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Remark on the Triebel-Lizorkin space boundedness of rough singular integrals associated

to surfaces
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ABSTRACT. In the present paper, we consider the boundedness of the rough singular integral operator
To,n,e along a surface I' = {z = é(|y|)y/|y|)} on the Triebel-Lizorkin space F¢,(R") with a € R,
1 < p,q<oofor Qe H(S"!) and Q belonging to some class WF,(S™ '), which relates to the

Grafakos-Stefanov class. We improve recent results about these operators.

1 Introduction. The purpose of this paper is to improve recent results in [10].
Let R™ (n > 2) be the n-dimensional Euclidean space and S™"~! be the unit sphere in R™ equipped

with the induced Lebesgue measure do = do(-). Suppose 2 € L(S"~1) satisfies the cancellation condition
(1) [ aw)ist) =0

where y' = y/|y|.
For a suitable function ¢ and a measurable function h on [0, 00), we denote by Tq 45 the singular

integral operator along the surface

D ={z=o(lyy :y € R"}

defined as follows:

@) TQ,h»¢f(CU) = p.V./n Mf

for f in the Schwartz class S(R"). If ¢(¢) = t, then T j, 4 is the classical singular integral operator Tq 5,
which is defined by

h(lyD(y’)
ly|™
When h = 1, we denote simply T 5,4 and T by To,¢ and Tq, respectively.

) Tonf(@) =p. [ f(z ) dy.

Let us recall the definitions of some function spaces. First recall the definitions of the homogeneous

rag . 1/q
D 2k |y« f|

kEZ

@ Fpy(RY) = {f € SRY)/PE): 1l = |

Triebel-Lizorkin spaces F;jq = F;fq(]R") and the homogeneous Besov spaces B:z(iq = B;‘,q(R"). For 0 <
p,q <00 (p#o0) and a € R, F! (R") is defined by
< o0
L
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and B;"‘I(R") is defined by

1/q
) g, (R") = {f € SR/PE" : flly, = (L2 fIL,) < oo},
k€EZ
where S’(R™) denotes the tempered distribution class on R™, and P(R™) denotes the set of all polynomials
onR™, Uy (€) = ®(275¢) for k € Z and ® € C°(R™) is a radial function satisfying the following conditions:
(1) 0 < ® < 1; (ii) supp® C {€:1/2 < |€] < 2}; (iii) @ > ¢ > 0if 3/5 < €] < 5/3; (iv) 3y B(279€) = 1
(€ #0). Note that the space Soo(R™) given by

JEZ

Soo(R™) := ﬂ {fES(R") : / xo‘f(a:)dxzo}
ac(Nu{o})» "
is dense in F&(R”) and B;q(R”) as long as a € R and p,q € (0,00) ([9, Theorem 5.1.5]).
The inhomogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by
Fg (R™) and By (R") respectively, are obtained by adding the terin\ |®g * fl, to the right/—\hand side of
(4) or (5) with 7, -, replaced by 7 . where ®; € S(R"), supp o C {£ : |£] < 2}, and Pg(§) > ¢ >0
if |§] <5/3.
The following properties of the Triebel-Lizorkin space and Besov space are well known. Let 1 <
p,g<oo,a €R,and 1/p+1/p' =1,1/¢+1/¢ =1.
(a) FS,Q = ng = LZ,F;{Q = LP and Fpofp = Bz(ip for 1 < p < oo, and Fgo,Q = BMO;
(b) Fgy~ E, 0L and ||fllrg, ~ 1fllgs, +11fllee (0> 0);
(€) By, ~ B3, NLP and |[fllzg, ~ [Ifllgs +1Ifller (0> 0):
(6) (d) (£ =E,% and (F)" = F,%;
(
(

o) (By,)' = By and (By,)" = Byt

p'.q

)
f) (Fpojtlh’F;fég)&q = B;z?,q (Oé] 7& ()[2,0 <p< OO,O <q,q91,q92 S 0,

a=(1-0)a; +0a,0<0<1).

See [9] for more properties of F;q and Bg‘,q.
Next, we give the definition of the Hardy space H'(S™~1).

sup
0<r<1

HY(S"™) = {w € LN(S" | £l (sn-y =

| el Py 0oty
Sn—1

<oo},
L1(Sn—1)

where P,/ (z") denotes the Poisson kernel on S™~! defined by P, (z') = (1 —r?)/|ry’ —2/|", 0 <r < 1
and z’,y" € S~ L.

