Remark on the Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces

KôzÔ Yabuta

Received March 30, 2015 ; revised August 19, 2015

Abstract

In the present paper, we consider the boundedness of the rough singular integral operator $T_{\Omega, h, \phi}$ along a surface $\left.\Gamma=\{x=\phi(|y|) y /|y|)\right\}$ on the Triebel-Lizorkin space $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ with $\alpha \in \mathbb{R}$, $1<p, q<\infty$ for $\Omega \in H^{1}\left(S^{n-1}\right)$ and Ω belonging to some class $W \mathcal{F}_{\alpha}\left(S^{n-1}\right)$, which relates to the Grafakos-Stefanov class. We improve recent results about these operators.

1 Introduction. The purpose of this paper is to improve recent results in [10].
Let $\mathbb{R}^{n}(n \geq 2)$ be the n-dimensional Euclidean space and S^{n-1} be the unit sphere in \mathbb{R}^{n} equipped with the induced Lebesgue measure $d \sigma=d \sigma(\cdot)$. Suppose $\Omega \in L^{1}\left(S^{n-1}\right)$ satisfies the cancellation condition

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

where $y^{\prime}=y /|y|$.
For a suitable function ϕ and a measurable function h on $[0, \infty)$, we denote by $T_{\Omega, \phi, h}$ the singular integral operator along the surface

$$
\Gamma=\left\{x=\phi(|y|) y^{\prime}: y \in \mathbb{R}^{n}\right\}
$$

defined as follows:

$$
\begin{equation*}
T_{\Omega, h, \phi} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{h(|y|) \Omega\left(y^{\prime}\right)}{|y|^{n}} f\left(x-\phi(|y|) y^{\prime}\right) d y \tag{2}
\end{equation*}
$$

for f in the Schwartz class $\mathcal{S}\left(\mathbb{R}^{n}\right)$. If $\phi(t)=t$, then $T_{\Omega, h, \phi}$ is the classical singular integral operator $T_{\Omega, h}$, which is defined by

$$
\begin{equation*}
T_{\Omega, h} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{h(|y|) \Omega\left(y^{\prime}\right)}{|y|^{n}} f(x-y) d y \tag{3}
\end{equation*}
$$

When $h \equiv 1$, we denote simply $T_{\Omega, h, \phi}$ and $T_{\Omega, h}$ by $T_{\Omega, \phi}$ and T_{Ω}, respectively.
Let us recall the definitions of some function spaces. First recall the definitions of the homogeneous Triebel-Lizorkin spaces $\dot{F}_{p, q}^{\alpha}=\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ and the homogeneous Besov spaces $\dot{B}_{p, q}^{\alpha}=\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$. For $0<$ $p, q \leq \infty(p \neq \infty)$ and $\alpha \in \mathbb{R}, \dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\begin{equation*}
\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) / \mathcal{P}\left(\mathbb{R}^{n}\right):\|f\|_{\dot{F}_{p, q}^{\alpha}}=\left\|\left(\sum_{k \in \mathbb{Z}} 2^{k \alpha q}\left|\Psi_{k} * f\right|^{q}\right)^{1 / q}\right\|_{L^{p}}<\infty\right\} \tag{4}
\end{equation*}
$$

[^0]and $\dot{B}_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)$ is defined by
\[

$$
\begin{equation*}
\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) / \mathcal{P}\left(\mathbb{R}^{n}\right):\|f\|_{\dot{B}_{p, q}^{\alpha}}=\left(\sum_{k \in \mathbb{Z}} 2^{k \alpha q}\left\|\Psi_{k} * f\right\|_{L^{p}}^{q}\right)^{1 / q}<\infty\right\} \tag{5}
\end{equation*}
$$

\]

where $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ denotes the tempered distribution class on \mathbb{R}^{n}, and $\mathcal{P}\left(\mathbb{R}^{n}\right)$ denotes the set of all polynomials on \mathbb{R}^{n}, $\widehat{\Psi_{k}}(\xi)=\Phi\left(2^{-k} \xi\right)$ for $k \in \mathbb{Z}$ and $\Phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is a radial function satisfying the following conditions: (i) $0 \leq \Phi \leq 1$; (ii) $\operatorname{supp} \Phi \subset\{\xi: 1 / 2 \leq|\xi| \leq 2\}$; (iii) $\Phi>c>0$ if $3 / 5 \leq|\xi| \leq 5 / 3$; (iv) $\sum_{j \in \mathbb{Z}} \Phi\left(2^{-j} \xi\right)=1$ $(\xi \neq 0)$. Note that the space $\mathcal{S}_{\infty}\left(\mathbb{R}^{n}\right)$ given by

