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1 Introduction. The purpose of this paper is to improve recent results in [10].

Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 be the unit sphere in Rn equipped

with the induced Lebesgue measure dσ = dσ(·). Suppose Ω ∈ L1(Sn−1) satisfies the cancellation condition

(1)

∫
Sn−1

Ω(y′) dσ(y′) = 0,

where y′ = y/|y|.
For a suitable function φ and a measurable function h on [0,∞), we denote by TΩ,φ,h the singular

integral operator along the surface

Γ = {x = φ(|y|)y′ : y ∈ Rn}

defined as follows:

(2) TΩ,h,φf(x) = p. v.

∫
Rn

h(|y|)Ω(y′)

|y|n
f(x− φ(|y|)y′) dy,

for f in the Schwartz class S(Rn). If φ(t) = t, then TΩ,h,φ is the classical singular integral operator TΩ,h,

which is defined by

(3) TΩ,hf(x) = p.v.

∫
Rn

h(|y|)Ω(y′)

|y|n
f(x− y) dy.

When h ≡ 1, we denote simply TΩ,h,φ and TΩ,h by TΩ,φ and TΩ, respectively.

Let us recall the definitions of some function spaces. First recall the definitions of the homogeneous

Triebel-Lizorkin spaces Ḟαp,q = Ḟαp,q(Rn) and the homogeneous Besov spaces Ḃαp,q = Ḃαp,q(Rn). For 0 <

p, q ≤ ∞ (p 6=∞) and α ∈ R, Ḟαp,q(Rn) is defined by

(4) Ḟαp,q(Rn) =

{
f ∈ S ′(Rn)/P(Rn) : ||f ||Ḟαp,q =

∥∥∥∥(∑
k∈Z

2kαq|Ψk ∗ f |q
)1/q∥∥∥∥

Lp
<∞

}
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and Ḃα,qp (Rn) is defined by

(5) Ḃαp,q(Rn) =

{
f ∈ S ′(Rn)/P(Rn) : ||f ||Ḃαp,q =

(∑
k∈Z

2kαq‖Ψk ∗ f‖qLp
)1/q

<∞

}
,

where S ′(Rn) denotes the tempered distribution class on Rn, and P(Rn) denotes the set of all polynomials

on Rn, Ψ̂k(ξ) = Φ(2−kξ) for k ∈ Z and Φ ∈ C∞c (Rn) is a radial function satisfying the following conditions:

(i) 0 ≤ Φ ≤ 1; (ii) supp Φ ⊂ {ξ : 1/2 ≤ |ξ| ≤ 2}; (iii) Φ > c > 0 if 3/5 ≤ |ξ| ≤ 5/3; (iv)
∑
j∈Z Φ(2−jξ) = 1

(ξ 6= 0). Note that the space S∞(Rn) given by

S∞(Rn) :=
⋂

α∈(N∪{0})n

{
f ∈ S(Rn) :

∫
Rn
xαf(x) dx = 0

}

is dense in Ḟαpq(Rn) and Ḃαp,q(Rn) as long as α ∈ R and p, q ∈ (0,∞) ([9, Theorem 5.1.5]).

The inhomogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by

Fαp,q(Rn) and Bαp,q(Rn) respectively, are obtained by adding the term ‖Φ0 ∗ f‖p to the right-hand side of

(4) or (5) with
∑
k∈Z replaced by

∑∞
k=0, where Φ0 ∈ S(Rn), supp Φ̂0 ⊂ {ξ : |ξ| ≤ 2}, and Φ̂0(ξ) > c > 0

if |ξ| ≤ 5/3.

The following properties of the Triebel-Lizorkin space and Besov space are well known. Let 1 <

p, q <∞, α ∈ R, and 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1.

