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Abstract. We consider conditions on a k-graph Λ, a semigroup S and
a functor η : Λ→ S that ensure that the C∗-algebra of the skew-product
graph Λ×η S is simple. Our results give some necessary and sufficient
conditions for the AF-core of a k-graph C∗-algebra to be simple.

1 Introduction In [24] Robertson and Steger investigated C∗-algebras that
they considered to be higher-rank versions of the Cuntz-Krieger algebras. Sub-
sequently in [9] Kumjian and Pask introduced higher-rank graphs, or k-graphs,
as a graphical means to provide combinatorial models for the Cuntz-Krieger
algebras of Robertson and Steger. They showed how to construct a C∗-algebra
that is associated to a k-graph. Since then k-graphs and their C∗-algebras have
attracted a lot of attention from many authors (see [1,3–5,9,12–14,17–19,21,
23]).

Roughly speaking, a k-graph is a category Λ together with a functor d :
Λ → Nk satisfying a certain factorisation property. A 1-graph is then the
path category of a directed graph. Given a functor η : Λ → S, where S is a
semigroup with identity, we may form the skew product k-graph Λ×ηS. Skew
product graphs play an important part in the development of k-graph C∗-
algebras. For example [9, Corollary 5.3] shows that C∗(Λ×dZk) is isomorphic
to C∗(Λ) ×γ Tk where γ : Tk → AutC∗(Λ) is the canonical gauge action.
Skew product graphs feature in nonabelian duality: In [13] it is shown that
if a right-reversible semigroup (Ore semigroup) S acts freely on a k-graph Λ
then the crossed product C∗(Λ)×S is stably isomorphic to C∗(Λ/S). On the
other hand if S is a group G then C∗(Λ ×η G) is isomorphic to the crossed
product C∗(Λ)×δη G where δη is the coaction of G on C∗(Λ) induced by η.

The main purpose of this paper is to investigate necessary and sufficient
conditions for the C∗-algebra of a skew product k-graph to be simple. We
will be particularly interested in the specific case when S = Nk and η = d. It
can be shown that simplicity of C∗(Λ×d Nk) is equivalent to simplicity of the
fixed point algebra (AF core) C∗(Λ)γ. This is important as many results in

2010 Mathematics Subject Classification. Primary 46L05.
Key words and phrases. C∗-algebra; Graph algebra; k-graph.



2

the literature apply particularly when AF core is simple; see [8, Proposition
3.8] for example.

We begin by introducing some basic facts we will need during this paper.

2 Background

2.1 Basic facts about k-graphs All semigroups in this paper will be
countable, cancellative and have an identity, hence any semigroup may be
considered as a category with a single object. The semigroup Nk is freely gener-
ated by {e1, . . . , ek} and comes with the usual order structure: if n =

∑k
i=1 niei

and m =
∑k

i=1miei then m > n (resp. m ≥ n) if mi > ni (resp. mi ≥ ni)
for all i. For m,n ∈ Nk we define m ∨ n ∈ Nk by (m ∨ n)i = max{mi, ni} for
i = 1, . . . , k.

A directed graph E is a quadruple (E0, E1, r, s) where E0, E1 are countable
sets of vertices and edges. The direction of an edge e ∈ E1 is given by the
maps r, s : E1 → E0. A path λ of length n ≥ 1 is a sequence λ = λ1 · · ·λn of
edges such that s(λi) = r(λi+1) for i = 1, . . . , n−1. The set of paths of length
n ≥ 1 is denoted En. We may extend r, s to En for n ≥ 1 by r(λ) = r(λ1)
and s(λ) = s(λn) and to E0 by r(v) = v = s(v).

A higher-rank graph or k-graph is a combinatorial structure, and is a k-
dimensional analogue of a directed graph. A k-graph consists of a countable
category Λ together with a functor d : Λ → Nk, known as the degree map,
with the following factorisation property: for every morphism λ ∈ Λ and every
decomposition d(λ) = m+n, there exist unique morphisms µ, ν ∈ Λ such that
d(µ) = m, d(ν) = n, and λ = µν.

For n ∈ Nk we define Λn := d−1(n) to be those morphisms in Λ of degree
n. Then by the factorisation property Λ0 may be identified with the objects
of Λ, and are called vertices. For u, v ∈ Λ0 and X ⊆ Λ we set

uX = {λ ∈ X : r(λ) = u} Xv = {λ ∈ X : s(λ) = v} uXv = uX ∩Xv.

A k-graph Λ is visualised by a k-coloured directed graph EΛ with vertices Λ0

and edges tki=1Λei together with range and source maps inherited from Λ called
its 1-skeleton. The 1-skeleton is provided with square relations CΛ between
the edges in EΛ, called factorisation rules, which come from factorisations of
morphisms in Λ of degree ei + ej where i 6= j. By convention the edges of
degree e1 are drawn blue (solid) and the edges of degree e2 are drawn red
(dashed). For more details about the 1-skeleton of a k-graph see [21]. On the
other hand, if G is a k-coloured directed graph with a complete, associative
collection of square relations C completely determines a k-graph Λ such that
EΛ = G and CΛ = C (see [6]).
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A k-graph Λ is row-finite if for every v ∈ Λ0 and every n ∈ Nk, vΛn is
finite. A k-graph has no sources if vΛn 6= ∅ for all v ∈ Λ0 and nonzero n ∈ Nk.
A k-graph has no sinks is Λnv 6= ∅ for all v ∈ Λ0 and nonzero n ∈ Nk.

For λ ∈ Λ and m ≤ n ≤ d(λ), we define λ(m,n) to be the unique
path in Λn−m obtained from the k-graph factorisation property such that
λ = λ′(λ(m,n))λ′′ for some λ′ ∈ Λm and λ′′ ∈ Λd(λ)−n.

Examples 2.1. (a) In [9, Example 1.3] it is shown that the path category E∗ =
∪i≥0E

i of a directed graph E is a 1-graph, and vice versa. For this reason
we shall move seamlessly between 1-graphs and directed graphs.

(b) For k ≥ 1 let Tk be the category with a single object v and gener-
ated by k commuting morphisms {f1, . . . , fk}. Define d : Tk → Nk by
d(fn1

1 . . . fnkk ) = (n1, . . . , nk) then it is straightforward to check that Tk is
a k-graph. We frequently identify Tk with Nk via the map fn1

1 · · · f
nk
k 7→

(n1, . . . , nk).

(c) For k ≥ 1 define a category ∆k as follows: Let Mor ∆k = {(m,n) ∈
Zk × Zk : m ≤ n} and Obj ∆k = Zk; structure maps r(m,n) = m,
s(m,n) = n, and composition (m,n)(n, p) = (m, p). Define d : ∆k → Nk

by d(m,n) = n−m, then one checks that (∆k, d) is a row-finite k-graph.
We identify Obj ∆k with {(m,m) : m ∈ Zk} ⊂ Mor ∆k.

