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ABSTRACT. We consider conditions on a k-graph A, a semigroup S and
a functor n : A — S that ensure that the C*-algebra of the skew-product
graph A x, S is simple. Our results give some necessary and sufficient
conditions for the AF-core of a k-graph C*-algebra to be simple.

1 Introduction In [24] Robertson and Steger investigated C*-algebras that
they considered to be higher-rank versions of the Cuntz-Krieger algebras. Sub-
sequently in [9] Kumjian and Pask introduced higher-rank graphs, or k-graphs,
as a graphical' means to provide combinatorial models for the Cuntz-Krieger
algebras of Robertson and Steger. They showed how to construct a C*-algebra
that is associated to a k-graph. Since then k-graphs and their C*-algebras have
attracted a lot of attention from many authors (see [1,35,9,12-14, 1719, 21,
23]).

Roughly speaking, a k-graph is a category A together with a functor d :
A — N satisfying a certain factorisation property. A 1-graph is then the
path category of a directed graph. Given a functor n : A — S, where S is a
semigroup with identity, we may form the skew product k-graph A x, S. Skew
product graphs play an important part in the development of k-graph C*-
algebras. For example [9, Corollary 5.3] shows that C*(A x4 Z*) is isomorphic
to C*(A) x, T% wheresy : T — Aut C*(A) is the canonical gauge action.
Skew product graphs feature in nonabelian duality: In [13] it is shown that
if a right-reversible semigroup (Ore semigroup) S acts freely on a k-graph A
then the crossed product C*(A) x S is stably isomorphic to C*(A/S). On the
other hand if S is a group G then C*(A X, G) is isomorphic to the crossed
product C*(A) x5, G where 0, is the coaction of G on C*(A) induced by 7.

The main purpose of this paper is to investigate necessary and sufficient
conditions for the C*-algebra of a skew product k-graph to be simple. We
will be particularly interested in the specific case when S = N¥ and n = d. It
can be shown that simplicity of C*(A x4 NF) is equivalent to simplicity of the
fixed point algebra (AF core) C*(A)Y. This is important as many results in
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the literature apply particularly when AF core is simple; see [8, Proposition
3.8] for example.
We begin by introducing some basic facts we will need during this paper.

2 Background

2.1 Basic facts about k-graphs All semigroups in this paper will be
countable, cancellative and have an identity, hence any semigroup may be
considered as a category with a single object. The semigroup N* is freely gener-
ated by {ey, ..., ex} and comes with the usual order structure: if n = Zle n;e;
and m = Zle m;e; then m > n (resp. m > n) if m; > n; (resp. m; > n;)
for all i. For m,n € N* we define m VvV n € N¥ by (m V n); = max{m;,n;} for
i=1,... .k

A directed graph F is a quadruple (E°, E',r, s) where E°, E' are countable
sets of vertices and edges. The direction of an edge e € E! is given by the
maps r,s : B — E°. A path X of length n > 1 is a sequence A = \; --- \,, of
edges such that s(\;) = r(A\i41) fori =1,...,n—1. The set of paths of length
n > 1 is denoted E". We may extend r,s to E™ for n > 1 by r(A) = r(\)
and s(\) = s(\,) and to E° by r(v) = v = s(v).

A higher-rank graph or k-graph is a combinatorial structure, and is a k-
dimensional analogue of a directed graph. A k-graph consists of a countable
category A together with a functor d : A — N*, known as the degree map,
with the following factorisation property: for every morphism A € A and every
decomposition d(\) = m+n, there exist unique morphisms u, v € A such that
d(p) =m, d(v) =n, and A = pv.

For n € N* we define A" := d~!(n) to be those morphisms in A of degree
n. Then by the factorisation property A’ may be identified with the objects
of A, and are called vertices. For u,v € A” and X C A we set

uX ={AeX:r\)=u} Xv={ e X:s(\)=v} uXv=uXnNXo.

A k-graph A is visualised by a k-coloured directed graph Ex with vertices A°
and edges LI¥_, A® together with range and source maps inherited from A called
its 1-skeleton. The 1-skeleton is provided with square relations C, between
the edges in Fy, called factorisation rules, which come from factorisations of
morphisms in A of degree e; + e; where i # j. By convention the edges of
degree e; are drawn blue (solid) and the edges of degree ey are drawn red
(dashed). For more details about the 1-skeleton of a k-graph see [21]. On the
other hand, if G is a k-coloured directed graph with a complete, associative
collection of square relations C completely determines a k-graph A such that
Eyx =G and Cy = C (see [0]).
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A k-graph A is row-finite if for every v € A° and every n € N¥, vA" is
finite. A k-graph has no sources if vA™ # () for all v € A° and nonzero n € N*.
A k-graph has no sinks is A"v # ) for all v € A° and nonzero n € N*.

For A € A and m < n < d(\), we define A\(m,n) to be the unique
path in A"~ obtained from the k-graph factorisation property such that
A= XN(\(m,n))\" for some X € A™ and N € A4V,

Ezamples 2.1. (a) In [9, Example 1.3] it is shown that the path category E* =
U;>oE" of a directed graph F is a 1-graph, and vice versa. For this reason
we shall move seamlessly between 1-graphs and directed graphs.

(b) For k& > 1 let T} be the category with a single object v and gener-
ated by k commuting morphisms {fi,..., fr}. Define d : T), — N* by
d(fi™ ... f*) = (n1,...,ng) then it is straightforward to check that T is
a k-graph. We frequently identify 7}, with N* via the map f{" --- fi*
(ny, ..., ng).