Besides H'(S™~1), there are two important function spaces L(log L)(S™~!) and the block spaces
BSO’O)(S”*I) in the theory of singular integrals. Let L(log L)*(S™~!) (for a > 0) denote the class of all



measurable functions Q on S™"~! which satisfy
19zt sy = [ 1960/ og? 2+ [0 o) < .

Denote by L(log L)(S™~ 1) L(log L)*(S™~1). A well-known fact is L(log L)(S"~1) C H(S"™1), cf. [8].

We turn to the block space Béo’v)(Sn_l). Let 1 < ¢ < oo and v > —1. A g¢-block on S"~!
is an L?(S™1) function b which satisfies suppb C and |||, < |I|7*/7, where |I| = o(I), and T =
B(x},00) N S™1 is a cap on S"~! for some z}, € S"~1 and 0, € (0,1]. The block space B (S"1) is
defined by

(7) B (§n=t) = {Q e LS, Q= i/\jbj’ M (A} < 00}7

j=1

where A; € C and b, is a g-block supported on a cap I; on S~ and

(8) M N} = N1+ 1og (11171 )
j=1

For Q) € B(SO’U)(S”_l), denote

192 00501, = inf{Méo’”)({)\j}); Q=3 Ab.bisa q-block}.

=1

Then ||- HB(O’”)(S"*) is a norm on the space B,go’v)(S”_l), and (B,SO’U)(S"_l), -1l oo
q q

space. The following inclusion relations are known.

(S"*l)) is a Banach
(a) BSO’“)(S”_I) C B((IO’”)(S"_l) if v > v > —1;

(b) Bé?’“)(S"_l) C Bég’”)(Sn_l) if1 < g <q forany v > —1;

(c) U r(s™ 1) c Béo’“)(Snfl) for any ¢ > 1, v > —1;

p>1
9) (@ | BL(s ¢ | JLUS™Y) foramy v > —1;
g>1 g>1

(e) BSO’”)(S”_l) c HY(S" 1 4 Llog L)***(S™™ ') forany ¢ > 1, v > —1;
(f) U BLSO,O)(Sn—l) c Hl(S”‘l).
g>1
Besides them, there is another class of kernels which lead L? and Triebel-Lizorkin space boundedness of
singular integral operators Tq 5. It is closely related to the class F, introduced by Grafakos and Stefanov
[4].
For B > 0 we say Q € Fg(S"1) if

2
(10) sup / 00 log? —2—do(y/) < oo,
¢resn—1.Jgn-1 y -



and Q € WFs(S"~1) (Fs(S™1) in [6]) if

a o ([ mneeieg = gaetie) <o

We note that U,~1L"(S"1) € WFg, (S"1) C WFg, (S"71) for 0 < 81 < B2 < 0.

About the inclusion relation between Fg, (S"~1) and W .Fgz,(S"~1), the following is known: when
n =2, Lemma 1 in [3] shows F3(S*) C WF3(S?). It is also known that WFaa (S*)\ (Fa(SHUH(SY)) #
0. cf. [7].

To state our claims, we need one more function space. For 1 < v < 0o, A,(R4) is the collection of

all measurable functions & : [0, 00) — C satisfying
1 (R 1/~
Inlls, =su (5 [“morar) <.
r>0\ 1 Jo

L¥(R4) = Ax(Ry) C Ag(Ry) C Aa(Ry)  for a < 3,

Note that

and all these inclusions are proper.
In this short note, we report that Theorems 1.1, 1.2 and 1.3 in [10] are improved essentially in the

following form. In the following theorems, the statement “Tq j 4 is bounded on ng (R™)” means that

1Tanofllge @y < CllTonefllie, @n):

for all f € Soo(R™). In any case, by density we can extend the above inequality and have them for all
fe FZ%(R”). We use similar abbreviation to B;Q(R”).

Theorem 1. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying

(12) p(t) = ¢(t)/(t¢'(t)) € L=(0, 00).

Let h € A, for some 1 <y < co. Suppose 2 € H(S"™1), satisfying the cancellation condition (1). Then

(i) Tan.g is bounded on Fy' (R") for a € R and p,q with ( ) belonging to the interior of the octagon
PiP,Ry P3Py Ps Ry P (hexagon PP, P3Py PsPs in the case 1 <~ <2), where P, = (7 — m,% -

11 1 1 1 1 _
max{Q’y}) P2_(§’§_max{2'y}) Py = (§+max{2'y}72) Py = (§+max{2'y}’§+max{2,'y’})’ Ps =

(é’ é + max{12,'y’})7 P = (% - max{12'y’}7§)’ Ry = (1 - 21 ’27)’ and Ry = (2A/’1 - ﬂ)

(ii) To,n,e s bounded on Ba ¢(R") for a € R and p,q satisfying \f — 7| < mln{ ,} and 1 < q < oo.