(d) For n ≥ 1 let n = {1, . . . , n}. For m,n ≥ 1 let θ : m × n → m × n a
bijection. Let F2

θ be the 2-graph which has 1-skeleton which consists of
with single vertex v and edges f1, . . . , fm, g1, . . . , gn, such that fi have the
same colour (blue) for i ∈ m and gj have the same colour (red) for j ∈ n
together with complete associative square relations figj = gj′fi′ where
θ(i, j) = (i′, j′) for (i, j) ∈ m× n (for more details see [3, 4, 19]).

2.2 Skew product k-graphs Let Λ be a k-graph and η : Λ→ S a functor
into a semigroup S. We can make the cartesian product Λ×S into a k-graph
Λ×η S by taking (Λ×η S)0 = Λ0 × S, defining r, s : Λ×η S → (Λ×η S)0 by

(1) r(λ, t) = (r(λ), t) and s(λ, t) = (s(λ), tη(λ)),

defining the composition by

(λ, t)(µ, u) = (λµ, t) when s(λ, t) = r(µ, u) (so that u = tη(λ) ),

and defining d : Λ×ηS → Nk by d(λ, t) = d(λ). As in [13] it is straightforward
to show that this defines a k-graph.

Remark 2.2. If Λ is row-finite with no sources and η : Λ → S a functor then
Λ×η S is row-finite with no sources.
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A k-graph morphism is a degree preserving functor between two k-graphs.
If a k-graph morphism is bijective, then it is called an isomorphism.

Examples 2.3. (i) Let Λ be a k-graph and η : Λ→ S a functor, where S is a
semigroup and Λ×ηS the associated skew product graph. Then the map
π : Λ×η S → Λ given by π(λ, s) = λ is a surjective k-graph morphism.

(ii) For ` ≥ 1 the map (`,m) 7→ (m, ` + m) gives an isomorphism from
Tk ×d Zk to ∆k.

Definition 2.4. Let Λ,Γ be row-finite k-graphs. A surjective k-graph mor-
phism p : Λ → Γ has r-path lifting if for all v ∈ Λ0 and λ ∈ p(v)Γ there is
λ′ ∈ vΛ such that p(λ′) = λ. If λ′ is the unique element with this property
then p has unique r-path lifting.

Example 2.5. Let Λ be a row-finite k-graph and η : Λ → S a functor where
S is a semigroup, and Λ ×η S the associated skew product graph. The map
π : Λ×η S → Λ described in Examples 2.3(i) has unique r-path lifting.

2.3 Connectivity A k-graph Λ is connected if the equivalence relation on
Λ0 generated by the relation {(u, v) : uΛv 6= ∅} is Λ0 × Λ0. The k-graph Λ is
strongly connected if for all u, v ∈ Λ0 there is N > 0 such that uΛNv 6= ∅. If
Λ is strongly connected, then it is connected and has no sinks or sources. The
k-graph Λ is primitive if there is N > 0 such that uΛNv 6= ∅ for all u, v ∈ Λ0.
If Λ is primitive then it is strongly connected.

Examples 2.6. The graphs Tk and F2
θ in Examples 2.1 are primitive as they

have one vertex.

The connectivity of a k-graph may also be described in terms of its com-
ponent matrices as defined in [9, §6]: Given a k-graph Λ, for 1 ≤ i ≤ k
and u, v ∈ Λ0, we define k non-negative Λ0 × Λ0 matrices Mi with entries
Mi(u, v) = |uΛeiv|. Using the k-graph factorisation property, we have that
|uΛei+ejv| = |uΛej+eiv| for all u, v ∈ Λ0, and so MiMj = MjMi. For m =
(m1, . . . ,mk) ∈ Nk and u, v ∈ Λ0, we have |uΛmv| = (Mm1

1 · · ·M
mk
k )(u, v) =

Mm(u, v), using multiindex notation. The following lemma follows directly
from the above definitions.

Lemma 2.7. Let Λ be a row-finite k-graph with no sources.

(a) Then Λ is strongly connected if and only if for all pairs u, v ∈ Λ0 there is
N ∈ Nk such that MN(u, v) > 0.

(b) Then Λ is primitive if and only if there is N > 0 such that MN(u, v) > 0
for all pairs u, v ∈ Λ0.
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Remarks 2.8. Following [18, §4], a primitive 1-graph Λ is strongly connected
with period 1; that is, the greatest common divisor of all n such that vΛnv 6= ∅
for some v ∈ Λ0 is 1.

Lemma 2.9. Let Λ be a k-graph with no sinks, and Λ0 finite. Then for all
v ∈ Λ0, there exists w ∈ Λ0 and α ∈ wΛw such that d(α) > 0 and wΛv 6= ∅.

Proof. Let p = (1, . . . , 1) ∈ Nk. Since v is not a sink, there exists β1 ∈ Λpv.
Since r(β1) is not a sink, there exists β2 ∈ Λpr(β1). Inductively, there exist
infinitely many βi such that d(βi) = p and r(βi) = s(βi+1). Since Λ0 is finite,
there exists w ∈ Λ0 such that r(βi) = w for infinitely many i. Suppose
r(βn) = w = r(βm) with m > n. Then α = βm . . . βn+1 has the requisite
properties, and wΛv 6= ∅, since βn . . . β1 ∈ wΛv.

2.4 The graph C∗-algebra Let Λ be a row-finite k-graph with no sources,
then following [9], a Cuntz-Krieger Λ-family in a C∗-algebra B consists of
partial isometries {Sλ : λ ∈ Λ} in B satisfying the Cuntz-Krieger relations :

(CK1) {Sv : v ∈ Λ0} are mutually orthogonal projections;

(CK2) SλSµ = Sλµ whenever s(λ) = r(µ);

(CK3) S∗λSλ = Ss(λ) for every λ ∈ Λ;

(CK4) Sv =
∑
{λ∈vΛn} SλS

∗
λ for every v ∈ Λ0 and n ∈ Nk.

The k-graph C∗-algebra C∗(Λ) is generated by a universal Cuntz-Krieger Λ-
family {sλ}. By [9, Proposition 2.11] there exists a Cuntz-Krieger Λ-family
such that each vertex projection Sv (and hence by (CK3) each Sλ) is nonzero
and so there exists a nonzero universal k-graph C∗-algebra for a Cuntz-Krieger
Λ-family. Moreover,

C∗(Λ) = span{sλs∗µ : λ, µ ∈ Λ, s(λ) = s(µ)} (see [9, Lemma 3.1]).