(c) For k > 1 define a category Ay as follows: Let MorA, = {(m,n) €
7k x 7F © m < n} and ObjA, = ZF; structure maps r(m,n) = m,
s(m,n) = n, and composition (m,n)(n,p) = (m,p). Define d : A — N*
by d(m,n) = n —m, then one checks that (A, d) is a row-finite k-graph.
We identify Obj Ay with {(m,m) : m € ZF} C Mor Ay,

(d) Forn >1letn={1l,...,n}. Formn>1letf :mxn— mxna
bijection. Let F2 be the 2-graph which has 1-skeleton which consists of
with single vertex v and edges f1,..., fim, 91, .., gn, such that f; have the
same colour (blue) for ¢ € m and g; have the same colour (red) for j € n
together with complete associative square relations f;g; = g; fiy where
0(i,j) = (', ") for (i,5) € m x n (for more details see [3,4}/19]).

2.2 Skew product k-graphs Let A be a k-graph and n : A — S a functor

into a semigroup S. We can make the cartesian product A x S into a k-graph
A x, S by taking (A x,, S)° =A% x S, defining r, s : A x,, S = (A x,,S)° by

(1) r(At) = (r(A),t) and s(At) = (s(A), tn(A)),
defining the composition by
(A t)(p,u) = (A, t) when s(A,t) = r(p,u) (so that u = tn(X)),

and defining d : A x,,.S — NF by d(\, t) = d()\). Asin [13] it is straightforward
to show that this defines a k-graph.

Remark 2.2. If A is row-finite with no sources and 7 : A — S a functor then
A x,, S is row-finite with no sources.



A k-graph morphism is a degree preserving functor between two k-graphs.
If a k-graph morphism is bijective, then it is called an isomorphism.

Ezxamples 2.3. (i) Let A be a k-graph and n : A — S a functor, where S is a
semigroup and A X, S the associated skew product graph. Then the map
A x, S — A given by m(), s) = A is a surjective k-graph morphism.

(ii) For ¢ > 1 the map (¢/,m) — (m,f 4+ m) gives an isomorphism from
Tk Xd Zk to Ak

Definition 2.4. Let A,T" be row-finite k-graphs. A surjective k-graph mor-
phism p : A — T has r-path lifting if for all v € A° and A\ € p(v)T there is
X € vA such that p(\) = A. If X is the unique element with this property
then p has unique r-path lifting.

FExample 2.5. Let A be a row-finite k-graph and n : A — S a functor where
S is a semigroup, and A x, S the associated skew product graph. The map
7 A %, S — A described in Examples (1) has unique r-path lifting.

2.3 Connectivity A k-graph A is connected if the equivalence relation on
A® generated by the relation {(u,v) : uAv # 0} is A° x A°. The k-graph A is
strongly connected if for all u,v € A° there is N > 0 such that uANv # (. If
A is strongly connected, then it is connected and has no sinks or sources. The
k-graph A is primitive if there is N > 0 such that uANv #  for all u,v € A°.
If A is primitive then it is strongly connected.

Ezamples 2.6. The graphs T} and F2 in Examples are primitive as they
have one vertex.

The connectivity of a k-graph may also be described in terms of its com-
ponent matrices as defined in [9, §6]: Given a k-graph A, for 1 < i < k
and u,v € A°, we define k non-negative A x A® matrices M; with entries
M;(u,v) = |uA%v|. Using the k-graph factorisation property, we have that
luA“Teiy| = JuA%Ty| for all u,v € A° and so M;M; = M;M,;. For m =
(m1,...,my) € N¥ and u,v € A%, we have [uA™v| = (M{™ -+« M) (u,v) =
M™(u,v), using multiindex notation. The following lemma follows directly
from the above definitions.

Lemma 2.7. Let A be a row-finite k-graph with no sources.

(a) Then A is strongly connected if and only if for all pairs u,v € A° there is
N € N* such that MY (u,v) > 0.

(b) Then A is primitive if and only if there is N > 0 such that MY (u,v) > 0
for all pairs u,v € A°.



Remarks 2.8. Following [18, §4], a primitive 1-graph A is strongly connected
with period 1; that is, the greatest common divisor of all n such that vA™v # ()
for some v € AY is 1

Lemma 2.9. Let A be a k-graph with no sinks, and A° finite. Then for all
v € A% there exists w € A° and o € wAw such that d(a)) > 0 and wAv # 0.

Proof. Let p = (1,...,1) € N*. Since v is not a sink, there exists 3; € APv.
Since r(f1) is not a sink, there exists Sy € APr(f;). Inductively, there exist
infinitely many 3; such that d(5;) = p and r(3;) = s(Bi;1). Since A is finite,
there exists w € A° such that r(f;) = w for infinitely many i. Suppose
r(Bn) = w = r(By) with m > n. Then o« = B, ... 0,41 has the requisite
properties, and wAv # (), since 3, ... € wAwv. O

2.4 The graph C*-algebra Let A be a row-finite k-graph with no sources,
then following [9], a Cuntz-Krieger A-family in a C*-algebra B consists of
partial isometries {Sy : A € A} in B satisfying the Cuntz-Krieger relations:
(CK1)
(CK2)
(CK3)
(CK4) Sy =3 rrconny 1S3 for every v € A% and n € N*,

{8, : v € A’} are mutually orthogonal projections;
S\S,, = Sy, whenever s(\) = r(u);
S35\ = S for every A € A;

The k-graph C*-algebra C*(A) is generated by a universal Cuntz-Krieger A-
family {s,}. By [9, Proposition 2.11] there exists a Cuntz-Krieger A-family
such that each vertex projection S, (and hence by (CK3) each S)) is nonzero
and so there exists a nonzero universal k-graph C*-algebra for a Cuntz-Krieger
A-family. Moreover,

C*(A) =span{sys;, : A, p € A, s(A) = s(u)} (see [9, Lemma 3.1]).

We will use |23, Theorem 3.1] by Robertson and Sims when considering the
simplicity of graph C*-algebras:

Theorem 2.10 (Robertson-Sims). Suppose A is a row-finite k-graph with no
sources. Then C*(A) is simple if and only if A is cofinal and aperiodic.

