |I_k| \right) \right| \\ &< \frac{\varepsilon_n}{2} \end{aligned}$$

for any δ -fine partial McShane partition $\{(I_k, x_k) \mid k = k_0 + 1, \dots, k_1\}$ in [a, b] satisfying (3.1) and (3.2). Therefore

$$\begin{split} \left| \sum_{k=1}^{k_1} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| \\ & \leq \left| \sum_{k=1}^{k_0} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| + \left| \sum_{k=k_0+1}^{k_1} \left(F(I_k) - (L) \int_{I_k \cap F_n} f(x) dx \right) \right| \\ & < \frac{\varepsilon_n}{2} + \frac{\varepsilon_n}{2} = \varepsilon_n \end{split}$$

for any finite family $\{I_k \mid k = 1, ..., k_0, k_0 + 1, ..., k_1, 0 \le k_0 \le k_1\}$ of non-overlapping intervals in [a, b] which consists of a finite family $\{I_k \mid k = 1, ..., k_0\}$ with $I_k \cap F_n \ne \emptyset$ and a δ -fine partial McShane partition $\{(I_k, x_k) \mid k = k_0 + 1, ..., k_1\}$ satisfying (3.1) and (3.2), that is, (3) holds.

Theorem 2.2. If the pair of a function f from an inteval [a, b] into \mathbb{R} and an additive interval function F on [a, b] satisfies $(A)_C$, then the pair of f and F satisfies $(C)_C$. Similarly, if the pair of a function f from an inteval [a, b] into \mathbb{R} and an additive interval function Fon [a, b] satisfies $(B)_C$, then the pair of f and F satisfies $(D)_C$.

Proof. Let $\{\varepsilon_n\}$ be a decreasing sequence tending to 0. Then there exists an increasing sequence $\{F_n\}$ of closed sets such that (1) and (2) of $(C)_C$ hold. By Theorem 1.6 (4) of $(C)_C$ holds. Next we show (3) of $(C)_C$. Let n be a natural number and let ε be a positive number. Since $f \in (\mathbf{L})(F_n)$, there exists a positive number $\rho(n, \varepsilon)$ such that, if $|E| < \rho(n, \varepsilon)$, then

$$\left|(L)\int_{E\cap F_n}f(x)dx\right|<\frac{\varepsilon}{2}$$

Take a natural number $m(n,\varepsilon)$ such that $\varepsilon_{m(n,\varepsilon)} < \frac{\varepsilon}{2}$ and $m(n,\varepsilon) \ge n$, and put $\eta = \rho(m(n,\varepsilon),\varepsilon)$. By (3) of (A)_C for $m(n,\varepsilon)$ there exists a gauge $\delta_{m(n,\varepsilon)}$. Let $\{(I_k, x_k) \mid k = 1, \ldots, k_0\}$ be a $\delta_{m(n,\varepsilon)}$ -fine partial McShane partition in [a, b] satisfying (3.1), (3.2) and (3.3) of (C)_C. Then we obtain

$$\left|\sum_{k=1}^{k_0} \left(F(I_k) - (L) \int_{I_k \cap F_{m(n,\varepsilon)}} f(x) dx \right) \right| < \varepsilon_{m(n,\varepsilon)} < \frac{\varepsilon}{2}.$$

Moreover, since $\sum_{k=1}^{k_0} |I_k| < \eta = \rho(m(n,\varepsilon),\varepsilon)$, we obtain

$$\left|\sum_{k=1}^{k_0} (L) \int_{I_k \cap F_{m(n,\varepsilon)}} f(x) dx\right| < \frac{\varepsilon}{2}$$

Therefore

$$\begin{split} \left| \sum_{k=1}^{k_0} F(I_k) \right| &\leq \left| \sum_{k=1}^{k_0} \left(F(I_k) - (L) \int_{I_k \cap F_{m(n,\varepsilon)}} f(x) dx \right) \right| + \left| \sum_{k=1}^{k_0} (L) \int_{I_k \cap F_{m(n,\varepsilon)}} f(x) dx \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Similarly, we can prove that, if the pair of f and F satisfies $(B)_C$, then the pair of f and F satisfies $(D)_C$.