(6)

(a) Ḟ 0
2,2 = Ḃ0

2,2 = L2, Ḟ 0
p,2 = Lp and Ḟαp,p = Ḃαp,p for 1 < p <∞, and Ḟ 0

∞,2 = BMO;

(b) Fαp,q ∼ Ḟαp,q ∩ Lp and ||f ||Fαp,q ∼ ||f ||Ḟαp,q + ||f ||Lp (α > 0);

(c) Bαp,q ∼ Ḃαp,q ∩ Lp and ||f ||Bαp,q ∼ ||f ||Ḃαp,q + ||f ||Lp (α > 0);

(d) (Ḟαp,q)
∗ = Ḟ−αp′,q′ and (Fαp,q)

∗ = F−αp′,q′ ;

(e) (Ḃαp,q)
∗ = Ḃ−αp′,q′ and (Bαp,q)

∗ = B−αp′,q′ ;

(f)
(
Ḟα1
p,q1 , Ḟ

α2
p,q2

)
θ,q

= Ḃαp,q (α1 6= α2, 0 < p <∞, 0 < q, q1, q2 ≤ ∞,

α = (1− θ)α1 + θα2, 0 < θ < 1)..

See [9] for more properties of Ḟαp,q and Ḃαp,q.

Next, we give the definition of the Hardy space H1(Sn−1).

H1(Sn−1) =

{
ω ∈ L1(Sn−1)

∣∣∣∣ ‖f‖H1(Sn−1) =

∥∥∥∥ sup
0≤r<1

∣∣∣∣∫
Sn−1

ω(y′)Pr(·)(y
′)dσ(y′)

∣∣∣∣ ∥∥∥∥
L1(Sn−1)

<∞

}
,

where Pry′(x
′) denotes the Poisson kernel on Sn−1 defined by Pry′(x

′) = (1− r2)/|ry′ − x′|n, 0 ≤ r < 1

and x′, y′ ∈ Sn−1.

Besides H1(Sn−1), there are two important function spaces L(logL)(Sn−1) and the block spaces

B
(0,0)
q (Sn−1) in the theory of singular integrals. Let L(logL)α(Sn−1) (for α > 0) denote the class of all
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measurable functions Ω on Sn−1 which satisfy

‖Ω‖L(logL)α(Sn−1) =

∫
Sn−1

|Ω(y′)| logα(2 + |Ω(y′)|) dσ(y′) <∞.

Denote by L(logL)(Sn−1) L(logL)1(Sn−1). A well-known fact is L(logL)(Sn−1) ⊂ H1(Sn−1), cf. [8].

We turn to the block space B
(0,v)
q (Sn−1). Let 1 < q ≤ ∞ and v > −1. A q-block on Sn−1

is an Lq(Sn−1) function b which satisfies supp b ⊂ and ‖b‖q ≤ |I|−1/q′ , where |I| = σ(I), and I =

B(x′0, θ0) ∩ Sn−1 is a cap on Sn−1 for some x′0 ∈ Sn−1 and θ0 ∈ (0, 1]. The block space B
(0,v)
q (Sn−1) is

defined by

(7) B(0,v)
q (Sn−1) =

{
Ω ∈ L1(Sn−1); Ω =

∞∑
j=1

λjbj , M
(0,v)
q ({λj}) <∞

}
,

where λj ∈ C and bj is a q-block supported on a cap Ij on Sn−1, and

(8) M (0,v)
q ({λj}) =

∞∑
j=1

|λj |
{

1 + log(v+1)
(
|Ij |−1

)}
.

For Ω ∈ B(0,v)
q (Sn−1), denote

‖Ω‖
B

(0,v)
q (Sn−1)

= inf
{
M (0,v)
q ({λj}); Ω =

∞∑
j=1

λjbj , bj is a q-block
}
.

Then ‖·‖
B

(0,v)
q (Sn−1)

is a norm on the space B
(0,v)
q (Sn−1), and

(
B

(0,v)
q (Sn−1), ‖·‖

B
(0,v)
q (Sn−1)

)
is a Banach

space. The following inclusion relations are known.