We now focus on the two key properties involved in the simplicity criterion
of Theorem [2.10] namely aperiodicity and cofinality. Our attention will be
directed towards applying these conditions on skew product graphs.



3 Aperiodicity Our definition of aperiodicity is taken from Robertson-
Sims, 23, Theorem 3.2].

Definitions 3.1. A row-finite k-graph A with no sources has no local period-
icity at v € A% if for all m # n € N* there exists a path A € vA such that
d(A\) > mVn and

A(m,m~+d(X\) — (mVn)) #Xn,n+dN) — (mVn)).
A is called aperiodic if every v € A° has no local periodicity.

Ezxamples 3.2. (a) The k-graph Ay is aperiodic for all & > 1. First observe
that there is no local periodicity at v = (0,0). Given m # n € NF
let N > mVmn; then A = (0, N) is the only element of vA,. Then
A(m,m) = (m,m) # (n,n) = A(n,n). A similar argument applies for any
other vertex w = (n,n) in Ax and so there is no local periodicity at w for
all w € A,

(b) The k-graph T}, is not aperiodic for all k& > 1. For all n € N¥ one checks
that f{"*--- fi* is the only element of vT}". Hence given m # n € N it
follows that for all A € vAYN with N > m V n we have

A(m,m+ (mVn)) = An,n+ (mVn)).

Since the map 7 : A x,, 8 — A has unique 7-path lifting, we wish to know if
we can deduce the aperiodicity of A x, S from that of A. A corollary of our
main result Theorem [3.3] shows that this is true.

Theorem 3.3. Let A, T" be row-finite k-graphs with no sources and p : A — T’
have r-path lifting. If ' is aperiodic, then A is aperiodic.

Proof. Suppose that I' is aperiodic. Let v € A® and m # n € N*. Since I’
is aperiodic, there exists A € p(v)[’ with d(\) > m V n such that \(m,m +
d(A) — (mVn)) # AXn,n+d(\) —(mVn)). By r-path lifting there is A" € vA
with p(\) = A such that d(\') > m V n and

N(m,m+d\) — (mVn))#Nn,n+dN —(mVn)),
and so A is aperiodic. O

The converse of Theorem 3.3 is false:

Ezample 3.4. The surjective k-graph morphism p : Ay — T}, given by p(m, m+
e;) = fi for all m € Z* and i« = 1,...,k has r-path lifting. However by
Examples we see that Ay, = T}, x4 Z* is aperiodic but T}, is not.



Corollary 3.5. Let A be a row-finite k-graph with no sources, n : A — S a
functor where S is a semigroup and A X, S the associated skew product graph.
If A is aperiodic then A x,, S is aperiodic.

Proof. Follows from Theorem [3.3] and Example 2.5 O

In some cases the aperiodicity of a skew product graph A x,, S can be deduced
directly from properties of 7.

Proposition 3.6. Suppose S is a semigroup, A is a row-finite k-graph with
no sources, n : A — S is a functor, and there exists a map ¢ : S — ZF such
that d = ¢ on. Then A x, S is aperiodic.

Proof. Fix (v,s) € (A x,, 5)® and m # n € N*. Let A € (v,5)(A x,, S) be
such that d(A) > m V n. Observe that A(m,m) = s(A(0,m)), A(m, m) is of
the form (w, sn(A(0,m))) for some w € A°. Similarly, A(n,n) is of the form
(w', sn(A(0,n))) for some w' € A°.

We claim A\(m, m) # A(n,n): Suppose, by hypothesis, n(A(0,7n)) = n(A(0,m)).
Then n = ¢pon(A(0,n)) = ¢on(A(0,m)) = m, which provides a contradiction,
and m # n. Then n(A(0,m)) # n(A(0,n)), and so A(m,m) # A(n,n), and
hence \(m,m + d(X) — (mVn)) # Xn,n+ d(\) — (m Vn)). O

Corollary 3.7. Suppose A is a row-finite k-graph with no sources. Then
A xgNF and A x4 ZF are aperiodic.

Proof. Apply Proposition with n = d and S = N*, Z* respectively. O
4 Cofinality We will use the Lewin-Sims definition of cofinality, [12, Re-

mark A.3]. By [12, Appendix A] this definition is equivalent to the other
standard definitions of cofinality:

Definition 4.1. A row-finite, k-graph A with no sources is cofinal if for all
pairs v, w € AY there exists N € N* such that vAs(a) # () for every a € wAY.

Lemma 4.2. Let A be a row-finite k-graph with no sources.
(a) If A is cofinal then A is connected.
(b) Suppose that for all pairs v,w € A° there ewists N € NF such that

vAs(a) # 0 for every a € wAN. Then for n > N we have vAs(a) # 0 for
every a € wA"™.



Proof. Fix v,w € A°. If A is cofinal it follows that there is o € wA such
that wAs(a) and vAs(a) are non-empty. It then follows that (v, w) belongs
to the equivalence relation described in Section [2.3] Since v, w were arbitrary
it follows that the equivalence relation is A° x A and so A is connected.

Fix v,w € A° then there is N € N*¥ such that vAs(a) # 0 for every
a € wAN. Let n > N and consider 8 € wA™ then 3’ = 3(0, N) € wA" and so
by hypothesis there is A € vAs(f’). Then AG(N,n) € vAs() and the result
follows. O

Lemma 4.3. Let A be a row-finite k-graph with no sources with skeleton E).
If E\ is cofinal then A is cofinal. Furthermore, A is strongly connected if and
only if Ex strongly connected

Proof. Fix v,w € A = E. As E, is cofinal there is n € N with vExs(a) # ()
for all & € wE}. Let N € N* be such that S.F | N; = n. Then for all
o € wAY we have o/ € E} and so vANs(a/) # ().