$$
\mathcal{S}_{\infty}\left(\mathbb{R}^{n}\right):=\bigcap_{\alpha \in(\mathbb{N} \cup\{0\})^{n}}\left\{f \in \mathcal{S}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}} x^{\alpha} f(x) d x=0\right\}
$$

is dense in $\dot{F}_{p q}^{\alpha}\left(\mathbb{R}^{n}\right)$ and $\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ as long as $\alpha \in \mathbb{R}$ and $p, q \in(0, \infty)([9$, Theorem 5.1.5]).
The inhomogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by $F_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ and $B_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ respectively, are obtained by adding the term $\left\|\Phi_{0} * f\right\|_{p}$ to the right-hand side of (4) or (5) with $\sum_{k \in \mathbb{Z}}$ replaced by $\sum_{k=0}^{\infty}$, where $\Phi_{0} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, $\operatorname{supp} \widehat{\Phi_{0}} \subset\{\xi:|\xi| \leq 2\}$, and $\widehat{\Phi_{0}}(\xi)>c>0$ if $|\xi| \leq 5 / 3$.

The following properties of the Triebel-Lizorkin space and Besov space are well known. Let $1<$ $p, q<\infty, \alpha \in \mathbb{R}$, and $1 / p+1 / p^{\prime}=1,1 / q+1 / q^{\prime}=1$.
(a) $\dot{F}_{2,2}^{0}=\dot{B}_{2,2}^{0}=L^{2}, \dot{F}_{p, 2}^{0}=L^{p}$ and $\dot{F}_{p, p}^{\alpha}=\dot{B}_{p, p}^{\alpha}$ for $1<p<\infty$, and $\dot{F}_{\infty, 2}^{0}=\mathrm{BMO}$;
(b) $\quad F_{p, q}^{\alpha} \sim \dot{F}_{p, q}^{\alpha} \cap L^{p}$ and $\|f\|_{F_{p, q}^{\alpha}} \sim\|f\|_{\dot{F}_{p, q}^{\alpha}}+\|f\|_{L^{p}}(\alpha>0)$;
(c) $\quad B_{p, q}^{\alpha} \sim \dot{B}_{p, q}^{\alpha} \cap L^{p}$ and $\|f\|_{B_{p, q}^{\alpha}} \sim\|f\|_{\dot{B}_{p, q}^{\alpha}}+\|f\|_{L^{p}}(\alpha>0)$;
(d) $\left(\dot{F}_{p, q}^{\alpha}\right)^{*}=\dot{F}_{p^{\prime}, q^{\prime}}^{-\alpha}$ and $\left(F_{p, q}^{\alpha}\right)^{*}=F_{p^{\prime}, q^{\prime}}^{-\alpha}$;
(e) $\left(\dot{B}_{p, q}^{\alpha}\right)^{*}=\dot{B}_{p^{\prime}, q^{\prime}}^{-\alpha}$ and $\left(B_{p, q}^{\alpha}\right)^{*}=B_{p^{\prime}, q^{\prime}}^{-\alpha}$;
(f) $\left(\dot{F}_{p, q_{1}}^{\alpha_{1}}, \dot{F}_{p, q_{2}}^{\alpha_{2}}\right)_{\theta, q}=\dot{B}_{p, q}^{\alpha}\left(\alpha_{1} \neq \alpha_{2}, 0<p<\infty, 0<q, q_{1}, q_{2} \leq \infty\right.$,

$$
\left.\alpha=(1-\theta) \alpha_{1}+\theta \alpha_{2}, 0<\theta<1\right) . .
$$

See [9] for more properties of $\dot{F}_{p, q}^{\alpha}$ and $\dot{B}_{p, q}^{\alpha}$.
Next, we give the definition of the Hardy space $H^{1}\left(S^{n-1}\right)$.

$$
H^{1}\left(S^{n-1}\right)=\left\{\omega \in L^{1}\left(S^{n-1}\right)\left|\|f\|_{H^{1}\left(S^{n-1}\right)}=\left\|\sup _{0 \leq r<1}\left|\int_{S^{n-1}} \omega\left(y^{\prime}\right) P_{r(\cdot)}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|\right\|_{L^{1}\left(S^{n-1}\right)}<\infty\right\}\right.
$$

where $P_{r y^{\prime}}\left(x^{\prime}\right)$ denotes the Poisson kernel on S^{n-1} defined by $P_{r y^{\prime}}\left(x^{\prime}\right)=\left(1-r^{2}\right) /\left|r y^{\prime}-x^{\prime}\right|^{n}, 0 \leq r<1$ and $x^{\prime}, y^{\prime} \in S^{n-1}$.