(9)

(a) B(0,v1)
q (Sn−1) ⊂ B(0,v2)

q (Sn−1) if v1 > v2 > −1;

(b) B(0,v)
q1 (Sn−1) ⊂ B(0,v)

q2 (Sn−1) if 1 < q2 < q1 for any v > −1;

(c)
⋃
p>1

Lp(Sn−1) ⊂ B(0,v)
q (Sn−1) for any q > 1, v > −1;

(d)
⋃
q>1

B(0,v)
q (Sn−1) 6⊂

⋃
q>1

Lq(Sn−1) for any v > −1;

(e) B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(logL)1+v(Sn−1) for any q > 1, v > −1;

(f)
⋃
q>1

B(0,0)
q (Sn−1) ⊂ H1(Sn−1).

Besides them, there is another class of kernels which lead Lp and Triebel-Lizorkin space boundedness of

singular integral operators TΩ,h. It is closely related to the class Fα introduced by Grafakos and Stefanov

[4].

For β > 0 we say Ω ∈ Fβ(Sn−1) if

(10) sup
ξ′∈Sn−1

∫
Sn−1

|Ω(y′)| logβ
2

|y′ · ξ′|
dσ(y′) <∞,
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and Ω ∈WFβ(Sn−1) (F̃β(Sn−1) in [6]) if

(11) sup
ξ′∈Sn−1

(∫
Sn−1

∫
Sn−1

|Ω(y′)Ω(z′)| logβ
2e

|(y′ − z′) · ξ′|
dσ(y′)dσ(z′)

) 1
2

<∞.

We note that ∪r>1L
r(Sn−1) ⊂WFβ2(Sn−1) ⊂WFβ1(Sn−1) for 0 < β1 < β2 <∞.

About the inclusion relation between Fβ1
(Sn−1) and WFβ2

(Sn−1), the following is known: when

n = 2, Lemma 1 in [3] shows Fβ(S1) ⊂WFβ(S1). It is also known that WF2α(S1)\
(
Fα(S1)∪H1(S1)

)
6=

∅. cf. [7].

To state our claims, we need one more function space. For 1 ≤ γ ≤ ∞, ∆γ(R+) is the collection of

all measurable functions h : [0,∞)→ C satisfying

‖h‖∆γ = sup
R>0

(
1

R

∫ R

0

|h(t)|γdt
)1/γ

<∞.

Note that

L∞(R+) = ∆∞(R+) ⊂ ∆β(R+) ⊂ ∆α(R+) for α < β,

and all these inclusions are proper.

In this short note, we report that Theorems 1.1, 1.2 and 1.3 in [10] are improved essentially in the

following form. In the following theorems, the statement “TΩ,h,φ is bounded on Ḟαp,q(Rn)” means that

‖TΩ,h,φf‖Ḟαp,q(Rn) ≤ C‖TΩ,h,φf‖Ḟαp,q(Rn),

for all f ∈ S∞(Rn). In any case, by density we can extend the above inequality and have them for all

f ∈ Ḟαpq(Rn). We use similar abbreviation to Ḃαp,q(Rn).

Theorem 1. Let φ be a nonnegative (or nonpositive) and monotonic function on (0,∞) satisfying

(12) ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(0,∞).

Let h ∈ ∆γ for some 1 < γ ≤ ∞. Suppose Ω ∈ H1(Sn−1), satisfying the cancellation condition (1). Then

(i) TΩ,h,φ is bounded on Ḟαp,q(Rn) for α ∈ R and p, q with ( 1
p ,

1
q ) belonging to the interior of the octagon

P1P2R2P3P4P5R4P6 (hexagon P1P2P3P4P5P6 in the case 1 < γ ≤ 2), where P1 = ( 1
2 −

1
max{2,γ′} ,

1
2 −

1
max{2,γ′} ), P2 = ( 1

2 ,
1
2 −

1
max{2,γ′} ), P3 = ( 1

2 + 1
max{2,γ′} ,

1
2 ), P4 = ( 1

2 + 1
max{2,γ′} ,

1
2 + 1

max{2,γ′} ), P5 =

( 1
2 ,

1
2 + 1

max{2,γ′} ), P6 = ( 1
2 −

1
max{2,γ′} ,

1
2 ), R2 = (1− 1

2γ ,
1

2γ ), and R4 = ( 1
2γ , 1−

1
2γ ).