Suppose that A is strongly connected and v, w € EY = A%, As A is strongly
connected there is @ € vAw with d(a) > 0. Let n = >  d(«); then n > 0
and vEyxw # 0, so E, is strongly connected. Suppose that F, is strongly
connected, and v, w € A° = ER. As A has no sources, there is a € vEX which
uses an edge of each of the k-colours. Let u = s(«). Since Ej is strongly
connected there is f € uFEjw. Let A be the element of A which may be
represented by aff € E,. Then A € vAw and d(\) > 0 and so A is strongly
connected. O

Remark 4.4. The converse to the first part of Lemma is not true: Let A
be the 2-graph which is completely determined by its 1-skeleton as shown:

® < [ [ J [ J @« o -
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
Y M Y Y Y Y
[ ] [ J [ J [ J [ J o -
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
M Y Y Y Y Y
we [ ] [ J [ J [ J o -
1 1 1 1 1

1 1 1 1 1

1 1 | | 1

M Y Y Y Y

ve [ ] [ ] @« o -

Then A is cofinal: For example for v,w as shown, N = (1,0) will suffice.
However E) is not cofinal: For example for v, w as shown, for any n > 0 the
vertex which is the source of the vertical path of length n with range w does
not connect to v.

The following result establishes a link between cofinality and strongly connec-
tivity for a row-finite k-graph.



Proposition 4.5. Suppose A is a row-finite k-graph with no sources.
1. If A is strongly connected then A is cofinal.
2. If A is cofinal, has no sinks and A° finite then A is strongly connected.

Proof. Suppose A is strongly connected. Fix v,w € A° then for N = e; we
have vAs(a) # 0 for all a € wA? since A is strongly connected, and so A is
cofinal.

Suppose A is cofinal. Fix u,v € A°. Then by Lemma , there exists
w € AY and o € wAw such that d(a) > 0 and wAv # 0. Let o/ € wAv. Given
u,w € A°, since A is cofinal and has no sources, by Lemma (ii) there exists
N € N* such that for all n > N and all o” € wA", there exists 3 € uAs(a”).
Since d(«) > 0 we may choose t € N such that td(«) > N. Then of € wA”
where n > N, and so by cofinality of A exists 8 € uAs(a') = uAw. Hence
Baa € uAv with d(faa’) > d(a) > 0 and so A is strongly connected. O

Ezample 4.6. The condition that A° is finite in Proposition [4.5](2) is essential:
For instance Ay is cofinal by Lemma [4.3] since its skeleton is cofinal; however
it is not strongly connected by Lemma since its skeleton is not strongly
connected.

Since the map 7 : A x,, S — A has unique 7-path lifting, we wish to know
if we can deduce the cofinality of A x,, S from that of A. By Theorem [4.7] the
image of a cofinal k-graph under a map with r-path lifting is cofinal, however
Example shows that the converse is not true. For a cofinal k-graph A,
we must then seek additional conditions on the functor n which guarantees
that A x, S is cofinal. In Definition we introduce the notion of (A, S, )
cofinality to address this problem.

Theorem 4.7. Suppose N,I' be row-finite k-graphs with no sources and p :
A — T have r-path lifting. If A is cofinal then T" is cofinal.

Proof. Suppose that A is cofinal. Fix v,w € I'°. Let v/, w’ € A° be such that
p(v') = v and p(w’) = w. As A is cofinal there is an N such that for all
o € wAN there is 8’ € v/As(a’). Then for a € vI'V there is o/ € VAN with
p(a’) = a. By hypothesis there is 5/ € v'As(a’), and so f = p(f') satisfies
s(B) = s(a) and r(B) = v, hence vAs(a) # ) as required. O

Corollary 4.8. Let A be a row-finite k-graph with no sources, n : A — S a

functor where S is a semigroup and A X, S the associated skew product graph.
If A x,) S is cofinal then A is cofinal.

The converse of Theorem is false:
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FExample 4.9. Consider the following 2-graph A with 1-skeleton

and factorisation rules: ec = tje and ha = tse for paths from u to v; c¢f = ft;
and bg = fty for paths from v to u. Also hd = t;h and eb = tyh for paths
from w to v; dg = gt; and af = gty for paths from v to w. By Lemma A
is strongly connected as its skeleton is strongly connected. Note there are no

paths of degree e; + e, from a vertex to itself.

Since M, = <§§g> and My, = (é%(i)), we calculate that M@1d2) —

L . . L . . 045 0
231+32—1M2 and M(2j1+1,]2) — 2]1+J2+1M1. Hence M(2]*1,2j*1) — <4j 0 4j> and

045 0
o 45 0 45
M23:27) = (4({ 80j 5). In particular by Lemma 2.7 (b) A is not primitive, even
j 0 4j

though it is strongly connected.

We claim that the skew product graph A x4 Z? is not cofinal. Consider
vy = (v,(m,n)) and vy = (v, (m + 1,n)) in (A x4 Z*)°. We claim that for
all N € N2 for all a € vi(A x4 Z*)N, we have vy(A x4 Z?)s(a) # 0. Let
N = (Ny, Ny). Suppose Nj is even. Then for all a € vy (A xq Z*)N, s(a) =
(v, (m+ N1,n+ N3)). In order for this vertex to connect to (v, (m+1,n)), we
have MM=1N2)(y 1) # 0. But N; — 1 is odd, and this matrix entry is zero. If
N is odd, then s(a) = (u, (m+ Ny,n+ N3)) or s(a) = (w, (m+ Ny, n+ Na)).
In order for either of these vertices to connect to (v, (m+1,n)), we must have
MWN=LN2) (g ) £ 0, or MM=1N2) (3 9) #£ 0. But Ny — 1 is even, and so both
of these matrix entries are zero. Hence A x4 Z? is not cofinal, even though A
is cofinal.

