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Abstract. The C-integral was introduced by Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
Newton integral. Moreover Bongiorno, Piazza and Preiss gave some criteria for the
C-integral. On the other hand, Nakanishi gave some criteria for the restricted Denjoy
integral. In this paper we will give new criteria for the C-integral in the style of
Nakanishi.

1 Introduction and preliminaries Throughout this paper we denote by (L)(S) and
(D∗)(S) the class of all Lebesgue integrable functions and the class of all restricted Denjoy
integrable functions from a measurable set S ⊂ R into R, respectively, and we denote by
|A| the measure of a measurable set A. We recall that a gauge δ is a function from an
interval [a, b] into (0,∞) and a δ-fine McShane partition is a collection {(Ik, xk) | k =
1, . . . , k0} of non-overlapping intervals Ik ⊂ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk))
and

∑k0
k=1 |Ik| = b − a. If

∑k0
k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine

partial McShane partition.
In [3] Bongiorno, Di Piazza and Preiss gave a minimal constructive integration process

of Riemann type which contains the Lebesgue integral and the Newton integral. It is given
as follows:

Definition 1.1. A function f from an inteval [a, b] into R is said to be C-integrable if there
exists a number A such that for any positive number ε there exists a gauge δ such that∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} with
∑k0

k=1 d(Ik, xk) < 1
ε , where

d(Ik, xk) = infx∈Ik
d(x, xk). The constant A is denoted by

A = (C)
∫

[a,b]

f(x)dx.

We denote by (C)([a, b]) the class of all C-integrable functions from [a, b] into R.

We say that a function f from an interval [a, b] into R is Newton integrable if there
exists a differentiable function F from [a, b] into R such that F ′ = f on [a, b]. We denote
by (N)([a, b]) the class of all Newton integrable functions from [a, b] into R. In [3] they also
gave a criterion for the C-integral as follows:

Theorem 1.1. Let f be a function from an inteval [a, b] into R. Then f ∈ (C)([a, b]) if
and only if there exists h ∈ (N)([a, b]) such that f − h ∈ (L)([a, b]).
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By the theorem above (C)([a, b]) is the minimal class which contains (L)([a, b]) and
(N)([a, b]). Moreover it is contained in the class of all restricted Denjoy integrable functions.
Now we refer to the following theorems given by Bongiorno [1, 2].

Theorem 1.2. Let f ∈ (C)([a, b]). Then for any positive number ε there exists a gauge δ
such that

k0∑
k=1

∣∣∣∣f(xk)|Ik| − (C)
∫

Ik

f(x)dx

∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} with
∑k0

k=1 d(Ik, xk) < 1
ε .

Throughout this paper, we say that a function defined on the class of all intervals in
[a, b] is an interval function on [a, b]. If an interval function F on [a, b] satisfies F (I1 ∪ I2) =
F (I1) + F (I2) for any intervals I1, I2 ⊂ [a, b] with I1

i ∩ I2
i = ∅, where Ii is the interior of

I, then it is said to be additive. For an interval function F on [a, b], for a positive number
ε, for a gauge δ and E ⊂ [a, b] let

Vε(F, δ, E) = sup

{
k0∑

k=1

|F (Ik)|

∣∣∣∣∣ {(Ik, xk) | k = 1, . . . , k0} is a δ-fine partial McShane
partition with xk ∈ E and

∑k0
k=1 d(Ik, xk) < 1

ε

}
.

Moreover let

VCF (E) = sup
ε

inf
δ

Vε(F, δ, E).

Theorem 1.3. An interval function F on [a, b] is the primitive of a C-integrable function
if and only if VCF is absolutely continuous with respect to the Lebesgue measure, that is,
for any Lebesgue measurable set E, if |E| = 0, then VCF (E) = 0.

Definition 1.2. Let F be an interval function on [a, b]. Then F is said to be C-absolutely
continuous on E ⊂ [a, b] if for any positive number ε there exist a gauge δ and a positive
number η such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(α1) xk ∈ E for any k;

(α2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(α3)
∑k0

k=1 |Ik| < η.

We denote by ACC(E) the class of all C-absolutely continuous interval functions on E.
Moreover F is said to be C-generalized absolutely continuous on [a, b] if there exists a
sequence {Em} of measurable sets such that

∪∞
m=1 Em = [a, b] and F ∈ ACC(Em) for any

m. We denote by ACGC([a, b]) the class of all C-generalized absolutely continuous interval
functions on [a, b].
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Theorem 1.4. For any F ∈ ACGC([a, b]) there exists d
dxF ([a, x]) for almost every x ∈

[a, b], and there exists f ∈ (C)([a, b]) such that f(x) = d
dxF ([a, x]) for almost every x ∈ [a, b]

and

F (I) = (C)
∫

I

f(x)dx

for any interval I ⊂ [a, b].
Conversely the interval function F defined above for any f ∈ (C)([a, b]) satisfies F ∈

ACGC([a, b]).