We will use [23, Theorem 3.1] by Robertson and Sims when considering the
simplicity of graph C∗-algebras:

Theorem 2.10 (Robertson-Sims). Suppose Λ is a row-finite k-graph with no
sources. Then C∗(Λ) is simple if and only if Λ is cofinal and aperiodic.

We now focus on the two key properties involved in the simplicity criterion
of Theorem 2.10, namely aperiodicity and cofinality. Our attention will be
directed towards applying these conditions on skew product graphs.
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3 Aperiodicity Our definition of aperiodicity is taken from Robertson-
Sims, [23, Theorem 3.2].

Definitions 3.1. A row-finite k-graph Λ with no sources has no local period-
icity at v ∈ Λ0 if for all m 6= n ∈ Nk there exists a path λ ∈ vΛ such that
d(λ) ≥ m ∨ n and

λ(m,m+ d(λ)− (m ∨ n)) 6= λ(n, n+ d(λ)− (m ∨ n)).

Λ is called aperiodic if every v ∈ Λ0 has no local periodicity.

Examples 3.2. (a) The k-graph ∆k is aperiodic for all k ≥ 1. First observe
that there is no local periodicity at v = (0, 0). Given m 6= n ∈ Nk,
let N ≥ m ∨ n; then λ = (0, N) is the only element of v∆k. Then
λ(m,m) = (m,m) 6= (n, n) = λ(n, n). A similar argument applies for any
other vertex w = (n, n) in ∆k and so there is no local periodicity at w for
all w ∈ ∆0

k.

(b) The k-graph Tk is not aperiodic for all k ≥ 1. For all n ∈ Nk one checks
that fn1

1 · · · f
nk
k is the only element of vT nk . Hence given m 6= n ∈ Nk it

follows that for all λ ∈ vΛN with N ≥ m ∨ n we have

λ(m,m+ (m ∨ n)) = λ(n, n+ (m ∨ n)).

Since the map π : Λ ×η S → Λ has unique r-path lifting, we wish to know if
we can deduce the aperiodicity of Λ ×η S from that of Λ. A corollary of our
main result Theorem 3.3, shows that this is true.

Theorem 3.3. Let Λ,Γ be row-finite k-graphs with no sources and p : Λ→ Γ
have r-path lifting. If Γ is aperiodic, then Λ is aperiodic.

Proof. Suppose that Γ is aperiodic. Let v ∈ Λ0 and m 6= n ∈ Nk. Since Γ
is aperiodic, there exists λ ∈ p(v)Γ with d(λ) ≥ m ∨ n such that λ(m,m +
d(λ)− (m∨ n)) 6= λ(n, n+ d(λ)− (m∨ n)). By r-path lifting there is λ′ ∈ vΛ
with p(λ′) = λ such that d(λ′) ≥ m ∨ n and

λ′(m,m+ d(λ)− (m ∨ n)) 6= λ′(n, n+ d(λ)− (m ∨ n)),

and so Λ is aperiodic.

The converse of Theorem 3.3 is false:

Example 3.4. The surjective k-graph morphism p : ∆k → Tk given by p(m,m+
ei) = fi for all m ∈ Zk and i = 1, . . . , k has r-path lifting. However by
Examples 3.2 we see that ∆k

∼= Tk ×d Zk is aperiodic but Tk is not.
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Corollary 3.5. Let Λ be a row-finite k-graph with no sources, η : Λ → S a
functor where S is a semigroup and Λ×η S the associated skew product graph.
If Λ is aperiodic then Λ×η S is aperiodic.

Proof. Follows from Theorem 3.3 and Example 2.5.

In some cases the aperiodicity of a skew product graph Λ×η S can be deduced
directly from properties of η.

Proposition 3.6. Suppose S is a semigroup, Λ is a row-finite k-graph with
no sources, η : Λ → S is a functor, and there exists a map φ : S → Zk such
that d = φ ◦ η. Then Λ×η S is aperiodic.

Proof. Fix (v, s) ∈ (Λ ×η S)0 and m 6= n ∈ Nk. Let λ ∈ (v, s)(Λ ×η S) be
such that d(λ) ≥ m ∨ n. Observe that λ(m,m) = s(λ(0,m)), λ(m,m) is of
the form (w, sη(λ(0,m))) for some w ∈ Λ0. Similarly, λ(n, n) is of the form
(w′, sη(λ(0, n))) for some w′ ∈ Λ0.

We claim λ(m,m) 6= λ(n, n): Suppose, by hypothesis, η(λ(0, n)) = η(λ(0,m)).
Then n = φ◦η(λ(0, n)) = φ◦η(λ(0,m)) = m, which provides a contradiction,
and m 6= n. Then η(λ(0,m)) 6= η(λ(0, n)), and so λ(m,m) 6= λ(n, n), and
hence λ(m,m+ d(λ)− (m ∨ n)) 6= λ(n, n+ d(λ)− (m ∨ n)).

Corollary 3.7. Suppose Λ is a row-finite k-graph with no sources. Then
Λ×d Nk and Λ×d Zk are aperiodic.

Proof. Apply Proposition 3.6 with η = d and S = Nk,Zk respectively.

4 Cofinality We will use the Lewin-Sims definition of cofinality, [12, Re-
mark A.3]. By [12, Appendix A] this definition is equivalent to the other
standard definitions of cofinality:

Definition 4.1. A row-finite, k-graph Λ with no sources is cofinal if for all
pairs v, w ∈ Λ0 there exists N ∈ Nk such that vΛs(α) 6= ∅ for every α ∈ wΛN .

Lemma 4.2. Let Λ be a row-finite k-graph with no sources.

(a) If Λ is cofinal then Λ is connected.

(b) Suppose that for all pairs v, w ∈ Λ0 there exists N ∈ Nk such that
vΛs(α) 6= ∅ for every α ∈ wΛN . Then for n ≥ N we have vΛs(α) 6= ∅ for
every α ∈ wΛn.
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Proof. Fix v, w ∈ Λ0. If Λ is cofinal it follows that there is α ∈ wΛ such
that wΛs(α) and vΛs(α) are non-empty. It then follows that (v, w) belongs
to the equivalence relation described in Section 2.3. Since v, w were arbitrary
it follows that the equivalence relation is Λ0 × Λ0 and so Λ is connected.

Fix v, w ∈ Λ0, then there is N ∈ Nk such that vΛs(α) 6= ∅ for every
α ∈ wΛN . Let n ≥ N and consider β ∈ wΛn then β′ = β(0, N) ∈ wΛN and so
by hypothesis there is λ ∈ vΛs(β′). Then λβ(N, n) ∈ vΛs(β) and the result
follows.