To establish a sufficient condition for A x, S to be cofinal, we need A to be
cofinal and an additional condition on 7.

Definition 4.10. Let A be a row-finite k-graph with no sourcesand n : A — S
a functor, where S is a semigroup. The system (A,S,n) is cofinal if for all
v,w € A° a,b € S, there exists N € N¥ such that for all @ € wA", there
exists € vAs(a) such that an(f) = bn(a).

Proposition 4.11. Let A be a row-finite k-graph with no sources andn: A —
S a functor, where S is a semigroup and A x, S the associated skew product
graph. Then the system (A, S,n) is cofinal if and only if A x,, S is cofinal.
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Proof. Suppose A X, S is cofinal. Fix a,b € S and v,w € A". By hypothesis
there is N € N¥ such that (v,a)(A x, S)s(a, b) is non-empty for every (a,b) €
(w,b)(A x,, S)N. In particular for all & € wAY there exists 3 € wAY such
that an(B) = bn(«), and so (A, S,n) is cofinal.

Now suppose (A, S, n) is cofinal. Fix (v, a), (w,b) € (A x,5)°. By hypoth-
esis there exists N € N¥ such that for all o € wAY, there exists 8 € vAs(a)
with an(8) = bn(a). In particular for all (a,b) € (w,b)(A %, S)V there is
(B,a) € (v,a)As(a,b), and so A x,, S is cofinal. O

Theorem 4.12. Let A be an aperiodic row-finite k-graph with no sources,
n: AN —= S a functor, where S is a semigroup and A x, S the associated skew
product graph. Then C*(A x,, S) is simple if and only if the system (A, S, n)
s cofinal.

Proof. If the system (A, S,n) is cofinal, then by Proposition , A x, S is
cofinal. By Corollary , A x,, S is aperiodic and so by [23, Theorem 3.1],
C*(A x,, S) is simple.

Now suppose that C*(A x,,.5) is simple. Then by 23, Theorem 3.1], A x,, S
is cofinal. By Proposition this implies that (A, S,n) is cofinal. O

The condition of (A, S,n) cofinality is difficult to check in practice. For
1-graphs it was shown in [18, Proposition 5.13] that A x4 Z* is cofinal if A
is primitivdﬂ We seek an equivalent condition for k-graphs which guarantees
(A, S,n) cofinality.

5 Primitivity and left-reversible semigroups A semigroup S is said to
be left-reversible if for all s,t € S we have s$SNtS # (). It is more common to
work with right-reversible semigroups, which are then called Ore semigroups
(see |13]). In analogy with the results of Dubriel it can be shown that a
left-reversible semigroup has an enveloping group I' such that I' = SS—1.

In equation (1) we see that functor n : A — S multiplies on the right in the
semigroup coordinate in the definition of the source map in a skew product
graph A x, S. This forces us to consider left-reversible semigroups here. In
order to avoid confusion we have decided not to call them Ore.

Ezamples 5.1. (i) Any abelian semigroup is automatically right- and left-
reversible. Moreover, any group is a both a right- and left-reversible
semigroup.

(ii) Let N denote the semigroup of natural numbers under addition and N*
denote the semigroup of nonzero natural numbers under multiplication.
Let S = N x N* be gifted with the associative binary operation x given

L Actually strongly connected with period 1 which is equivalent to primitive
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by (mi,n1) * (m2,n2) = (myng + mo,ning), then one checks that S
is a nonabelian left-reversible semigroup. It is not right-reversible; for
example, S(m,n) N S(p,q) =0 when n = ¢ =0 and m # p.

(iii) The free semigroup F! on n > 2 generators is not an left-reversible
semigroup since for all s,t € F," with s # ¢ we have sF NtF = () as
there is no cancellation, and so not only the left-reversibility but also the
right-reversibility conditions cannot be satisfied.

A preorder is a reflexive, transitive relation < on a set X. A preordered
set (X, <) is directed if the following condition holds: for every z,y € X, there
exists z € X such that x < z and y < z. A subset Y of X is cofinal if for
each x € X there exists y € Y such that x < y. We say that sets X <Y if
x <y forall x € X and for all y € Y. We say that t € S is strictly positive if
{t" :n >0} is a cofinal set in S.

The following result appears as [15, Lemma 2.2] for right-reversible semi-
groups.

Lemma 5.2. Let S be a left-reversible semigroup with enveloping group I', and
define >; on T by h >, g if and only if g~ h € S. Then >, is a left-invariant
preorder that directs I', and for any t € S, tS is cofinal in S.

Our first attempt at a condition on 1 which guarantees cofinality of (A, .S, n)
is one which ensures that n takes arbitrarily large values on paths which ter-
minate a given vertex.

Definition 5.3. Let A be a k-graph with no sources and n : A — S be a
functor where S is a left-reversible semigroup. We will say that n is upper dense
if for all w € A® and a,b € S there exists N € N* such that bn(wAY) >; a.

Lemma 5.4. Let (A, d) be a row-finite k-graph with no sources then d is upper
dense for A.

Proof. Since A has no sources it is immediate that wAY # () for all w € A°
and N € N*. For any b,a € N¥ we have b + d(wAY) = b+ N > a provided
N > a. O

Ezxamples 5.5. (i) Let By be the 1-graph which is the path category of the
directed graph with a single vertex v and two edges e, f. Define a functor
n: By — N by n(e) =1 and n(f) = 0. We may form the skew product
By %, N with 1-skeleton:

VAR

(v, 0) (v,1) (v,2) (v,3)
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Fix a,b € N, then since n € n(vBY) for all n € N it follows that if we
choose N = a, then b+ n(vBY) > a and so 7 is upper dense. However
(Ba,N,n) is not cofinal: Choose a =1, b = 0, then for all N > 0 there is
/Y € vBY is such that

b+n(fY)=0#1+n(B) for all B € Byv.