Besides $H^{1}\left(S^{n-1}\right)$, there are two important function spaces $L(\log L)\left(S^{n-1}\right)$ and the block spaces $B_{q}^{(0,0)}\left(S^{n-1}\right)$ in the theory of singular integrals. Let $L(\log L)^{\alpha}\left(S^{n-1}\right)$ (for $\left.\alpha>0\right)$ denote the class of all
measurable functions Ω on S^{n-1} which satisfy

$$
\|\Omega\|_{L(\log L)^{\alpha}\left(S^{n-1}\right)}=\int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \log ^{\alpha}\left(2+\left|\Omega\left(y^{\prime}\right)\right|\right) d \sigma\left(y^{\prime}\right)<\infty
$$

Denote by $L(\log L)\left(S^{n-1}\right) L(\log L)^{1}\left(S^{n-1}\right)$. A well-known fact is $L(\log L)\left(S^{n-1}\right) \subset H^{1}\left(S^{n-1}\right)$, cf. [8].
We turn to the block space $B_{q}^{(0, v)}\left(S^{n-1}\right)$. Let $1<q \leq \infty$ and $v>-1$. A q-block on S^{n-1} is an $L^{q}\left(S^{n-1}\right)$ function b which satisfies $\operatorname{supp} b \subset$ and $\|b\|_{q} \leq|I|^{-1 / q^{\prime}}$, where $|I|=\sigma(I)$, and $I=$ $B\left(x_{0}^{\prime}, \theta_{0}\right) \cap S^{n-1}$ is a cap on S^{n-1} for some $x_{0}^{\prime} \in S^{n-1}$ and $\theta_{0} \in(0,1]$. The block space $B_{q}^{(0, v)}\left(S^{n-1}\right)$ is defined by

$$
\begin{equation*}
B_{q}^{(0, v)}\left(S^{n-1}\right)=\left\{\Omega \in L^{1}\left(S^{n-1}\right) ; \Omega=\sum_{j=1}^{\infty} \lambda_{j} b_{j}, M_{q}^{(0, v)}\left(\left\{\lambda_{j}\right\}\right)<\infty\right\} \tag{7}
\end{equation*}
$$

where $\lambda_{j} \in \mathbb{C}$ and b_{j} is a q-block supported on a cap I_{j} on S^{n-1}, and

$$
\begin{equation*}
M_{q}^{(0, v)}\left(\left\{\lambda_{j}\right\}\right)=\sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left\{1+\log ^{(v+1)}\left(\left|I_{j}\right|^{-1}\right)\right\} \tag{8}
\end{equation*}
$$

For $\Omega \in B_{q}^{(0, v)}\left(S^{n-1}\right)$, denote

$$
\|\Omega\|_{B_{q}^{(0, v)}\left(S^{n-1}\right)}=\inf \left\{M_{q}^{(0, v)}\left(\left\{\lambda_{j}\right\}\right) ; \Omega=\sum_{j=1}^{\infty} \lambda_{j} b_{j}, b_{j} \text { is a } q \text {-block }\right\}
$$

Then $\|\cdot\|_{B_{q}^{(0, v)}\left(S^{n-1}\right)}$ is a norm on the space $B_{q}^{(0, v)}\left(S^{n-1}\right)$, and $\left(B_{q}^{(0, v)}\left(S^{n-1}\right),\|\cdot\|_{B_{q}^{(0, v)}\left(S^{n-1}\right)}\right)$ is a Banach space. The following inclusion relations are known.
(a) $B_{q}^{\left(0, v_{1}\right)}\left(S^{n-1}\right) \subset B_{q}^{\left(0, v_{2}\right)}\left(S^{n-1}\right) \quad$ if $v_{1}>v_{2}>-1$;
(b) $\quad B_{q_{1}}^{(0, v)}\left(S^{n-1}\right) \subset B_{q_{2}}^{(0, v)}\left(S^{n-1}\right)$ if $1<q_{2}<q_{1}$ for any $v>-1$;
(c) $\bigcup_{p>1} L^{p}\left(S^{n-1}\right) \subset B_{q}^{(0, v)}\left(S^{n-1}\right)$ for any $q>1, v>-1$;
(d) $\bigcup_{q>1} B_{q}^{(0, v)}\left(S^{n-1}\right) \not \subset \bigcup_{q>1} L^{q}\left(S^{n-1}\right) \quad$ for any $v>-1$;
(e) $\quad B_{q}^{(0, v)}\left(S^{n-1}\right) \subset H^{1}\left(S^{n-1}\right)+L(\log L)^{1+v}\left(S^{n-1}\right) \quad$ for any $q>1, v>-1$;
(f) $\bigcup_{q>1} B_{q}^{(0,0)}\left(S^{n-1}\right) \subset H^{1}\left(S^{n-1}\right)$.