Lemma 4.3. Let Λ be a row-finite k-graph with no sources with skeleton EΛ.
If EΛ is cofinal then Λ is cofinal. Furthermore, Λ is strongly connected if and
only if EΛ strongly connected

Proof. Fix v, w ∈ Λ0 = E0
Λ. As EΛ is cofinal there is n ∈ N with vEΛs(α) 6= ∅

for all α ∈ wEn
Λ. Let N ∈ Nk be such that

∑k
i=1 Ni = n. Then for all

α′ ∈ wΛN we have α′ ∈ En
Λ and so vΛNs(α′) 6= ∅.

Suppose that Λ is strongly connected and v, w ∈ E0
Λ = Λ0. As Λ is strongly

connected there is α ∈ vΛw with d(α) > 0. Let n =
∑n

i=1 d(α)i then n > 0
and vEΛw 6= ∅, so EΛ is strongly connected. Suppose that EΛ is strongly
connected, and v, w ∈ Λ0 = E0

Λ. As Λ has no sources, there is α ∈ vEk
Λ which

uses an edge of each of the k-colours. Let u = s(α). Since EΛ is strongly
connected there is β ∈ uEn

Λw. Let λ be the element of Λ which may be
represented by αβ ∈ EΛ. Then λ ∈ vΛw and d(λ) > 0 and so Λ is strongly
connected.

Remark 4.4. The converse to the first part of Lemma 4.3 is not true: Let Λ
be the 2-graph which is completely determined by its 1-skeleton as shown:
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Then Λ is cofinal: For example for v, w as shown, N = (1, 0) will suffice.
However EΛ is not cofinal: For example for v, w as shown, for any n ≥ 0 the
vertex which is the source of the vertical path of length n with range w does
not connect to v.

The following result establishes a link between cofinality and strongly connec-
tivity for a row-finite k-graph.
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Proposition 4.5. Suppose Λ is a row-finite k-graph with no sources.

1. If Λ is strongly connected then Λ is cofinal.

2. If Λ is cofinal, has no sinks and Λ0 finite then Λ is strongly connected.

Proof. Suppose Λ is strongly connected. Fix v, w ∈ Λ0 then for N = e1 we
have vΛs(α) 6= ∅ for all α ∈ wΛN since Λ is strongly connected, and so Λ is
cofinal.

Suppose Λ is cofinal. Fix u, v ∈ Λ0. Then by Lemma 2.9, there exists
w ∈ Λ0 and α ∈ wΛw such that d(α) > 0 and wΛv 6= ∅. Let α′ ∈ wΛv. Given
u,w ∈ Λ0, since Λ is cofinal and has no sources, by Lemma 4.2(ii) there exists
N ∈ Nk such that for all n ≥ N and all α′′ ∈ wΛn, there exists β ∈ uΛs(α′′).
Since d(α) > 0 we may choose t ∈ N such that td(α) > N . Then αt ∈ wΛn

where n > N , and so by cofinality of Λ exists β ∈ uΛs(αt) = uΛw. Hence
βαα′ ∈ uΛv with d(βαα′) > d(α) > 0 and so Λ is strongly connected.

Example 4.6. The condition that Λ0 is finite in Proposition 4.5(2) is essential:
For instance ∆k is cofinal by Lemma 4.3 since its skeleton is cofinal; however
it is not strongly connected by Lemma 4.3 since its skeleton is not strongly
connected.

Since the map π : Λ×η S → Λ has unique r-path lifting, we wish to know
if we can deduce the cofinality of Λ×η S from that of Λ. By Theorem 4.7 the
image of a cofinal k-graph under a map with r-path lifting is cofinal, however
Example 4.9 shows that the converse is not true. For a cofinal k-graph Λ,
we must then seek additional conditions on the functor η which guarantees
that Λ×η S is cofinal. In Definition 4.10 we introduce the notion of (Λ, S, η)
cofinality to address this problem.

Theorem 4.7. Suppose Λ,Γ be row-finite k-graphs with no sources and p :
Λ→ Γ have r-path lifting. If Λ is cofinal then Γ is cofinal.

Proof. Suppose that Λ is cofinal. Fix v, w ∈ Γ0. Let v′, w′ ∈ Λ0 be such that
p(v′) = v and p(w′) = w. As Λ is cofinal there is an N such that for all
α′ ∈ w′ΛN there is β′ ∈ v′Λs(α′). Then for α ∈ vΓN there is α′ ∈ v′ΛN with
p(α′) = α. By hypothesis there is β′ ∈ v′Λs(α′), and so β = p(β′) satisfies
s(β) = s(α) and r(β) = v, hence vΛs(α) 6= ∅ as required.

Corollary 4.8. Let Λ be a row-finite k-graph with no sources, η : Λ → S a
functor where S is a semigroup and Λ×η S the associated skew product graph.
If Λ×η S is cofinal then Λ is cofinal.

The converse of Theorem 4.7 is false:
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Example 4.9. Consider the following 2-graph Λ with 1-skeleton

.
u

.
v

.
w

e

f

g

h

a

b

c d

t1

t2

and factorisation rules: ec = t1e and ha = t2e for paths from u to v; cf = ft1
and bg = ft2 for paths from v to u. Also hd = t1h and eb = t2h for paths
from w to v; dg = gt1 and af = gt2 for paths from v to w. By Lemma 4.3 Λ
is strongly connected as its skeleton is strongly connected. Note there are no
paths of degree e1 + e2 from a vertex to itself.

Since M1 =
(

0 1 0
1 0 1
0 1 0

)
and M2 =

(
1 0 1
0 2 0
1 0 1

)
, we calculate that M (2j1,j2) =

2j1+j2−1M2 and M (2j1+1,j2) = 2j1+j2+1M1. Hence M (2j−1,2j−1) =
( 0 4j 0

4j 0 4j
0 4j 0

)
and

M (2j,2j) =
( 4j 0 4j

0 8j 0
4j 0 4j

)
. In particular by Lemma 2.7 (b) Λ is not primitive, even

though it is strongly connected.
We claim that the skew product graph Λ ×d Z2 is not cofinal. Consider

v1 = (v, (m,n)) and v2 = (v, (m + 1, n)) in (Λ ×d Z2)0. We claim that for
all N ∈ N2, for all α ∈ v1(Λ ×d Z2)N , we have v2(Λ ×d Z2)s(α) 6= ∅. Let
N = (N1, N2). Suppose N1 is even. Then for all α ∈ v1(Λ ×d Z2)N , s(α) =
(v, (m+N1, n+N2)). In order for this vertex to connect to (v, (m+ 1, n)), we
have M (N1−1,N2)(v, v) 6= 0. But N1−1 is odd, and this matrix entry is zero. If
N1 is odd, then s(α) = (u, (m+N1, n+N2)) or s(α) = (w, (m+N1, n+N2)).
In order for either of these vertices to connect to (v, (m+ 1, n)), we must have
M (N1−1,N2)(u, v) 6= 0, or M (N1−1,N2)(w, v) 6= 0. But N1−1 is even, and so both
of these matrix entries are zero. Hence Λ×d Z2 is not cofinal, even though Λ
is cofinal.