Define a functor 7 from T3 to N? such that n(f;) = (2,0), and n(fy) =
(0,1). We may form the skew product Ty X, N? with the following 1-
skeleton:

(0,3), (1,3): (2,3): (3,3): (4,3):

\¥‘7\;‘/—\

0, 2);‘72)?/@&/ (3,2 (42),

(0,1);471;‘/@?/(1,3) (1,4):

(0,0) (0,1) (0,2) (0,3) (0,4)

We claim that the functor 7 is not upper dense: Fix b = (b1, b2) and a =
(a1, az) in N2. Let N be such that b;+2N; > a; and N, be such that by+
Ny > ay then bn(vTy) >; u where N = (Ny, Ny). Moreover (Ty, N2 )
is not cofinal: Let b = (0,0) and a = (1,0) then since n(f{" f2?) =
(2N, Ny) it follows that there cannot be N = (N, Np) € N? such that
for aw € vy there is 8 € vTyv with bn(a) = an(B).

Taking T, again, we define a functor n : Ty — N? by n(f;) = (1,0) and
n(f2) = (1,1). The skew product graph has 1-skeleton:

e P P P P
hd B b B
- - - -
- - - -
- - - -
- - - -
- - - - -
- - - - P
- - - - _
e &¢ e &< e
hd B b B B
- - - -
- - - -
- - - - B
- - - - P
- - - - -
- - - - _
o< o< < @ o<

We claim that 7 is upper dense: Fix b = (by, by) and a = (ay,as) in N?
then there is N; such that b;+N; > a; and Ny such that by+N;+Noy > as.
Then with N = (Ny, Ny) for all @ € vTy we have bn(a) >; a. In this case
(T, N2 n) is cofinal: Fix b = (by,be) and a = (ay,az) in N2, Then there
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is Ny such that b; + Ny = a; + my for some m; € N and N, such that
ba + N1 + Ny = ay + ms for some my € N. Hence for all a € UTQN where
N = (Ny, Ny) there is 5 = (f{™, f3"?) € vTyv such that bn(a) = an(pB).

The last two examples show that 1 being upper dense is not sufficient to guar-
antee cofinality of (A, S,n). The following definition allows for the interaction
of the values of n at different vertices of A and the following result gives us
the required extra condition.

Definition 5.6. Let A be a k-graph and n : A — S be a functor where S is
a left-reversible semigroup. We say that 7 is S-primitive for A if there is a
strictly positive ¢ € S such that for all v,w € A° we have v~ (s)w # () for all
s € S such that s >; t.

Remarks 5.7. (i) The condition that ¢ is strictly positive in the above defi-
nition guarantees that n(vAw) is cofinal in S for all v, w € A°.

(ii) If n: A — S is S-primitive for A where S is a left-reversible semigroup,
then if we extend 1 to I' = SS~! then 7 is T-primitive for A.

Ezamples 5.8. (i) Let A be a k-graph. Then the degree functor d : A — N¥
is N¥-primitive for A if and only if A is primitive as defined in Section

2.3 For this reason we will say that A is primitive if d is N* primitive
for A.

(ii) As in Examples[5.5] (i) let 1 : By — N be defined by n(e) = 1, n(f) = 0.
Then the functor 7 is N-primitive since n~!(n) is nonempty for all n € N.
Hence N-primitivity does not, by itself, guarantee cofinality.

(iii) As in Examples (ii) let  be the functor from Ty to N? such that
n(f1) = (2,0), and n(f2) = (0,1). Then the functor 7 is not N?-primitive
for Ty: Take t = (2m,n) > 0 then if s = (2m+1,n) we have vn~*(s)v = ()
and s >; t. Similarly if £ = (2m+1) > 0 then if s = (2m+ 2, n) we have
v~ (s)v =0 and s >; t.

(iv) As in Examples (iii) let n : T — N? be defined by n(f1) = (1,0)
and n(fy) = (0,1). Then 7 is not N%-primitive for Ty as v~ (m,n)v
whenever n > m.

The last two examples above illustrate that upper density and primitivity
are unrelated conditions on a k-graph. Together they provide a necessary
condition for cofinality.

Proposition 5.9. Let A be a k-graph with no sources and n : A — S be a
functor where S is a left-reversible semigroup. If (A, S,n) is cofinal then n is
upper dense. Ifn is S-primitive for A and upper dense then (A, S,n) is cofinal.
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Proof. Suppose that (A, S,7n) is cofinal. Fix w € A and a,b € S and let v be
any vertex of A. By cofinality of (A,S,n) there exists N € N*¥ such that for
all & € wA" there is 3 € vAs(a) such that an(3) = bn(a). Then any element
of bn(wA™Y) is of the form

bn(ar) = an(P) 2 a.

Suppose 7 is S-primitive and upper dense for A. Since n is S—primitive for
A there exists ¢ € S such that for all v,w € A° we have vn~!(s)w # 0 for
all s > t. Fix v,w € A and a,b € S. Since 7 is upper dense there exists
N € N* such that bn(a) >; at for all @ € wA». Since S is left-reversible, it is
directed, and so by definition bn(a) = atu for some v € S. But tu >; ¢t and so
since 7 is S—primitive there exists § € vAs(a) such that n(5) = tu and hence

bn(a) = an(B). 0

Corollary 5.10. Let A be a row-finite k-graph such that d is N* primitive for
A then (A,NF d) is cofinal.

Proof. Since d is N* primitive for A it follows that A has no sources. The
result then follows from Lemma |5.4] and Proposition [5.9 n

Ezample 5.11. Let n : Ty — S be any functor, then 7(S) is a subsemigroup of
S since Ty has a single vertex; moreover 7 is 7(,S)—primitive for 75. Hence if n
is upper dense for Ts, it follows that (7%,7(S),n) is cofinal. In particular, in
Exampld.5] (ii) one checks that (75, n(N?,7) is cofinal.