Besides them, there is another class of kernels which lead L^{p} and Triebel-Lizorkin space boundedness of singular integral operators $T_{\Omega, h}$. It is closely related to the class \mathcal{F}_{α} introduced by Grafakos and Stefanov [4].

For $\beta>0$ we say $\Omega \in \mathcal{F}_{\beta}\left(S^{n-1}\right)$ if

$$
\begin{equation*}
\sup _{\xi^{\prime} \in S^{n-1}} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \log ^{\beta} \frac{2}{\left|y^{\prime} \cdot \xi^{\prime}\right|} d \sigma\left(y^{\prime}\right)<\infty \tag{10}
\end{equation*}
$$

and $\Omega \in W \mathcal{F}_{\beta}\left(S^{n-1}\right)\left(\tilde{\mathcal{F}}_{\beta}\left(S^{n-1}\right)\right.$ in [6] $)$ if

$$
\begin{equation*}
\sup _{\xi^{\prime} \in S^{n-1}}\left(\int_{S^{n-1}} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right) \Omega\left(z^{\prime}\right)\right| \log ^{\beta} \frac{2 e}{\left|\left(y^{\prime}-z^{\prime}\right) \cdot \xi^{\prime}\right|} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)\right)^{\frac{1}{2}}<\infty \tag{11}
\end{equation*}
$$

We note that $\cup_{r>1} L^{r}\left(S^{n-1}\right) \subset W \mathcal{F}_{\beta_{2}}\left(S^{n-1}\right) \subset W \mathcal{F}_{\beta_{1}}\left(S^{n-1}\right)$ for $0<\beta_{1}<\beta_{2}<\infty$.
About the inclusion relation between $\mathcal{F}_{\beta_{1}}\left(S^{n-1}\right)$ and $W \mathcal{F}_{\beta_{2}}\left(S^{n-1}\right)$, the following is known: when $n=2$, Lemma 1 in [3] shows $\mathcal{F}_{\beta}\left(S^{1}\right) \subset W \mathcal{F}_{\beta}\left(S^{1}\right)$. It is also known that $W \mathcal{F}_{2 \alpha}\left(S^{1}\right) \backslash\left(\mathcal{F}_{\alpha}\left(S^{1}\right) \cup H^{1}\left(S^{1}\right)\right) \neq$ Ø. cf. [7].

To state our claims, we need one more function space. For $1 \leq \gamma \leq \infty, \Delta_{\gamma}\left(\mathbb{R}_{+}\right)$is the collection of all measurable functions $h:[0, \infty) \rightarrow \mathbb{C}$ satisfying

$$
\|h\|_{\Delta_{\gamma}}=\sup _{R>0}\left(\frac{1}{R} \int_{0}^{R}|h(t)|^{\gamma} d t\right)^{1 / \gamma}<\infty
$$

Note that

$$
L^{\infty}\left(\mathbb{R}_{+}\right)=\Delta_{\infty}\left(\mathbb{R}_{+}\right) \subset \Delta_{\beta}\left(\mathbb{R}_{+}\right) \subset \Delta_{\alpha}\left(\mathbb{R}_{+}\right) \quad \text { for } \alpha<\beta
$$

and all these inclusions are proper.
In this short note, we report that Theorems 1.1, 1.2 and 1.3 in [10] are improved essentially in the following form. In the following theorems, the statement " $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ " means that

$$
\left\|T_{\Omega, h, \phi} f\right\|_{\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)} \leq C\left\|T_{\Omega, h, \phi} f\right\|_{\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)}
$$

for all $f \in \mathcal{S}_{\infty}\left(\mathbb{R}^{n}\right)$. In any case, by density we can extend the above inequality and have them for all $f \in \dot{F}_{p q}^{\alpha}\left(\mathbb{R}^{n}\right)$. We use similar abbreviation to $\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$.