On the other hand, in [7, 10] Nakanishi gave the following criteria for the restricted
Denjoy integral. Firstly Nakanishi considered the following four criteria for the pair of a
function f from [a, b] into R and an additive interval function F on [a, b].

(A) For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3)

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Fn 6= ∅.

(B) For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4)

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Mn 6= ∅.

(C) There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) for any n and for any positive number ε there exists a positive number η such
that ∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(3.1) Ik ∩ Fn 6= ∅ for any k;

(3.2)
∑k0

k=1 |Ik| < η.
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(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D) There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) for any n and for any positive number ε there exists a positive number η such
that ∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(4.1) Ik ∩ Mn 6= ∅ for any k;

(4.2)
∑k0

k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

It is clear that (A) implies (B) and (C) implies (D). Next Nakanishi gave the following
theorems for the restricted Denjoy integral.

Theorem 1.5. Let f ∈ (D∗)([a, b]) and let F be an additive interval function on [a, b]
defined by

F (I) = (D∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. Then the pair of f and F satisfies (A).

Theorem 1.6. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (A), then the pair of f and F satisfies (C). Similarly,
if the pair of a function f from an inteval [a, b] into R and an additive interval function F
on [a, b] satisfies (B), then the pair of f and F satisfies (D).
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Theorem 1.7. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (D), then f ∈ (D∗)([a, b]) and

F (I) = (D∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

By Theorems 1.5, 1.6 and 1.7 we obtain the following criteria for the restricted Denjoy
integral.

Theorem 1.8. A function f from an interval [a, b] into R is restricted Denjoy integrable if
and only if there exists an additive interval function F on [a, b] such that the pair of f and
F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of
(A), (B), (C) and (D), then

F (I) = (D∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

In this paper, motivated by the results above, we will give new criteria for the C-integral
similar to Theorems 1.5, 1.6, 1.7 and 1.8.

2 Main results Firstly we consider the following four criteria for the pair of a function
f from [a, b] into R and an additive interval function F on [a, b].

(A)C For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) for any n there exists a gauge δ such that∣∣∣∣∣
k1∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Fn 6= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(3.1) xk ∈ Fn for any k = k0 + 1, . . . , k1;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

.

(B)C For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;
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(4) for any n there exists a gauge δ such that∣∣∣∣∣
k1∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Mn 6= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying
(4.1) xk ∈ Mn for any k = k0 + 1, . . . , k1;
(4.2)

∑k1
k=k0+1 d(Ik, xk) < 1

εn
.

(C)C There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];
(2) f ∈ (L)(Fn) for any n;
(3) for any n and for any positive number ε there exist a positive number η and a

gauge δ such that ∣∣∣∣∣
k0∑

k=1

F (Ik)

∣∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying
(3.1) xk ∈ Fn for any k;
(3.2)

∑k0
k=1 d(Ik, xk) < 1

ε ;

(3.3)
∑k0

k=1 |Ik| < η.
(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D)C There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;
(3) f ∈ (L)(Fn) for any n;
(4) for any n and for any positive number ε there exist a positive number η and a

gauge δ such that ∣∣∣∣∣
k0∑

k=1

F (Ik)

∣∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying
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(4.1) xk ∈ Mn for any k;
(4.2)

∑k0
k=1 d(Ik, xk) < 1

ε ;

(4.3)
∑k0

k=1 |Ik| < η.
(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

It is clear that (A)C implies (B)C and (C)C implies (D)C . Now we give the following
theorems for the C-integral.

Theorem 2.1. Let f ∈ (C)([a, b]) and let F be an additive interval function on [a, b] defined
by

F (I) = (C)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. Then the pair of f and F satisfies (A)C .