Theorem 5.12. Let A be an aperiodic k-graph, n: A — S be a functor into
a left-reversible semigroup, and n be S—primitive for A. Then C*(A x,, S) is
simple if and only if n is upper dense.

Proof. 1f n is upper dense then the result follows from Proposition On the
other hand if C*(A x,, §) is simple then the result follows from Theorem m
and Corollary O

6 Skew products by a group Let A be a row-finite k-graph. A functor
n: A — G defines a coaction 6, on C*(A) determined by 0,(sx) = sy @ n(N).
It is shown in [14, Theorem 7.1] that C*(A x,, G) is isomorphic to C*(A) x5, G.
Hence we may relate the simplicity of the C*-algebra of a skew product graph
to the simplicity of the associated crossed product. This can be done by using
the results of [20].

Following |14, Lemma 7.9], for ¢ € G the spectral subspace C*(A), of the
coaction 4, is given by

C*(A)y = span{sys} : n(An(u) " = g}
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We define sp(d,) = {g € G : C*(A), # 0}, to be the collection of non-empty
spectral subspaces. The fized point algebra, C*(A)% of the coaction is defined
to be C*(A)1,. For more details on the coactions of discrete groups on k-graph
algebras, see [14}, §7] and [20].

We give necessary and sufficient conditions for the skew product graph C*-
algebra to be simple in terms of the fixed-point algebra as our main result in
Theorem We are particularly interested in the case when 7 is the degree
functor.

Definition 6.1. Let A be a row-finite k-graph, GG be a discrete group and
n: A — G a functor, then we define

I'(n)={g€G:g=n\n(p) " for some \, u € A with s(\) = s(u)}.

Lemma 6.2. Let A be a row-finite graph with no sources andn: A — G a
functor, where G is a discrete group.

(a) If (A, G,n) is cofinal then T'(n) = G.
(b) sp(d,) = G if and only if I'(n) = G.

Proof. Fix g € G and write g = b~'a for some a,b € G. Now fix v,w € AY;
since (A,G,n) is cofinal there exist A, € A with s(A\) = s(u) such that
an(pu) = bn(\). Hence b~'a = n(A\)n(u)~' and so g € T'(n). Since g was
arbitrary the result follows.

The second statement follows by definition. m

Theorem 6.3. Let A be an aperiodic row-finite k-graph with no sources, 7 :
A — G a functor and 6, the associated coaction of G on C*(A). Then C*(A X,
G) is simple if and only if C*(A)% is simple and T'(n) = G.

Proof. By [14, Theorem 7.1] it follows that C*(A X, G) is isomorphic to
C*(A) x5, G. Then by [20, Theorem 2.10] C*(A) x5, G is simple if and only if
C*(A)% is simple and sp(8,) = G. The result now follows from Lemma O

Example 6.4. Let A be a row-finite k-graph with no sources and d : A — N*
be the degree functor. We claim that T'(d) = ZF. Fix p € ZF, and write
p = m —n where m,n € N¥. Since A has no sources, for every v € A? there is
A€ Ay and p € A™v. Then

d(\) = d(u) =m —n = p € T(d),

and so ['(d) = Z*. Since I'(d) = Z*, and (A, Z*,d) is aperiodic, we have that
C*(A)% is simple if and only (A, N, d) is cofinal.

We seek conditions on A that will guarantee (A, N* d) is cofinal.
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7 The gauge coaction The coaction d, of Z* on C*(A) defined in Section@
is such that the fixed point algebra C*(A)% is precisely the fixed point algebra
C*(A)" for the canonical gauge action of T* on C*(A) by the Fourier transform
(cf. [2, Corollary 4.9].

By [9, Lemma 3.3] the fixed point algebra C*(A)” is AF, and is usually
referred to as the AF core. In Theorem [.2l we use the results of the last two
sections to give necessary and sufficient conditions for the AF core C*(A)" to
be simple when A° is finite. When there are infinitely many vertices we show,
in Theorem that in many cases the AF core is not simple.

The AF core of a k-graph algebra plays a significant role in the development
of crossed products by endomorphisms. Results of Takehana and Katayama [§]
show that when A is a finite 1-graph such that the core C*(A) is simple, then
every nontrivial automorphism of C*(A) is outer (see |17, Proposition 3.4]).

We saw in Example that a k-graph being strongly connected is not
enough to guarantee that A x4 ZF is cofinal, and hence by [23, Theorem 3.1]
C* (A x47ZF) is not simple and then by Theorem [6.3|the AF core is not simple.
Another condition is required to guarantee that A x4 Z* is cofinal, which is
suggested by |18] and was introduced in Section

Theorem 7.1. Let A be a row-finite k-graph with no sinks and sources and
A® finite. If (A, d,Z%) is cofinal then A is primitive.

Proof. We claim that for v € A° there is N(v) € N* such that for all n > N(v)
we have vA™ # . Fix (v,0) € (A x4 Z*)° then for each w € A%, when we
apply the cofinality condition to (w,0) € (A x4 Z*)? we obtain N,, € N¥ such
that (v,0)(A x4 Z*)s(a,0) # 0 for all (a,0) € (w,0)(A x4 ZF)Nv. Define
N = maxyep0{ Ny}, which is finite since A° is finite.

By Proposition it follows that A is strongly connected, hence there
exists @ € vAv with d(a) = r > 0. Hence, there exists ¢ > 1 such that
tr > N. Let N(v) = tr.