Theorem 1. Let ϕ be a nonnegative (or nonpositive) and monotonic function on $(0, \infty)$ satisfying

$$
\begin{equation*}
\varphi(t)=\phi(t) /\left(t \phi^{\prime}(t)\right) \in L^{\infty}(0, \infty) \tag{12}
\end{equation*}
$$

Let $h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$. Suppose $\Omega \in H^{1}\left(S^{n-1}\right)$, satisfying the cancellation condition (1). Then
(i) $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in \mathbb{R}$ and p, q with $\left(\frac{1}{p}, \frac{1}{q}\right)$ belonging to the interior of the octagon $P_{1} P_{2} R_{2} P_{3} P_{4} P_{5} R_{4} P_{6}$ (hexagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ in the case $1<\gamma \leq 2$), where $P_{1}=\left(\frac{1}{2}-\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}, \frac{1}{2}-\right.$ $\left.\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}\right), P_{2}=\left(\frac{1}{2}, \frac{1}{2}-\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}\right), P_{3}=\left(\frac{1}{2}+\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}, \frac{1}{2}\right), P_{4}=\left(\frac{1}{2}+\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}, \frac{1}{2}+\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}\right), P_{5}=$ $\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}\right), P_{6}=\left(\frac{1}{2}-\frac{1}{\max \left\{2, \gamma^{\prime}\right\}}, \frac{1}{2}\right), R_{2}=\left(1-\frac{1}{2 \gamma}, \frac{1}{2 \gamma}\right)$, and $R_{4}=\left(\frac{1}{2 \gamma}, 1-\frac{1}{2 \gamma}\right)$.
(ii) $T_{\Omega, h, \phi}$ is bounded on $\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in \mathbb{R}$ and p, q satisfying $\left|\frac{1}{2}-\frac{1}{p}\right|<\min \left\{\frac{1}{2}, \frac{1}{\gamma^{\prime}}\right\}$ and $1<q<\infty$.

See the following Figures 1-1 and 1-2 for the conclusion (i) of Theorem 1.

The following theorem shows that if Ω belongs to $L \log L\left(S^{n-1}\right)$ or block spaces, then we can get better results than Theorem 1.

Theorem 2. Let ϕ be a nonnegative (or nonpositive) and monotonic function on ($0, \infty$) satisfying the same condition as in Theorem 1. Let $h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$, and $\Omega \in L^{1}\left(S^{n-1}\right)$ satisfy the cancellation condition (1). Then
(i) if $\Omega \in L(\log L)\left(S^{n-1}\right)$, $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in \mathbb{R}$ and p, q with $\left(\frac{1}{p}, \frac{1}{q}\right)$ belonging to the interior of the hexagon $Q_{1} Q_{2} Z_{2} Q_{3} Q_{4} Z_{4}$ when $1<\gamma<2$ and $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$ when $2 \leq \gamma \leq \infty$, where $Q_{1}=(0,0), Q_{2}=\left(\frac{1}{\gamma^{\prime}}, 0\right), Q_{3}=(1,1), Q_{4}=\left(\frac{1}{\gamma}, 1\right), S_{2}=\left(1, \frac{1}{\gamma}\right), S_{4}=\left(\frac{1}{\gamma}, 0\right), Z_{2}=\left(1, \frac{1}{2}\right)$, and $Z_{4}=\left(\frac{1}{2}, 0\right)$.
(ii) if $\Omega \in \cup_{1<q<\infty} B_{q}^{(0,0)}\left(S^{n-1}\right), T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in \mathbb{R}$ and p, q with $\left(\frac{1}{p}, \frac{1}{q}\right)$ belonging to the interior of the hexagon $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$
(iii) if $\Omega \in L(\log L)\left(S^{n-1}\right) \cup\left(\cup_{1<q<\infty} B_{q}^{(0,0)}\left(S^{n-1}\right)\right)$, $T_{\Omega, h, \phi}$ is bounded on $\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha \in \mathbb{R}$ and $1<p, q<\infty$.

See the following Figures 1-3 and 1-4 for the conclusion of Theorem 2(i).

As a corresponding result to the case Ω belongs to $W \mathcal{F}_{\alpha}$, we have the following:

Theorem 3. Let ϕ be a nonnegative (or nonpositive) and monotonic function on $(0, \infty)$ satisfying the same condition as in Theorem 1. Let $h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$. Suppose $\Omega \in W \mathcal{F}_{\beta}=W \mathcal{F}_{\beta}\left(S^{n-1}\right)$ for some $\beta>\max \left(\gamma^{\prime}, 2\right)$, and satisfies the cancellation condition (1). Then
(i) the singular integral operator $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$, if $\alpha \in \mathbb{R}$ and $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the hexagon $\mathcal{Q}_{1} \mathcal{Q}_{2} \mathcal{S}_{2} \mathcal{Q}_{3} \mathcal{Q}_{4} \mathcal{S}_{4}$, where $\mathcal{Q}_{1}=\left(\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}, \frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}\right), \mathcal{Q}_{2}=\left(\frac{1}{\gamma^{\prime}}+\frac{\max \left(\gamma^{\prime}, 2\right)}{\beta}\left(\frac{1}{2}-\right.\right.$ $\left.\left.\frac{1}{\gamma^{\prime}}\right), \frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}\right), \mathcal{Q}_{3}=\left(1-\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}, 1-\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}\right), \mathcal{Q}_{4}=\left(\frac{1}{\gamma}-\frac{\max \left(\gamma^{\prime}, 2\right)}{\beta}\left(\frac{1}{\gamma}-\frac{1}{2}\right), 1-\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}\right), \mathcal{S}_{2}=$ $\left(, 1-\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}, \frac{1}{\gamma}-\frac{\max \left(\gamma^{\prime}, 2\right)}{\beta}\left(\frac{1}{\gamma}-\frac{1}{2}\right)\right)$, and $\mathcal{S}_{4}=\left(\frac{\max \left(\gamma^{\prime}, 2\right)}{2 \beta}, \frac{1}{\gamma^{\prime}}+\frac{\max \left(\gamma^{\prime}, 2\right)}{\beta}\left(\frac{1}{2}-\frac{1}{\gamma^{\prime}}\right)\right)$.
(ii) $T_{\Omega, h, \phi}$ is bounded on $\dot{B}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$, if $\alpha \in \mathbb{R}, \frac{2 \beta}{2 \beta-\max \left(\gamma^{\prime}, 2\right)}<p<\frac{2 \beta}{\max \left(\gamma^{\prime}, 2\right)}$ and $1<q<\infty$.

See the Figure 1-5 for the conclusion (i) of Theorem 3.

Remark 1. In [10] we have shown these theorems under the stronger assumption on ϕ, i.e, when ϕ is a positive increasing function on $(0, \infty)$ satisfying the doubling condition $\phi(2 t) \leq c_{1} \phi(t)(t>0)$ for some $c_{1}>1$ besides (12). Note also that we improve Theorems 1.2 and 1.3 in [10] even in the case $\phi(t)=t$.

Example 1. As typical examples of ϕ satisfying the condition (12), we list the following four: $t^{\alpha} e^{t}(\alpha>0)$, $t^{\alpha} \log ^{\beta}(1+t)(\alpha>0, \beta \geq 0),\left(2 t^{2}-2 t+1\right) t^{1+\alpha}(\alpha \geq 0)$, and $\phi(t)=2 t^{2}+t\left(0<t<\frac{\pi}{2}\right),=2 t^{2}+t \sin t$ $\left(t \geq \frac{\pi}{2}\right)$. Note that linear combinations with positive coefficients of functions ϕ 's satisfying the above two conditions also satisfies them. Note that the first example satisfies (12), but does not satisfy the doubling condition.

2 Proofs of Theorems. One can prove these theorems by a change of variable and the corresponding theorems in case $\phi(t)=t$ in [10], like in [2] or [5].

To prove the theorems, we prepare the following three lemmas: Lemma 1, Lemma 2 and Lemma 4. The first one is Lemma 2.2 in [2], and the second one is Lemma 2.3 in [2].

Lemma 1. Let ϕ and φ be the same as in Theorem 1. If $b \in \Delta_{\gamma}$ for some $\gamma \geq 1$, then

$$
\begin{equation*}
\frac{1}{R} \int_{0}^{R}\left|b\left(|\Phi|^{-1}(t)\right) \varphi\left(|\Phi|^{-1}(t)\right)\right|^{\gamma} d t \leq C_{\gamma}\left(\|\varphi\|_{\infty}^{\gamma-1}+\|\varphi\|_{\infty}^{\gamma}\right), \quad R>0 \tag{13}
\end{equation*}
$$

that is, $b\left(|\Phi|^{-1}\right) \varphi\left(|\Phi|^{-1}\right) \in \Delta_{\gamma}$.

Lemma 2. Let ϕ and φ be the same as in Theorem 1. Then

$$
T_{\Omega, \phi, h} f(x)= \begin{cases}T_{\Omega, \varphi\left(\phi^{-1}\right) h\left(\phi^{-1}\right)} f(x), & \text { if } \phi \text { is nonnegative and increasing } \tag{14}\\ -T_{\Omega, \varphi\left(\phi^{-1}\right) h\left(\phi^{-1}\right)} f(x), & \text { if } \phi \text { is nonnegative and decreasing }, \\ T_{\tilde{\Omega}, \varphi\left(\phi^{-1}(-\cdot)\right) h\left(\phi^{-1}(-\cdot)\right)} f(x), & \text { if } \phi \text { is nonpositive and decreasing } \\ -T_{\tilde{\Omega}, \varphi\left(\phi^{-1}(-\cdot)\right) h\left(\phi^{-1}(-\cdot)\right)} f(x), & \text { if } \phi \text { is nonpositive and increasing },\end{cases}
$$