To establish a sufficient condition for Λ ×η S to be cofinal, we need Λ to be
cofinal and an additional condition on η.

Definition 4.10. Let Λ be a row-finite k-graph with no sources and η : Λ→ S
a functor, where S is a semigroup. The system (Λ, S, η) is cofinal if for all
v, w ∈ Λ0, a, b ∈ S, there exists N ∈ Nk such that for all α ∈ wΛN , there
exists β ∈ vΛs(α) such that aη(β) = bη(α).

Proposition 4.11. Let Λ be a row-finite k-graph with no sources and η : Λ→
S a functor, where S is a semigroup and Λ ×η S the associated skew product
graph. Then the system (Λ, S, η) is cofinal if and only if Λ×η S is cofinal.
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Proof. Suppose Λ ×η S is cofinal. Fix a, b ∈ S and v, w ∈ Λ0. By hypothesis
there is N ∈ Nk such that (v, a)(Λ×η S)s(α, b) is non-empty for every (α, b) ∈
(w, b)(Λ ×η S)N . In particular for all α ∈ wΛN there exists β ∈ wΛN such
that aη(β) = bη(α), and so (Λ, S, η) is cofinal.

Now suppose (Λ, S, η) is cofinal. Fix (v, a), (w, b) ∈ (Λ×η S)0. By hypoth-
esis there exists N ∈ Nk such that for all α ∈ wΛN , there exists β ∈ vΛs(α)
with aη(β) = bη(α). In particular for all (α, b) ∈ (w, b)(Λ ×η S)N there is
(β, a) ∈ (v, a)Λs(α, b), and so Λ×η S is cofinal.

Theorem 4.12. Let Λ be an aperiodic row-finite k-graph with no sources,
η : Λ→ S a functor, where S is a semigroup and Λ×η S the associated skew
product graph. Then C∗(Λ ×η S) is simple if and only if the system (Λ, S, η)
is cofinal.

Proof. If the system (Λ, S, η) is cofinal, then by Proposition 4.11, Λ ×η S is
cofinal. By Corollary 3.5, Λ ×η S is aperiodic and so by [23, Theorem 3.1],
C∗(Λ×η S) is simple.

Now suppose that C∗(Λ×ηS) is simple. Then by [23, Theorem 3.1], Λ×ηS
is cofinal. By Proposition 4.11 this implies that (Λ, S, η) is cofinal.

The condition of (Λ, S, η) cofinality is difficult to check in practice. For
1-graphs it was shown in [18, Proposition 5.13] that Λ ×d Zk is cofinal if Λ
is primitive1. We seek an equivalent condition for k-graphs which guarantees
(Λ, S, η) cofinality.

5 Primitivity and left-reversible semigroups A semigroup S is said to
be left-reversible if for all s, t ∈ S we have sS ∩ tS 6= ∅. It is more common to
work with right-reversible semigroups, which are then called Ore semigroups
(see [13]). In analogy with the results of Dubriel it can be shown that a
left-reversible semigroup has an enveloping group Γ such that Γ = SS−1.

In equation (1) we see that functor η : Λ→ S multiplies on the right in the
semigroup coordinate in the definition of the source map in a skew product
graph Λ ×η S. This forces us to consider left-reversible semigroups here. In
order to avoid confusion we have decided not to call them Ore.

Examples 5.1. (i) Any abelian semigroup is automatically right- and left-
reversible. Moreover, any group is a both a right- and left-reversible
semigroup.

(ii) Let N denote the semigroup of natural numbers under addition and N×
denote the semigroup of nonzero natural numbers under multiplication.
Let S = N× N× be gifted with the associative binary operation ? given

1Actually strongly connected with period 1 which is equivalent to primitive
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by (m1, n1) ? (m2, n2) = (m1n2 + m2, n1n2), then one checks that S
is a nonabelian left-reversible semigroup. It is not right-reversible; for
example, S(m,n) ∩ S(p, q) = ∅ when n = q = 0 and m 6= p.

(iii) The free semigroup F+
n on n ≥ 2 generators is not an left-reversible

semigroup since for all s, t ∈ F+
n with s 6= t we have sF+

n ∩ tF+
n = ∅ as

there is no cancellation, and so not only the left-reversibility but also the
right-reversibility conditions cannot be satisfied.

A preorder is a reflexive, transitive relation ≤ on a set X. A preordered
set (X,≤) is directed if the following condition holds: for every x, y ∈ X, there
exists z ∈ X such that x ≤ z and y ≤ z. A subset Y of X is cofinal if for
each x ∈ X there exists y ∈ Y such that x ≤ y. We say that sets X ≤ Y if
x ≤ y for all x ∈ X and for all y ∈ Y . We say that t ∈ S is strictly positive if
{tn : n ≥ 0} is a cofinal set in S.

The following result appears as [15, Lemma 2.2] for right-reversible semi-
groups.

Lemma 5.2. Let S be a left-reversible semigroup with enveloping group Γ, and
define ≥l on Γ by h ≥l g if and only if g−1h ∈ S. Then ≥l is a left-invariant
preorder that directs Γ, and for any t ∈ S, tS is cofinal in S.

Our first attempt at a condition on η which guarantees cofinality of (Λ, S, η)
is one which ensures that η takes arbitrarily large values on paths which ter-
minate a given vertex.

Definition 5.3. Let Λ be a k-graph with no sources and η : Λ → S be a
functor where S is a left-reversible semigroup. We will say that η is upper dense
if for all w ∈ Λ0 and a, b ∈ S there exists N ∈ Nk such that bη(wΛN) ≥l a.

Lemma 5.4. Let (Λ, d) be a row-finite k-graph with no sources then d is upper
dense for Λ.

Proof. Since Λ has no sources it is immediate that wΛN 6= ∅ for all w ∈ Λ0

and N ∈ Nk. For any b, a ∈ Nk we have b + d(wΛN) = b + N ≥ a provided
N ≥ a.

Examples 5.5. (i) Let B2 be the 1-graph which is the path category of the
directed graph with a single vertex v and two edges e, f . Define a functor
η : B2 → N by η(e) = 1 and η(f) = 0. We may form the skew product
B2 ×η N with 1-skeleton:

. . . . . . .
(v, 0) (v, 1) (v, 2) (v, 3)
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Fix a, b ∈ N, then since n ∈ η(vBn
2 ) for all n ∈ N it follows that if we

choose N = a, then b + η(vBN
2 ) ≥ a and so η is upper dense. However

(B2,N, η) is not cofinal: Choose a = 1, b = 0, then for all N ≥ 0 there is
fN ∈ vBN

2 is such that

b+ η(fN) = 0 6= 1 + η(β) for all β ∈ B2v.