Theorem 2.3. If the pair of a function f from an inteval [a,b] into \mathbb{R} and an additive interval function F on [a,b] satisfies $(D)_C$, then $f \in (\mathbf{C})([a,b])$ and

$$F(I) = (C) \int_{I} f(x) dx$$

holds for any interval $I \subset [a, b]$.

Proof. By (1) and (4) we obtain $F \in \mathbf{ACG}_C([a, b])$. By Theorem 1.4 there exists $\frac{d}{dx}F([a, x])$ for almost every $x \in [a, b]$, and there exists $g \in (\mathbf{C})([a, b])$ such that $g(x) = \frac{d}{dx}F([a, x])$ for almost every $x \in [a, b]$ and

$$F(I) = (C) \int_{I} g(x) dx$$

for any interval $I \subset [a, b]$. We show that g = f almost everywhere. To show this, we consider a function

$$g_n(x) = \begin{cases} f(x), & \text{if } x \in F_n, \\ g(x), & \text{if } x \notin F_n. \end{cases}$$

By [12, Theorem (5.1)] $g_n \in (\mathbf{D}^*)(I)$ for any interval $I \subset [a, b]$ and by (3)

$$\begin{split} (D^*) \int_I g_n(x) dx &= (D^*) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} (D^*) \int_{\overline{J_p}} g(x) dx \\ &= (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} (C) \int_{\overline{J_p}} g(x) dx \\ &= (L) \int_{I \cap F_n} f(x) dx + \sum_{p=1}^{\infty} F(\overline{J_p}), \end{split}$$

where $\{J_p \mid p = 1, 2, ...\}$ is the sequence of all connected components of $I^i \setminus F_n$. By comparing the equation above with (5), we obtain

$$F(I) = (D^*) \int_I g_n(x) dx.$$

Therefore we obtain $\frac{d}{dx}F([a,x]) = g_n(x) = f(x)$ for almost every $x \in F_n$. By (2) we obtain $g(x) = \frac{d}{dx}F([a,x]) = f(x)$ for almost every $x \in [a,b]$.

By Theorems 2.1, 2.2 and 2.3 we obtain the following new criteria for the C-integral.

Theorem 2.4. A function f from an interval [a, b] into \mathbb{R} is C-integrable if and only if there exists an additive interval function F on [a, b] such that the pair of f and F satisfies one of $(A)_C$, $(B)_C$, $(C)_C$ and $(D)_C$. Moreover, if the pair of f and F satisfies one of $(A)_C$, $(B)_C$, $(C)_C$ and $(D)_C$, then

$$F(I) = (C) \int_{I} f(x) dx$$

holds for any interval $I \subset [a, b]$.

References

- [1] B. Bongiorno, Un nuovo integrale per il problema della primitive, Le Matematiche 51 (1996), 299–313.
- [2] _____, On the C-integral, AMS Special Session on Nonabsolute Integration (University of Toronto, Toronto, September, 2000).
- [3] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. 62 (2000), 117–126.
- [4] A. M. Bruckner, R. J. Freissner, and J. Foran, The minimal integral which includes Lebesgue integrable functions and derivatives, Coll. Math. 50 (1986), 289–293.

- [5] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc., Providence, 1994.
- [6] R. Henstock, The general theory of integration, Clarendon Press, Oxford, 1991.
- S. Nakanishi (formerly S. Enomoto), Sur une totalisation dans les espaces de plusieurs dimensions, I, Osaka Math. J. 7 (1955), 59–102.
- [8] _____, Sur une totalisation dans les espaces de plusieurs dimensions, II, Osaka Math. J. 7 (1955), 157–178.
- S. Nakanishi, The Denjoy integrals defined as the completion of simple functions, Math. Japon. 37 (1992), 89–101.
- [10] _____, A new definition of the Denjoy's special integral by the method of successive approximation, Math. Japon. 41 (1995), 217–230.
- [11] W. F. Pfeffer, The Riemann approach to integration, Cambridge University Press, Oxford, 1993.
- [12] S. Saks, Theory of the integral, Warsaw, 1937.

Communicated by Jun Kawabe

T. Kawasaki

College of Engineering, Nihon University, Fukushima 963–8642, Japan E-mail: toshiharu.kawasaki@nifty.ne.jp

I. Suzuki

Nihon Bunka University, Tokyo 192–0986, Japan E-mail: i-suzuki@pd5.so-net.ne.jp

10