See the following Figures 1-1 and 1-2 for the conclusion (i) of Theorem 1.
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The following theorem shows that if 2 belongs to Llog L(S™~!) or block spaces, then we can get

better results than Theorem 1.

Theorem 2. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying the
same condition as in Theorem 1. Let h € A, for some 1 < v < oo, and Q € L*(S"™1) satisfy the

cancellation condition (1). Then

(i) if @ € LlogL)(S"™Y), Tane is bounded on Fpofq(R”) for a € R and p,q with (%,%) belonging to
the interior of the hexagon Q1Q2722Q3Q474 when 1 < v < 2 and Q1Q252Q3Q 454 when 2 < v < oo,
where Q1 = (0,0), Q2 = (57, 0), @3 = (L,1), Qu = (5, 1), S2 = (1, 3), Ss= (5, 0), Zo = (1, 3), and
Zy=(3,0).

(ii)) if Q € U1<q<ooBéO’o)(S"’1), To.n,e is bounded on Fpofq(R") for a € R and p,q with (%, %) belonging
to the interior of the heragon QQ1Q252Q3(Q 4S54

(iii) if Q@ € Log L)(S"1) U (Ur<geao BE(S™7Y)), Tong is bounded on
1 <p,q<oo.

BY (R™) for a € R and

p.q

See the following Figures 1-3 and 1-4 for the conclusion of Theorem 2(i).
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As a corresponding result to the case Q belongs to W.F,, we have the following:

Theorem 3. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying the

same condition as in Theorem 1. Let h € A, for some 1 < v < oo. Suppose Q) € WFg = WFz(S" ™)

for some B > max(vy, 2), and satisfies the cancellation condition (1). Then

(1) the singular integral operator Tq 4 is bounded on Fg,q(R”), if @ € R and (

1

P %) belongs to the

interior of the hexagon Q1Q282Q3945,, where Q1 = (max(’y',Q)’ max;g/’z)), Qo = (% + %’M(% -

1 max(v’,2) _ max(y’,2) max(vy’,2) _
1), mO'B) g o (1 meGla | mean o

max(y,2) 1 _ max(y,2) (1 _ 1 — (max(v',2)
(71_ azg 1o aﬁw (;—5)),and84—(aiv

(ii) To,n,e is bounded on ng(R"), ifa € R, Wi(vﬁ) <p<

See the Figure 1-5 for the conclusion (i) of Theorem 3.
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Remark 1. In [10] we have shown these theorems under the stronger assumption on ¢, i.e, when ¢ is a
positive increasing function on (0, 00) satisfying the doubling condition ¢(2t) < c1¢(t) (t > 0) for some
c1 > 1 besides (12). Note also that we improve Theorems 1.2 and 1.3 in [10] even in the case ¢(t) = t.

Example 1. As typical examples of ¢ satisfying the condition (12), we list the following four: t*e' (a > 0),
t*log’ (1 +1) (a >0, 8> 0), (26> — 2t + Dt'+* (a > 0), and ¢(t) = 262+t (0 <t < T), = 2t + tsint
(t > 7). Note that linear combinations with positive coefficients of functions ¢’s satisfying the above two
conditions also satisfies them. Note that the first example satisfies (12), but does not satisfy the doubling

condition.

2 Proofs of Theorems. One can prove these theorems by a change of variable and the corresponding
theorems in case ¢(t) = ¢ in [10], like in [2] or [5].
To prove the theorems, we prepare the following three lemmas: Lemma 1, Lemma 2 and Lemma 4.

The first one is Lemma 2.2 in [2], and the second one is Lemma 2.3 in [2].

Lemma 1. Let ¢ and ¢ be the same as in Theorem 1. If b € A, for some v > 1, then

1 R
(13) ﬁ/o (12|~ ()@~ @) dt < O (el + lel%), R >0,

that is, b(|®|~ N (|®@|71) € A,.



Lemma 2. Let ¢ and ¢ be the same as in Theorem 1. Then

To,p(6- e f (), if ¢ is nonnegative and increasing,
~To,0(6-yne-1)f(T), if ¢ is nonnegative and decreasing,
(14) To,pnf(z) = pLmme)

T cp(gb*l(—'))h(¢*1(—~))f(x)’ if ¢ is nonpositive and decreasing,

—T(m’(dj,l(74)),1(4),1(7,))]‘(95), if ¢ is nonpositive and increasing,
where Qy) = Q(—y).