(ii) TΩ,h,φ is bounded on Ḃαp,q(Rn) for α ∈ R and p, q satisfying | 12 −
1
p | < min{ 1

2 ,
1
γ′ } and 1 < q <∞.

See the following Figures 1-1 and 1-2 for the conclusion (i) of Theorem 1.
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The following theorem shows that if Ω belongs to L logL(Sn−1) or block spaces, then we can get

better results than Theorem 1.

Theorem 2. Let φ be a nonnegative (or nonpositive) and monotonic function on (0,∞) satisfying the

same condition as in Theorem 1. Let h ∈ ∆γ for some 1 < γ ≤ ∞, and Ω ∈ L1(Sn−1) satisfy the

cancellation condition (1). Then

(i) if Ω ∈ L(logL)(Sn−1), TΩ,h,φ is bounded on Ḟαp,q(Rn) for α ∈ R and p, q with ( 1
p ,

1
q ) belonging to

the interior of the hexagon Q1Q2Z2Q3Q4Z4 when 1 < γ < 2 and Q1Q2S2Q3Q4S4 when 2 ≤ γ ≤ ∞,

where Q1 = (0, 0), Q2 = ( 1
γ′ , 0), Q3 = (1, 1), Q4 = ( 1

γ , 1), S2 = (1, 1
γ ), S4 = ( 1

γ , 0), Z2 = (1, 1
2 ), and

Z4 = ( 1
2 , 0).

(ii) if Ω ∈ ∪1<q<∞B
(0,0)
q (Sn−1), TΩ,h,φ is bounded on Ḟαp,q(Rn) for α ∈ R and p, q with ( 1

p ,
1
q ) belonging

to the interior of the hexagon Q1Q2S2Q3Q4S4

(iii) if Ω ∈ L(logL)(Sn−1) ∪
(
∪1<q<∞B

(0,0)
q (Sn−1)

)
, TΩ,h,φ is bounded on Ḃαp,q(Rn) for α ∈ R and

1 < p, q <∞.

See the following Figures 1-3 and 1-4 for the conclusion of Theorem 2(i).
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As a corresponding result to the case Ω belongs to WFα, we have the following:

Theorem 3. Let φ be a nonnegative (or nonpositive) and monotonic function on (0,∞) satisfying the

same condition as in Theorem 1. Let h ∈ ∆γ for some 1 < γ ≤ ∞. Suppose Ω ∈ WFβ = WFβ(Sn−1)

for some β > max(γ′, 2), and satisfies the cancellation condition (1). Then

(i) the singular integral operator TΩ,h,φ is bounded on Ḟαp,q(Rn), if α ∈ R and ( 1
p ,

1
q ) belongs to the

interior of the hexagon Q1Q2S2Q3Q4S4, where Q1 =
(max(γ′,2)

2β , max(γ′,2)
2β

)
, Q2 =

(
1
γ′ + max(γ′,2)

β ( 1
2 −

1
γ′ ),

max(γ′,2)
2β

)
, Q3 =

(
1 − max(γ′,2)

2β , 1 − max(γ′,2)
2β

)
, Q4 =

(
1
γ −

max(γ′,2)
β ( 1

γ −
1
2 ), 1 − max(γ′,2)

2β

)
, S2 =(

, 1− max(γ′,2)
2β , 1

γ −
max(γ′,2)

β ( 1
γ −

1
2 )
)
, and S4 =

(max(γ′,2)
2β , 1

γ′ + max(γ′,2)
β ( 1

2 −
1
γ′ )
)
.

(ii) TΩ,h,φ is bounded on Ḃαp,q(Rn), if α ∈ R, 2β
2β−max(γ′,2) < p < 2β

max(γ′,2) and 1 < q <∞.