(ii) Define a functor η from T2 to N2 such that η(f1) = (2, 0), and η(f2) =
(0, 1). We may form the skew product T2 ×η N2 with the following 1-
skeleton:

.
(0, 0)

.
(0, 1)

.
(0, 2)

.
(0, 3)

.
(0, 4)

.
(0, 1)

.
(1, 1)

.
(1, 2)

.
(1, 3)

.
(1, 4)

.
(0, 2)

.
(1, 2)

.
(2, 2)

.
(3, 2)

.
(4, 2)

.
(0, 3)

.
(1, 3)

.
(2, 3)

.
(3, 3)

.
(4, 3)

We claim that the functor η is not upper dense: Fix b = (b1, b2) and a =
(a1, a2) in N2. Let N1 be such that b1+2N1 ≥ a1 and N2 be such that b2+
N2 ≥ a2 then bη(vTN2 ) ≥l u where N = (N1, N2). Moreover (T2,N2, η)
is not cofinal: Let b = (0, 0) and a = (1, 0) then since η(fN1

1 fN2
2 ) =

(2N1, N2) it follows that there cannot be N = (N1, N2) ∈ N2 such that
for α ∈ vTN2 there is β ∈ vT2v with bη(α) = aη(β).

(iii) Taking T2 again, we define a functor η : T2 → N2 by η(f1) = (1, 0) and
η(f2) = (1, 1). The skew product graph has 1-skeleton:

. . . . .

. . . . .

. . . . .

We claim that η is upper dense: Fix b = (b2, b2) and a = (a1, a2) in N2

then there isN1 such that b1+N1 ≥ a1 andN2 such that b2+N1+N2 ≥ a2.
Then with N = (N1, N2) for all α ∈ vTN2 we have bη(α) ≥l a. In this case
(T2,N2, η) is cofinal: Fix b = (b1, b2) and a = (a1, a2) in N2. Then there



14

is N1 such that b1 + N1 = a1 + m1 for some m1 ∈ N and N2 such that
b2 +N1 +N2 = a2 +m2 for some m2 ∈ N. Hence for all α ∈ vTN2 where
N = (N1, N2) there is β = (fm1

1 , fm2
2 ) ∈ vT2v such that bη(α) = aη(β).

The last two examples show that η being upper dense is not sufficient to guar-
antee cofinality of (Λ, S, η). The following definition allows for the interaction
of the values of η at different vertices of Λ and the following result gives us
the required extra condition.

Definition 5.6. Let Λ be a k-graph and η : Λ → S be a functor where S is
a left-reversible semigroup. We say that η is S-primitive for Λ if there is a
strictly positive t ∈ S such that for all v, w ∈ Λ0 we have vη−1(s)w 6= ∅ for all
s ∈ S such that s ≥l t.

Remarks 5.7. (i) The condition that t is strictly positive in the above defi-
nition guarantees that η(vΛw) is cofinal in S for all v, w ∈ Λ0.

(ii) If η : Λ→ S is S-primitive for Λ where S is a left-reversible semigroup,
then if we extend η to Γ = SS−1 then η is Γ-primitive for Λ.

Examples 5.8. (i) Let Λ be a k-graph. Then the degree functor d : Λ→ Nk

is Nk–primitive for Λ if and only if Λ is primitive as defined in Section
2.3. For this reason we will say that Λ is primitive if d is Nk primitive
for Λ.

(ii) As in Examples 5.5 (i) let η : B2 → N be defined by η(e) = 1, η(f) = 0.
Then the functor η is N-primitive since η−1(n) is nonempty for all n ∈ N.
Hence N-primitivity does not, by itself, guarantee cofinality.

(iii) As in Examples 5.5 (ii) let η be the functor from T2 to N2 such that
η(f1) = (2, 0), and η(f2) = (0, 1). Then the functor η is not N2-primitive
for T2: Take t = (2m,n) ≥ 0 then if s = (2m+1, n) we have vη−1(s)v = ∅
and s ≥l t. Similarly if t = (2m+ 1) ≥ 0 then if s = (2m+ 2, n) we have
vη−1(s)v = ∅ and s ≥l t.

(iv) As in Examples 5.5 (iii) let η : T2 → N2 be defined by η(f1) = (1, 0)
and η(f2) = (0, 1). Then η is not N2-primitive for T2 as vη−1(m,n)v = ∅
whenever n > m.

The last two examples above illustrate that upper density and primitivity
are unrelated conditions on a k-graph. Together they provide a necessary
condition for cofinality.

Proposition 5.9. Let Λ be a k-graph with no sources and η : Λ → S be a
functor where S is a left-reversible semigroup. If (Λ, S, η) is cofinal then η is
upper dense. If η is S-primitive for Λ and upper dense then (Λ, S, η) is cofinal.
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Proof. Suppose that (Λ, S, η) is cofinal. Fix w ∈ Λ0 and a, b ∈ S and let v be
any vertex of Λ. By cofinality of (Λ, S, η) there exists N ∈ Nk such that for
all α ∈ wΛN there is β ∈ vΛs(α) such that aη(β) = bη(α). Then any element
of bη(wΛN) is of the form

bη(α) = aη(β) ≥l a.

Suppose η is S-primitive and upper dense for Λ. Since η is S–primitive for
Λ there exists t ∈ S such that for all v, w ∈ Λ0 we have vη−1(s)w 6= ∅ for
all s ≥l t. Fix v, w ∈ Λ0 and a, b ∈ S. Since η is upper dense there exists
N ∈ Nk such that bη(α) ≥l at for all α ∈ wΛN . Since S is left-reversible, it is
directed, and so by definition bη(α) = atu for some u ∈ S. But tu ≥l t and so
since η is S–primitive there exists β ∈ vΛs(α) such that η(β) = tu and hence
bη(α) = aη(β).

Corollary 5.10. Let Λ be a row-finite k-graph such that d is Nk primitive for
Λ then (Λ,Nk, d) is cofinal.

Proof. Since d is Nk primitive for Λ it follows that Λ has no sources. The
result then follows from Lemma 5.4 and Proposition 5.9.

Example 5.11. Let η : T2 → S be any functor, then η(S) is a subsemigroup of
S since T2 has a single vertex; moreover η is η(S)–primitive for T2. Hence if η
is upper dense for T2, it follows that (T2, η(S), η) is cofinal. In particular, in
Example5.5 (ii) one checks that (T2, η(N2, η) is cofinal.

Theorem 5.12. Let Λ be an aperiodic k-graph, η : Λ → S be a functor into
a left-reversible semigroup, and η be S–primitive for Λ. Then C∗(Λ ×η S) is
simple if and only if η is upper dense.