where $\tilde{\Omega}(y)=\Omega(-y)$.
To state the third one we prepare some definitions and a lemma. For $\Omega \in L^{1}\left(S^{n-1}\right), h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$, a suitable function ϕ on \mathbb{R}_{+}, and $k \in \mathbb{Z}$, we define the measures $\sigma_{\Omega, h, \phi, k}$ on \mathbb{R}^{n} and the maximal operator $\sigma_{\Omega, h, \phi}^{*} f(x)$ by

$$
\begin{align*}
\int_{\mathbb{R}^{n}} f(x) d \sigma_{\Omega, h, \phi, k}(x) & =\int_{\mathbb{R}^{n}} f\left(\phi\left(|x| x^{\prime}\right) \frac{\Omega\left(x^{\prime}\right) h(|x|)}{|x|^{n}} \chi_{\left\{2^{k-1}<|x| \leq 2^{k}\right\}}(x) d x\right. \tag{15}\\
\sigma_{\Omega, h, \phi}^{*} f(x) & =\sup _{k \in \mathbb{Z}}| | \sigma_{\Omega, h, \phi, k}|* f(x)| \tag{16}
\end{align*}
$$

where $\left|\sigma_{\Omega, h, \phi, k}\right|$ is defined in the same way as $\sigma_{\Omega, h, \phi, k}$, but with Ω replaced by $|\Omega|$ and h by $|h|$.
we also define the maximal functions $M_{\Omega, h, \phi}$ by

$$
\begin{equation*}
M_{\Omega, h, \phi} f(x)=\sup _{k \in \mathbb{Z}} \frac{1}{2^{k n}} \int_{\left\{2^{k-1}<|y| \leq 2^{k}\right\}}\left|\Omega\left(y^{\prime}\right) h(|y|) f\left(x-\phi(|y|) y^{\prime}\right)\right| d y \tag{17}
\end{equation*}
$$

We see easily that $M_{\Omega, h, \phi}$ is equivalent to $\sigma_{\Omega, h, \phi}^{*}(|f|)$.
In [10], we have shown the following auxiliary lemma.
Lemma 3. Let ϕ be a positive increasing function on $(0, \infty)$ satisfying $\phi(2 t) \leq c_{1} \phi(t)(t>0)$ for some $c_{1}>1$, and $\varphi(t)=\phi(t) /\left(t \phi^{\prime}(t)\right) \in L^{\infty}(0, \infty)$. Let $h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$. Then, for $\gamma^{\prime}<p, q<\infty$ we have

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|M_{\Omega, h, \phi} f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{18}
\end{equation*}
$$

Using this we get our third lemma.
Lemma 4. Let ϕ be the same as above, and $\ell(j) \in \mathbb{Z}$ for $j \in \mathbb{Z}$. Then, if $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the hexagon $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$, we have

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbb{Z}}\left|\sigma_{\Omega, h, \phi, \ell(j)} * f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{19}
\end{equation*}
$$

where $Q_{1}=(0,0), Q_{2}=\left(\frac{1}{\gamma^{\prime}}, 0\right), Q_{3}=(1,1), Q_{4}=\left(\frac{1}{\gamma}, 1\right), S_{2}=\left(1, \frac{1}{\gamma}\right)$, and $S_{4}=\left(\frac{1}{\gamma}, 0\right)$.

Proof. By Lemma 3, we see that

$$
\left\|\left(\sum_{j \in \mathbb{Z}}\left|\sigma_{\Omega, h, \phi, \ell(j)} * f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\left(\sum_{j \in \mathbb{Z}}\left|M_{\Omega, h, \phi} f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\left(\sum_{j \in \mathbb{Z}}\left|f_{j}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)},
$$

if $\gamma^{\prime}<p, q<\infty$. By duality, we see that the estimate (19) holds if $1<p, q<\gamma$. Interpolating these two cases, we see that the estimate (19) holds, if $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the hexagon $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$.