See the Figure 1-5 for the conclusion (i) of Theorem 3.
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Remark 1. In [10] we have shown these theorems under the stronger assumption on φ, i.e, when φ is a

positive increasing function on (0,∞) satisfying the doubling condition φ(2t) ≤ c1φ(t) (t > 0) for some

c1 > 1 besides (12). Note also that we improve Theorems 1.2 and 1.3 in [10] even in the case φ(t) = t.

Example 1. As typical examples of φ satisfying the condition (12), we list the following four: tαet (α > 0),

tα logβ(1 + t) (α > 0, β ≥ 0), (2t2 − 2t + 1)t1+α (α ≥ 0), and φ(t) = 2t2 + t (0 < t < π
2 ), = 2t2 + t sin t

(t ≥ π
2 ). Note that linear combinations with positive coefficients of functions φ’s satisfying the above two

conditions also satisfies them. Note that the first example satisfies (12), but does not satisfy the doubling

condition.

2 Proofs of Theorems. One can prove these theorems by a change of variable and the corresponding

theorems in case φ(t) = t in [10], like in [2] or [5].

To prove the theorems, we prepare the following three lemmas: Lemma 1, Lemma 2 and Lemma 4.

The first one is Lemma 2.2 in [2], and the second one is Lemma 2.3 in [2].

Lemma 1. Let φ and ϕ be the same as in Theorem 1. If b ∈ ∆γ for some γ ≥ 1, then

(13)
1

R

∫ R

0

|b(|Φ|−1(t))ϕ(|Φ|−1(t))|γ dt ≤ Cγ(‖ϕ‖γ−1
∞ + ‖ϕ‖γ∞), R > 0,

that is, b(|Φ|−1)ϕ(|Φ|−1) ∈ ∆γ .



Lemma 2. Let φ and ϕ be the same as in Theorem 1. Then

(14) TΩ,φ,hf(x) =



TΩ,ϕ(φ−1)h(φ−1)f(x), if φ is nonnegative and increasing,

−TΩ,ϕ(φ−1)h(φ−1)f(x), if φ is nonnegative and decreasing,

TΩ̃,ϕ(φ−1(−·))h(φ−1(−·))f(x), if φ is nonpositive and decreasing,

−TΩ̃,ϕ(φ−1(−·))h(φ−1(−·))f(x), if φ is nonpositive and increasing,

where Ω̃(y) = Ω(−y).

To state the third one we prepare some definitions and a lemma. For Ω ∈ L1(Sn−1), h ∈ ∆γ for

some 1 < γ ≤ ∞, a suitable function φ on R+, and k ∈ Z, we define the measures σΩ,h,φ,k on Rn and the

maximal operator σ∗Ω,h,φf(x) by∫
Rn
f(x) dσΩ,h,φ,k(x) =

∫
Rn
f(φ(|x|x′)Ω(x′)h(|x|)

|x|n
χ{2k−1<|x|≤2k}(x) dx,(15)

σ∗Ω,h,φf(x) = sup
k∈Z

∣∣|σΩ,h,φ,k| ∗ f(x)
∣∣,(16)

where |σΩ,h,φ,k| is defined in the same way as σΩ,h,φ,k, but with Ω replaced by |Ω| and h by |h|.
we also define the maximal functions MΩ,h,φ by

(17) MΩ,h,φf(x) = sup
k∈Z

1

2kn

∫
{2k−1<|y|≤2k}

|Ω(y′)h(|y|)f(x− φ(|y|)y′)| dy.

We see easily that MΩ,h,φ is equivalent to σ∗Ω,h,φ(|f |).
In [10], we have shown the following auxiliary lemma.

Lemma 3. Let φ be a positive increasing function on (0,∞) satisfying φ(2t) ≤ c1φ(t) (t > 0) for some

c1 > 1, and ϕ(t) = φ(t)/(tφ′(t)) ∈ L∞(0,∞). Let h ∈ ∆γ for some 1 < γ ≤ ∞. Then, for γ′ < p, q <∞
we have

(18)

∥∥∥∥(∑
j∈Z
|MΩ,h,φfj |q

) 1
q

∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥(∑

j∈Z
|fj |q

) 1
q

∥∥∥∥
Lp(Rn)

.