Let m = n —tr > 0. Since A has no sources, vA™ # (); hence there
exists v € vA™. Let w = s(y). For (v,0),(w,0) € (A x4 Z*)°, we have
(a,0) € (v,0)(A x4 Z*)" where tr > N > N,. By cofinality and Lemma
(b), there exists (8,0) € (w,0)(A x4 Z¥)(v,tr) as s(al,0) = (v,tr). As
B € wAv it follows that v3 € vA™v, which proves the claim. n

The following result generalises results from [18]:

Theorem 7.2. Let (A,d) be a row-finite k-graph with no sinks or sources,
and A° finite. Then C*(A)° is simple if and only if A is primitive.

Proof. Suppose that A is primitive. Then (A, Z*, d) is strongly connected and
cofinal by Remarks 2.8 Hence C*(A x4ZF) is simple and so C*(A)% is simple

by Theorem [6.3]
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Suppose that C*(A)% is simple. Recall from Example [6.4] that since A has
no sources then I'(d) = Z*. Then by Theorem C*(A x4 ZF) is simple,
and hence (A, d, Z*) is cofinal by [23, Theorem 3.1] and Proposition [4.11] By
Theorem this implies that A is primitive. ]

Fxample 7.3. Since it has a single vertex it is easy to see that the 2-graph
F% defined in Examples (d) is primitive. Hence by Theorem we see
that C*(F%)" is simple for all 6. Indeed in |4, §2.1] it is shown that C*(F3)7 =
UHF (mn)®°.

We now turn our attention to the case when A is infinite. We adapt the
technique used in [18] to show that, in many cases the AF core is not simple.

Definition 7.4. Let A be a row-finite k-graph with no sources. For v € A°,
n € N¥ let

V(n,v) ={s(A\) : X € vA™,m < n}
FV(n,v) =V(n,v)\ U, V(n —e;,v).

Remarks 7.5. For v € A°, m < n € N¥ we have, by definition, that V (m,v) C
V(n,v).

For v € A% n € N* the set F'V(n,v) denotes those vertices which connect
to v with a path of degree n and there is no path from that vertex to v with
degree less than n.

Lemma 7.6. Let A be a row-finite k-graph with no sources. For v € AY,
n € NF then V(n,v) is finite and if V(n) = V(n—¢;) for some 1 < i < k then
V(n+re)=V(n—e;) forallr > 0.

Proof. Fix, v € A% n € NF, since A row-finite it follows that U,,<,vA™ is
finite and hence so is V(n,v).

Suppose, without loss of generality that V(n) = V(n —e;). Let w €
V(n+ e1), then there is A € vA™™'w. Now A(0,n) € vA™ and so s(A(0,n)) €
V(n) = V(n — e1). Hence there is u € vA™s(A(0,n)) for some m < n — e
and so pA(n,n + e;) € vA™ . Since s(uA(n,e + €1)) = s(A\) = w and
m + e; < n it follows that w € V(n). As w was an arbitrary element of
V(n+ e1) it follows that V(n +e;) C V(n) = V(n — e;). By Remarks [7.5 we
have V(n—e;) C V(n+ey) and so V(n+e;) = V(n—e;). It then follows that
V(n+re;) =V(n—ep) for r >0 by an elementary induction argument. [

We adopt the following notation, used in [11]: Let A be a k-graph for 1 <i <k
we set ANe = U5 oA,

Proposition 7.7. Let A be a row-finite k-graph with no sources such that for
all w € A° and for 1 < i < k, the set s~ ! (wANei) s infinite. Then for all
n € NF, v € A we have FV (n,v) # 0.
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Proof. Suppose, for contradiction, that F'V(n,v) = () for some n € N¥ and
v € AY. Then, without loss of generality we may assume that V(n) = V(e—e;).

Let A € vA”, then s(\) € V(n) = V(n —e1). Fix r > 0, then since A has
no sources there is g € s(A\)A™. Then Ay € vA™ and so s(Ap) = s(u) €
V(n+rer,v). By Lemma [7.6]it follows that V(n+re;) = V(n—e;) and so for
any 11 € s(A\)AN we have s(u1) € V(n—e;). By Remarks[7.5V (n—e;) is finite
and so we have contradicted the hypothesis that s™1 (wANel) is infinite. [

Note that k-graphs satisfying the hypothesis of Proposition [7.7] must have
infinitely many vertices. The following result generalises results from [18]:

Theorem 7.8. Let A be a row-finite k-graph with no sources such that for all
w € A° and for 1 < i < k, the set s7! (wANei) is infinite. Then A x4 ZF is
not cofinal.

Proof. Suppose, for contradiction, that A x4 Z* is cofinal.

Fix v € AY then since A is row-finite and has no sources W = s~ (vA®)
is finite and nonempty. Without loss of generality let W = {wy, ..., w,}.

Since A x4 ZF is cofinal, for 1 < i < n if we consider (w;,0) and (v,0) €
A% x ZF then there is N; € N* such that for all (o, 0) € (w;,0) (A x4 Zk)Ni
we have (v,0) (A x4Z*) (s(a),N;) # 0. Let N = max{Ny,...,N,}. By
Proposition FV(N + e;,v) # 0, hence there is A € vAM*e such that
there is no path of degree less than N + e; from s(\) to v. Without loss of
generality s(A(0,e1)) = wy, and so (A(er, N + €1),0) € (wy,0) (A xq Zk)N.
Since N > N; and A has no sources, by Lemma [4.2[ii) there is (a,0) €
(v,0) (A x4 ZF) (s(\), N) which implies that o € vAYs()), contradicting the
defining property of A € vAN+ter, O

Examples 7.9. 1. Let A be a strongly connected k-graph with A° infinite,
then A has no sources and for all w € A° we have s=! (wAN*) is infinite
for 1 < ¢ < k. Hence by Theorem it follows that A x4 Z* is not
cofinal.

2. Let A be a k-graph with A° infinite, no sources and no paths with the
same source and range. Then for all w € A® we have s™ (wA"*) is
infinite for 1 < i < k. Hence by Theorem it follows that A x4 ZF is
not cofinal.
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