Proof. If η is upper dense then the result follows from Proposition 5.9. On the
other hand if C∗(Λ×η S) is simple then the result follows from Theorem 4.12
and Corollary 3.5.

6 Skew products by a group Let Λ be a row-finite k-graph. A functor
η : Λ → G defines a coaction δη on C∗(Λ) determined by δη(sλ) = sλ ⊗ η(λ).
It is shown in [14, Theorem 7.1] that C∗(Λ×ηG) is isomorphic to C∗(Λ)×δηG.
Hence we may relate the simplicity of the C∗-algebra of a skew product graph
to the simplicity of the associated crossed product. This can be done by using
the results of [20].

Following [14, Lemma 7.9], for g ∈ G the spectral subspace C∗(Λ)g of the
coaction δη is given by

C∗(Λ)g = span{sλs∗µ : η(λ)η(µ)−1 = g}.
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We define sp(δη) = {g ∈ G : C∗(Λ)g 6= ∅}, to be the collection of non-empty
spectral subspaces. The fixed point algebra, C∗(Λ)δη of the coaction is defined
to be C∗(Λ)1G . For more details on the coactions of discrete groups on k-graph
algebras, see [14, §7] and [20].

We give necessary and sufficient conditions for the skew product graph C∗-
algebra to be simple in terms of the fixed-point algebra as our main result in
Theorem 6.3. We are particularly interested in the case when η is the degree
functor.

Definition 6.1. Let Λ be a row-finite k-graph, G be a discrete group and
η : Λ→ G a functor, then we define

Γ(η) = {g ∈ G : g = η(λ)η(µ)−1 for some λ, µ ∈ Λ with s(λ) = s(µ)}.

Lemma 6.2. Let Λ be a row-finite graph with no sources and η : Λ → G a
functor, where G is a discrete group.

(a) If (Λ, G, η) is cofinal then Γ(η) = G.

(b) sp(δη) = G if and only if Γ(η) = G.

Proof. Fix g ∈ G and write g = b−1a for some a, b ∈ G. Now fix v, w ∈ Λ0;
since (Λ, G, η) is cofinal there exist λ, µ ∈ Λ with s(λ) = s(µ) such that
aη(µ) = bη(λ). Hence b−1a = η(λ)η(µ)−1 and so g ∈ Γ(η). Since g was
arbitrary the result follows.

The second statement follows by definition.

Theorem 6.3. Let Λ be an aperiodic row-finite k-graph with no sources, η :
Λ→ G a functor and δη the associated coaction of G on C∗(Λ). Then C∗(Λ×η
G) is simple if and only if C∗(Λ)δη is simple and Γ(η) = G.

Proof. By [14, Theorem 7.1] it follows that C∗(Λ ×η G) is isomorphic to
C∗(Λ)×δη G. Then by [20, Theorem 2.10] C∗(Λ)×δη G is simple if and only if
C∗(Λ)δη is simple and sp(δη) = G. The result now follows from Lemma 6.2.

Example 6.4. Let Λ be a row-finite k-graph with no sources and d : Λ → Nk

be the degree functor. We claim that Γ(d) = Zk. Fix p ∈ Zk, and write
p = m− n where m,n ∈ Nk. Since Λ has no sources, for every v ∈ Λ0 there is
λ ∈ Λmv and µ ∈ Λnv. Then

d(λ)− d(µ) = m− n = p ∈ Γ(d),

and so Γ(d) = Zk. Since Γ(d) = Zk, and (Λ,Zk, d) is aperiodic, we have that
C∗(Λ)δd is simple if and only (Λ,Nk, d) is cofinal.

We seek conditions on Λ that will guarantee (Λ,Nk, d) is cofinal.
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7 The gauge coaction The coaction δd of Zk on C∗(Λ) defined in Section 6
is such that the fixed point algebra C∗(Λ)δd is precisely the fixed point algebra
C∗(Λ)γ for the canonical gauge action of Tk on C∗(Λ) by the Fourier transform
(cf. [2, Corollary 4.9].

By [9, Lemma 3.3] the fixed point algebra C∗(Λ)γ is AF, and is usually
referred to as the AF core. In Theorem 7.2 we use the results of the last two
sections to give necessary and sufficient conditions for the AF core C∗(Λ)γ to
be simple when Λ0 is finite. When there are infinitely many vertices we show,
in Theorem 7.8 that in many cases the AF core is not simple.

The AF core of a k-graph algebra plays a significant role in the development
of crossed products by endomorphisms. Results of Takehana and Katayama [8]
show that when Λ is a finite 1-graph such that the core C∗(Λ) is simple, then
every nontrivial automorphism of C∗(Λ) is outer (see [17, Proposition 3.4]).

We saw in Example 4.9 that a k-graph being strongly connected is not
enough to guarantee that Λ ×d Zk is cofinal, and hence by [23, Theorem 3.1]
C∗(Λ×dZk) is not simple and then by Theorem 6.3 the AF core is not simple.
Another condition is required to guarantee that Λ ×d Zk is cofinal, which is
suggested by [18] and was introduced in Section 5:

Theorem 7.1. Let Λ be a row-finite k-graph with no sinks and sources and
Λ0 finite. If (Λ, d,Zk) is cofinal then Λ is primitive.

Proof. We claim that for v ∈ Λ0 there is N(v) ∈ Nk such that for all n ≥ N(v)
we have vΛnv 6= ∅. Fix (v, 0) ∈ (Λ ×d Zk)0 then for each w ∈ Λ0, when we
apply the cofinality condition to (w, 0) ∈ (Λ×d Zk)0 we obtain Nw ∈ Nk such
that (v, 0)(Λ ×d Zk)s(α, 0) 6= ∅ for all (α, 0) ∈ (w, 0)(Λ ×d Zk)Nw . Define
N = maxw∈Λ0{Nw}, which is finite since Λ0 is finite.

By Proposition 4.5 it follows that Λ is strongly connected, hence there
exists α ∈ vΛv with d(α) = r > 0. Hence, there exists t ≥ 1 such that
tr ≥ N . Let N(v) = tr.

Let m = n − tr ≥ 0. Since Λ has no sources, vΛm 6= ∅; hence there
exists γ ∈ vΛm. Let w = s(γ). For (v, 0), (w, 0) ∈ (Λ ×d Zk)0, we have
(αt, 0) ∈ (v, 0)(Λ ×d Zk)tr where tr ≥ N ≥ Nw. By cofinality and Lemma
4.2 (b), there exists (β, 0) ∈ (w, 0)(Λ ×d Zk)(v, tr) as s(αt, 0) = (v, tr). As
β ∈ wΛtrv it follows that γβ ∈ vΛnv, which proves the claim.