Using this we get our third lemma.

Lemma 4. Let φ be the same as above, and `(j) ∈ Z for j ∈ Z. Then, if ( 1
p ,

1
q ) belongs to the interior

of the hexagon Q1Q2S2Q3Q4S4, we have

(19)

∥∥∥∥(∑
j∈Z
|σΩ,h,φ,`(j) ∗ fj |q

) 1
q

∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥(∑

j∈Z
|fj |q

) 1
q

∥∥∥∥
Lp(Rn)

,

where Q1 = (0, 0), Q2 = ( 1
γ′ , 0), Q3 = (1, 1), Q4 = ( 1

γ , 1), S2 = (1, 1
γ ), and S4 = ( 1

γ , 0).
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Proof. By Lemma 3, we see that∥∥∥∥(∑
j∈Z
|σΩ,h,φ,`(j) ∗ fj |q

) 1
q

∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥(∑

j∈Z
|MΩ,h,φfj |q

) 1
q

∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥(∑

j∈Z
|fj |q

) 1
q

∥∥∥∥
Lp(Rn)

,

if γ′ < p, q < ∞. By duality, we see that the estimate (19) holds if 1 < p, q < γ. Interpolating

these two cases, we see that the estimate (19) holds, if ( 1
p ,

1
q ) belongs to the interior of the hexagon

Q1Q2S2Q3Q4S4.

Now we can prove our theorems.

Using Lemmas 1 and 2 and applying Theorem 1.1 in [10] for φ(t) = t, we get our Theorem 1.

Next, using Lemma 4 in place of Lemma 2.4(ii) in [10], we modify the proof of the inequality (3.4) in

[10], and obtain that estimate if α ∈ R and ( 1
p ,

1
q ) belongs to the interior of the hexagon Q1Q2S3Q3Q4S4.

Thus we get our Theorem 3(i) under the additional assumption φ(2t) ≤ c1φ(t) (t > 0) for some c1 > 1,

in particular when φ(t) = t. Similarly, we get our Theorem 2(ii) under the additional assumption

φ(2t) ≤ c1φ(t) (t > 0) for some c1 > 1. So, using Lemmas 1 and 2 and applying Theorems 2(ii) and 3(i)

for φ(t) = t, we get our Theorems 2(ii) and 3(i), respectively.

Next, we consider Theorem 2(i) i.e. the case Ω ∈ L(logL)(Sn−1). Similarly to the case Ω belonging

to block spaces, we see that TΩ,h,φ is bounded on Ḟαp,q(Rn) if α ∈ R and ( 1
p ,

1
q ) belongs to the interior of

the hexagon Q1Q2S2Q3Q4S4.

On the other hand, by Theorem 1.3 in [1] we know that TΩ,h is bounded on Lp(Rn) = Ḟ 0
p,2(Rn),

1 < p < ∞, if Ω ∈ L(logL)(Sn−1) and h ∈ ∆γ for some 1 < γ ≤ ∞. So, using Lemmas 1 and 2, we see

that TΩ,h,φ is bounded on Lp(Rn) = Ḟ 0
p,2(Rn), 1 < p <∞.

Hence, interpolating between this case and the case α ∈ R and ( 1
p ,

1
q ) belonging to the interior of the

hexagon Q1Q2S2Q3Q4S4, we see that TΩ,h,φ is bounded on Ḟαp,q(Rn) if α ∈ R and ( 1
p ,

1
q ) belongs to the

interior of the quadrilateral Q1Q2Z2Z4 or Q3Q4Z4Z2. Interpolating between the cases Q1Q2Z2Z4 and

Q3Q4Z4Z2, we have the desired conclusion of Theorem 2(i).

Theorems 2(iii) and 3(ii) follow by using the property (f) of Triebel-Lizorkin spaces and interpolating

the cases Ḟα+1
p,p (Rn) and Ḟα−1

p,p (Rn). This completes the proofs of our theorems.
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