Now we can prove our theorems.
Using Lemmas 1 and 2 and applying Theorem 1.1 in [10] for $\phi(t)=t$, we get our Theorem 1 .
Next, using Lemma 4 in place of Lemma 2.4(ii) in [10], we modify the proof of the inequality (3.4) in [10], and obtain that estimate if $\alpha \in \mathbb{R}$ and $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the hexagon $Q_{1} Q_{2} S_{3} Q_{3} Q_{4} S_{4}$. Thus we get our Theorem 3(i) under the additional assumption $\phi(2 t) \leq c_{1} \phi(t)(t>0)$ for some $c_{1}>1$, in particular when $\phi(t)=t$. Similarly, we get our Theorem 2(ii) under the additional assumption $\phi(2 t) \leq c_{1} \phi(t)(t>0)$ for some $c_{1}>1$. So, using Lemmas 1 and 2 and applying Theorems 2(ii) and 3(i) for $\phi(t)=t$, we get our Theorems 2(ii) and 3(i), respectively.

Next, we consider Theorem 2(i) i.e. the case $\Omega \in L(\log L)\left(S^{n-1}\right)$. Similarly to the case Ω belonging to block spaces, we see that $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ if $\alpha \in \mathbb{R}$ and $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the hexagon $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$.

On the other hand, by Theorem 1.3 in [1] we know that $T_{\Omega, h}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)=\dot{F}_{p, 2}^{0}\left(\mathbb{R}^{n}\right)$, $1<p<\infty$, if $\Omega \in L(\log L)\left(S^{n-1}\right)$ and $h \in \Delta_{\gamma}$ for some $1<\gamma \leq \infty$. So, using Lemmas 1 and 2, we see that $T_{\Omega, h, \phi}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)=\dot{F}_{p, 2}^{0}\left(\mathbb{R}^{n}\right), 1<p<\infty$.

Hence, interpolating between this case and the case $\alpha \in \mathbb{R}$ and $\left(\frac{1}{p}, \frac{1}{q}\right)$ belonging to the interior of the hexagon $Q_{1} Q_{2} S_{2} Q_{3} Q_{4} S_{4}$, we see that $T_{\Omega, h, \phi}$ is bounded on $\dot{F}_{p, q}^{\alpha}\left(\mathbb{R}^{n}\right)$ if $\alpha \in \mathbb{R}$ and $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the interior of the quadrilateral $Q_{1} Q_{2} Z_{2} Z_{4}$ or $Q_{3} Q_{4} Z_{4} Z_{2}$. Interpolating between the cases $Q_{1} Q_{2} Z_{2} Z_{4}$ and $Q_{3} Q_{4} Z_{4} Z_{2}$, we have the desired conclusion of Theorem 2(i).

Theorems 2(iii) and 3(ii) follow by using the property (f) of Triebel-Lizorkin spaces and interpolating the cases $\dot{F}_{p, p}^{\alpha+1}\left(\mathbb{R}^{n}\right)$ and $\dot{F}_{p, p}^{\alpha-1}\left(\mathbb{R}^{n}\right)$. This completes the proofs of our theorems.

References

[1] A. Al-Salman and Y. Pan, Singular integrals with rough kernels in $L \log L\left(S^{n-1}\right)$, J. London Math. Soc. (2), 66 (2002), no. 1, 153-174.
[2] Y. Ding, Q. Xue and K. Yabuta, On singular integral operators with rough kernel along surface, Integral Equations Operator Theory 68 (2010), no. 2, 151-161.
[3] D. Fan and S. Sato, A note on singular integrals associated with a variable surface of revolution, Math. Inequal. Appl. 12(2) (2009), 441-454.
[4] L. Grafakos and A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), 455-469.
[5] F. Liu and H. Wu, Rough singular integrals supported by submanifolds in Triebel-Lizorkin spaces and Besov spaces, Taiwanese J. Math. 18 (2014), no. 1, 127-146.
[6] F. Liu and H. Wu, Rough singular integrals associated with surfaces of Van der Corput type, Appl. Math. J. Chinese Univ. Ser. B 29 (2014), no. 1, 86-100.
[7] W. Li, Z. Si and K. Yabuta, Boundedness of singular integrals associated to surfaces of revolution on TriebelLizorkin spaces, Forum Mathematicum, Published Online:08/14/2014.
[8] E. M. Stein, Note on the class $L \log L$, Studia Math. 32 (1969), 305-310.
[9] H. Triebel, Theory of Function Spaces, Monogr. Math. vol. 78, Birkhäuser, Basel, 1983.
[10] K. Yabuta, Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces, J. Inequal. Appl. (2015) 2015:107 DOI 10.1186/s13660-015-0630-7, 26 pages.

Communicated by Eiichi Nakai

Research Center for Mathematical Sciences
Kwansei Gakuin University
Gakuen 2-1, Sanda 669-1337, Japan
Email: kyabuta3@kwansei.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25, 47G10 .
 Key words and phrases. Singular integrals; Triebel-Lizorkin spaces; rough kernel .
 *The author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540228), Japan Society for the Promotion of Science.