The following result generalises results from [18]:

Theorem 7.2. Let (Λ, d) be a row-finite k-graph with no sinks or sources,
and Λ0 finite. Then C∗(Λ)δd is simple if and only if Λ is primitive.

Proof. Suppose that Λ is primitive. Then (Λ,Zk, d) is strongly connected and
cofinal by Remarks 2.8. Hence C∗(Λ×dZk) is simple and so C∗(Λ)δd is simple
by Theorem 6.3.
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Suppose that C∗(Λ)δd is simple. Recall from Example 6.4 that since Λ has
no sources then Γ(d) = Zk. Then by Theorem 6.3, C∗(Λ ×d Zk) is simple,
and hence (Λ, d,Zk) is cofinal by [23, Theorem 3.1] and Proposition 4.11. By
Theorem 7.1 this implies that Λ is primitive.

Example 7.3. Since it has a single vertex it is easy to see that the 2-graph
F2
θ defined in Examples 2.1 (d) is primitive. Hence by Theorem 7.2 we see

that C∗(F2
θ)
γ is simple for all θ. Indeed in [4, §2.1] it is shown that C∗(F2

θ)
γ ∼=

UHF(mn)∞.

We now turn our attention to the case when Λ0 is infinite. We adapt the
technique used in [18] to show that, in many cases the AF core is not simple.

Definition 7.4. Let Λ be a row-finite k-graph with no sources. For v ∈ Λ0,
n ∈ Nk let

V (n, v) = {s(λ) : λ ∈ vΛm,m ≤ n}
FV (n, v) = V (n, v)\ ∪ki=1 V (n− ei, v).

Remarks 7.5. For v ∈ Λ0, m ≤ n ∈ Nk we have, by definition, that V (m, v) ⊆
V (n, v).

For v ∈ Λ0, n ∈ Nk the set FV (n, v) denotes those vertices which connect
to v with a path of degree n and there is no path from that vertex to v with
degree less than n.

Lemma 7.6. Let Λ be a row-finite k-graph with no sources. For v ∈ Λ0,
n ∈ Nk then V (n, v) is finite and if V (n) = V (n− ei) for some 1 ≤ i ≤ k then
V (n+ rei) = V (n− ei) for all r ≥ 0.

Proof. Fix, v ∈ Λ0, n ∈ Nk, since Λ row-finite it follows that ∪m≤nvΛm is
finite and hence so is V (n, v).

Suppose, without loss of generality that V (n) = V (n − e1). Let w ∈
V (n+ e1), then there is λ ∈ vΛn+e1w. Now λ(0, n) ∈ vΛn and so s(λ(0, n)) ∈
V (n) = V (n − e1). Hence there is µ ∈ vΛms(λ(0, n)) for some m ≤ n − e1

and so µλ(n, n + e1) ∈ vΛm+e1 . Since s(µλ(n, e + e1)) = s(λ) = w and
m + e1 ≤ n it follows that w ∈ V (n). As w was an arbitrary element of
V (n+ e1) it follows that V (n+ e1) ⊆ V (n) = V (n− e1). By Remarks 7.5 we
have V (n−e1) ⊆ V (n+e1) and so V (n+e1) = V (n−e1). It then follows that
V (n+ re1) = V (n− e1) for r ≥ 0 by an elementary induction argument.

We adopt the following notation, used in [11]: Let Λ be a k-graph for 1 ≤ i ≤ k
we set ΛNei = ∪r≥0Λrei .

Proposition 7.7. Let Λ be a row-finite k-graph with no sources such that for
all w ∈ Λ0 and for 1 ≤ i ≤ k, the set s−1

(
wΛNei

)
is infinite. Then for all

n ∈ Nk, v ∈ Λ0 we have FV (n, v) 6= ∅.
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Proof. Suppose, for contradiction, that FV (n, v) = ∅ for some n ∈ Nk and
v ∈ Λ0. Then, without loss of generality we may assume that V (n) = V (e−e1).

Let λ ∈ vΛn, then s(λ) ∈ V (n) = V (n− e1). Fix r ≥ 0, then since Λ has
no sources there is µ ∈ s(λ)Λre1 . Then λµ ∈ vΛn+re1 and so s(λµ) = s(µ) ∈
V (n+re1, v). By Lemma 7.6 it follows that V (n+re1) = V (n−e1) and so for
any µ ∈ s(λ)ΛNe1 we have s(µ) ∈ V (n−e1). By Remarks 7.5 V (n−e1) is finite
and so we have contradicted the hypothesis that s−1

(
wΛNe1

)
is infinite.

Note that k-graphs satisfying the hypothesis of Proposition 7.7 must have
infinitely many vertices. The following result generalises results from [18]:

Theorem 7.8. Let Λ be a row-finite k-graph with no sources such that for all
w ∈ Λ0 and for 1 ≤ i ≤ k, the set s−1

(
wΛNei

)
is infinite. Then Λ ×d Zk is

not cofinal.

Proof. Suppose, for contradiction, that Λ×d Zk is cofinal.
Fix v ∈ Λ0 then since Λ is row-finite and has no sources W = s−1 (vΛe1)

is finite and nonempty. Without loss of generality let W = {w1, . . . , wn}.
Since Λ ×d Zk is cofinal, for 1 ≤ i ≤ n if we consider (wi, 0) and (v, 0) ∈

Λ0 × Zk then there is Ni ∈ Nk such that for all (α, 0) ∈ (wi, 0)
(
Λ×d Zk

)Ni
we have (v, 0)

(
Λ×d Zk

)
(s(α), Ni) 6= ∅. Let N = max{N1, . . . , Nn}. By

Proposition 7.7 FV (N + e1, v) 6= ∅, hence there is λ ∈ vΛN+e1 such that
there is no path of degree less than N + e1 from s(λ) to v. Without loss of

generality s(λ(0, e1)) = w1, and so (λ(e1, N + e1), 0) ∈ (w1, 0)
(
Λ×d Zk

)N
.

Since N ≥ N1 and Λ has no sources, by Lemma 4.2(ii) there is (α, 0) ∈
(v, 0)

(
Λ×d Zk

)
(s(λ), N) which implies that α ∈ vΛNs(λ), contradicting the

defining property of λ ∈ vΛN+e1 .

Examples 7.9. 1. Let Λ be a strongly connected k-graph with Λ0 infinite,
then Λ has no sources and for all w ∈ Λ0 we have s−1

(
wΛNei

)
is infinite

for 1 ≤ i ≤ k. Hence by Theorem 7.8 it follows that Λ ×d Zk is not
cofinal.

2. Let Λ be a k-graph with Λ0 infinite, no sources and no paths with the
same source and range. Then for all w ∈ Λ0 we have s−1

(
wΛNei

)
is

infinite for 1 ≤ i ≤ k. Hence by Theorem 7.8 it follows that Λ×d Zk is
not cofinal.
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