Proof. Since f is C-integrable, it is restricted Denjoy integrable. Let {εn} be a decreasing
sequence tending to 0. By Theorem 1.5 for

{
εn

2

}
there exists an increasing sequence {Fn}

of closed sets such that (1) and (2) hold. Moreover∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ <
εn

2

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik∩Fn 6= ∅.
Since f is C-integrable, f−fχFn is also C-integrable, where χFn is the characteristic function
of Fn. Since f − fχFn = 0 on Fn, by Theorem 1.2 there exists a gauge δ such that∣∣∣∣∣

k1∑
k=k0+1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
=

∣∣∣∣∣
k1∑

k=k0+1

(C)
∫

Ik

(f − fχFn)(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
k1∑

k=k0+1

(
(C)

∫
Ik

(f − fχFn)(x)dx − (f − fχFn)(xk)|Ik|
)∣∣∣∣∣

<
εn

2
for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.1) and (3.2). Therefore∣∣∣∣∣

k1∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
≤

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ +

∣∣∣∣∣
k1∑

k=k0+1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
<

εn

2
+

εn

2
= εn
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for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of non-overlapping
intervals in [a, b] which consists of a finite family {Ik | k = 1, . . . , k0} with Ik ∩ Fn 6= ∅ and
a δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} satisfying (3.1) and (3.2),
that is, (3) holds.

Theorem 2.2. If the pair of a function f from an inteval [a, b] into R and an additive in-
terval function F on [a, b] satisfies (A)C , then the pair of f and F satisfies (C)C . Similarly,
if the pair of a function f from an inteval [a, b] into R and an additive interval function F
on [a, b] satisfies (B)C , then the pair of f and F satisfies (D)C .

Proof. Let {εn} be a decreasing sequence tending to 0. Then there exists an increasing
sequence {Fn} of closed sets such that (1) and (2) of (C)C hold. By Theorem 1.6 (4) of
(C)C holds. Next we show (3) of (C)C . Let n be a natural number and let ε be a positive
number. Since f ∈ (L)(Fn), there exists a positive number ρ(n, ε) such that, if |E| < ρ(n, ε),
then ∣∣∣∣(L)

∫
E∩Fn

f(x)dx

∣∣∣∣ <
ε

2
.

Take a natural number m(n, ε) such that εm(n,ε) < ε
2 and m(n, ε) ≥ n, and put η =

ρ(m(n, ε), ε). By (3) of (A)C for m(n, ε) there exists a gauge δm(n,ε). Let {(Ik, xk) | k =
1, . . . , k0} be a δm(n,ε)-fine partial McShane partition in [a, b] satisfying (3.1), (3.2) and (3.3)
of (C)C . Then we obtain∣∣∣∣∣

k0∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fm(n,ε)

f(x)dx

)∣∣∣∣∣ < εm(n,ε) <
ε

2
.

Moreover, since
∑k0

k=1 |Ik| < η = ρ(m(n, ε), ε), we obtain∣∣∣∣∣
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

∣∣∣∣∣ <
ε

2
.

Therefore∣∣∣∣∣
k0∑

k=1

F (Ik)

∣∣∣∣∣ ≤

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fm(n,ε)

f(x)dx

)∣∣∣∣∣ +

∣∣∣∣∣
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

∣∣∣∣∣
<

ε

2
+

ε

2
= ε.

Similarly, we can prove that, if the pair of f and F satisfies (B)C , then the pair of f
and F satisfies (D)C .

Theorem 2.3. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (D)C , then f ∈ (C)([a, b]) and

F (I) = (C)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].
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Proof. By (1) and (4) we obtain F ∈ ACGC([a, b]). By Theorem 1.4 there exists d
dxF ([a, x])

for almost every x ∈ [a, b], and there exists g ∈ (C)([a, b]) such that g(x) = d
dxF ([a, x]) for

almost every x ∈ [a, b] and

F (I) = (C)
∫

I

g(x)dx

for any interval I ⊂ [a, b]. We show that g = f almost everywhere. To show this, we
consider a function

gn(x) =
{

f(x), if x ∈ Fn,
g(x), if x 6∈ Fn.

By [12, Theorem (5.1)] gn ∈ (D∗)(I) for any interval I ⊂ [a, b] and by (3)

(D∗)
∫

I

gn(x)dx = (D∗)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(D∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(C)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where {Jp | p = 1, 2, . . .} is the sequence of all connected components of Ii \ Fn. By
comparing the equation above with (5), we obtain

F (I) = (D∗)
∫

I

gn(x)dx.

Therefore we obtain d
dxF ([a, x]) = gn(x) = f(x) for almost every x ∈ Fn. By (2) we obtain

g(x) = d
dxF ([a, x]) = f(x) for almost every x ∈ [a, b].

By Theorems 2.1, 2.2 and 2.3 we obtain the following new criteria for the C-integral.

Theorem 2.4. A function f from an interval [a, b] into R is C-integrable if and only if
there exists an additive interval function F on [a, b] such that the pair of f and F satisfies
one of (A)C , (B)C , (C)C and (D)C . Moreover, if the pair of f and F satisfies one of (A)C ,
(B)C , (C)C and (D)C , then

F (I) = (C)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].
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