To state the third one we prepare some definitions and a lemma. For Q € L'(S"™'), h € A, for
some 1 < v < 00, a suitable function ¢ on R, and k € Z, we define the measures oq 5.4, on R™ and the

maximal operator o7, ;, 4 f(x) by

(15) f(z) doq,pex( / f(e iz |)|n(|x|)><{2k1<z|<2k}($)dl’a

Rn
(16) O';l,h,qbf(x) = * f(17)|7

where |oq 1,6k is defined in the same way as oq p, ¢k, but with © replaced by || and h by |h|.

we also define the maximal functions Mq p 4 by

(1) Mo of () =sup o | 190 Yy f Gz 8(lyl)y') dy.
keZ {2k 1<y|<2F}

We see easily that Mgq 4 is equivalent to o, ;, ,(|f]).

In [10], we have shown the following auxiliary lemma.

Lemma 3. Let ¢ be a positive increasing function on (0,00) satisfying ¢(2t) < c14(t) (t > 0) for some
c1 > 1, and p(t) = ¢(t)/(t¢'(t)) € L>(0,00). Let h € A, for some 1 <y < oo. Then, for v <p,q < oo

we have

(Z |J\4ﬂ,h,¢>fj|q)é

JEL

(15) |

<c’

(Sl

JEZ

Lr(R™) LP(R™)

Using this we get our third lemma.

Lemma 4. Let ¢ be the same as above, and £(j) € Z for j € Z. Then, if (%, %) belongs to the interior
of the hexagon Q1Q252Q3Q 454, we have

(Z|‘79h¢>€ *fg| )é

JEZ

(i

JEZ

)

Lp(R™)

(19) |

Lr(R™

where Ql = (030): QQ = (&a O)) Q3 = (L 1)) Q4 = (l 1)) Sy = (13 %)7 and Sy = (%7 0)

R



Proof. By Lemma 3, we see that
1 1
‘ (Z |00, h,0,007) * fj|q)q = CH (Z \Mﬂvh«bfﬂq) '
JEL

JEZL
if v/ < p,qg < co. By duality, we see that the estimate (19) holds if 1 < p,q < ~. Interpolating

Lr@®")

(S 150)°

JEL

]

Lr(R™) Lr(R™)

these two cases, we see that the estimate (19) holds, if (%, %) belongs to the interior of the hexagon

Q1Q252Q3Q45;. O

Now we can prove our theorems.

Using Lemmas 1 and 2 and applying Theorem 1.1 in [10] for ¢(t) = ¢, we get our Theorem 1.

Next, using Lemma 4 in place of Lemma 2.4(ii) in [10], we modify the proof of the inequality (3.4) in
[10], and obtain that estimate if & € R and (%, %) belongs to the interior of the hexagon Q1Q255Q3Q45.
Thus we get our Theorem 3(i) under the additional assumption ¢(2t) < ¢14(t) (¢ > 0) for some ¢; > 1,
in particular when ¢(¢) = ¢. Similarly, we get our Theorem 2(ii) under the additional assumption
d(2t) < c19(t) (t > 0) for some ¢; > 1. So, using Lemmas 1 and 2 and applying Theorems 2(ii) and 3(i)
for ¢(t) =t, we get our Theorems 2(ii) and 3(i), respectively.

Next, we consider Theorem 2(i) i.e. the case Q € L(log L)(S™~1). Similarly to the case Q belonging
to block spaces, we see that T j, ¢ is bounded on F;Q(R”) if € R and (1%, %) belongs to the interior of
the hexagon Q1Q252Q30Q454.

On the other hand, by Theorem 1.3 in [1] we know that Tq j, is bounded on LP(R") = ngg(R"),
1 <p<oo,if Qe LlogL)(S"!) and h € A, for some 1 < v < co. So, using Lemmas 1 and 2, we see
that Tq p 4 is bounded on LP(R™) = FQQ(R"), 1<p<oo.

Hence, interpolating between this case and the case a € R and (%, %) belonging to the interior of the
hexagon Q1Q252Q3Q 454, we see that To j ¢ is bounded on F;fq(R") if « € R and (%, %) belongs to the
interior of the quadrilateral Q1Q2Z>7Z, or Q3Q4Z47>. Interpolating between the cases Q1Q272>7Z4 and
Q3Q4747Z5, we have the desired conclusion of Theorem 2(i).

Theorems 2(iii) and 3(ii) follow by using the property (f) of Triebel-Lizorkin spaces and interpolating
the cases FZ?; H(R™) and F;fp’ L(R™). This completes the proofs of our theorems. O
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