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COMBINATION OF OPTIMAL STOPPING ALGORITHMS

Marek Skarupski1
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Abstract. In this paper we investigate the possibility of combination two optimal
stopping algorithms: Odds algorithm and Elimination algorithm. We show how reduce
a problem to monotone problem and after this step find the optimal strategy which
will be valid also in the original problem.

1 Introduction Bruss (2000) in [3] developed Odds algorithm which is very simple tool
used to solve optimal stopping problems. In this model observe sequence of independent
indicators and want to stop on the last (if any) success. Extension of this idea was presented
in [4] and [9]. Different approaches are presented in work of Dendievel [6]. The result of
Bruss’ can be obtain in another way if we focus on monotonicity of a problem of selecting last
success in sequence of events. However there are some problems which are not monotone
and therefore Odds algorithm can give us strategy that is not optimal. Sonin (1999) in
[13] presented so called Elimination Algorithm (EA) for solving optimal stopping problems
(OSP). The idea is to combine this two algorithms by reducing original problem to monotone
problem using EA and then find the optimal strategy by One-Step-Look-Ahead (1-SLA)
method. Similar work was done by Ferguson [8]. This problem was also considered by
Ano [1].

2 Optimal stopping for unobservable event Let a probability space (Ω,G, P ) be
given and let {Xk}∞k=1 be a sequence of random variables whose joint distribution is known.
Let Fk = σ(X1, ..., Xk) be a sigma field generated by X1, ..., Xk (natural filtration). In many
cases we deal with Markov chain. We assume that we have finite horizon n. Define function
gk((X1, ...Xk)) and call it reward function. gk is Fk measurable. Further we will denote
gk((X1, ...Xk)) as Gk. We observe Xk sequentially. The goal is to stop observation on
index i for which reward function reach the maximum value. The triplet (space, filtration,
function) we will call an optimal stopping problem (OSP).

Definition 1. Let Ak denote a set {Gk ≥ E[Gk+1|Fk]}. We say that the stopping rule
problem is monotone if

(1) A0 ⊂ A1 ⊂ A2 ⊂ ... a.s.

One of the simplest stopping rule is known as One-Step-Look-Ahead (OSLA or 1-SLA).
The 1-SLA is the rule which calls for stopping on the first k for which the return for stopping
is greater or equal as the expected return of continuing one step and then stopping.

Definition 2. 1-SLA is described by the stopping time

ν1 = min{k ≥ 0 : Gk ≥ E[Gk+1|Fk]}.
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Theorem 1. In a finite horizon monotone stopping rule problem, the 1-SLA rule is optimal.

The proof of this fact is here omitted. It can be found in [7]

3 Odds theorem Idea is that we consider n independent indicators Ik, 1 ≤ k ≤ n
observed sequentially. If the indicator on place k has value 1 we say that the success occur.
If 0 then we say that the failure occur. The aim is to stop on last 1.

Let (Ω,G, P ) be a probability space. On this space we define sequence of independent
events {Ak}n

k=1. We observe sequence of indicators of this events {Ik}n
k=1. Let us denote

by Fk = σ(I1, ...Ik) sequence of sigma fields generated by indicators and let T be the set of
all stopping moments τ wrt σ -fields Fk, k = 1, ..., n. We want to stop on such time τ∗ that
will maximize P (It = 1, It+1 = ... = In = 0) over all t ∈ T .

Theorem 2. (Bruss 2000)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1 − pj and rj = pj

qj
. Then an optimal rule τn for stopping on the last success exists

and is to stop on the first index (if any) k with Ik = 1 and k ≥ s where

s = sup{1, sup{1 ≤ k ≤ n :
n∑

j=k

rj ≥ 1}}

with sup{∅} = −∞. The optimal reward (win probability) is given by

V (n) =
n∏

j=s

qj

n∑
j=s

rj .

Proof presented by Bruss in [3] is based on probability generating function. We present
different approach.

Proof. Define a process ξt in the following way

ξt = inf{k ≥ ξt−1 : Ik = 1}

with initial point ξ0 = 1. Calculate transition probabilities

pi,s = P (ξk+1 = s|ξk = i) =
P (ξk+1 = s, ξk = i)

P (ξk = i)
=

=
P (Ii = 1, Ii+1 = ... = Is−1 = 0, Is = 1)

P (Ii = 1)
= ps

s−1∏
j=i+1

qj .

(2)

Define a gain function g in the following way

(3) g(i) = P (Ii+1 = ... = In = 0) =
n∏

j=i+1

qj .

Definition 3. An operator T (·) defined as follows

Tf(x) =
∑

y

p(x, y)f(y)

is called the averaging operator.
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Using averaging operator calculate the expected pay-off in next step.

Tg(i) =
n∑

s=i+1

pi,sg(s) =
n∑

s=i+1

ps

s−1∏
j=i+1

qj

n∏
j=s+1

qj =

=
n∑

s=i+1

ps

s−1∏
j=i+1

qj

n∏
j=s+1

qj
qs

qs
=

=
n∏

j=i+1

qj

n∑
s=i+1

rs.

(4)

To find an optimal stopping rule we check when Tg ≤ g, i.e. when the expected value
of doing one step more is less or equal to pay-off in current state. We get condition that
stopping rule is

(5) s = min{1 ≤ k ≤ n :
n∑

j=k

rj ≤ 1}.

We show that it is optimal. In Bruss’ theorem we can see that problem is monotone, because
sets Ak = {Tg(k) ≤ g(k)} satisfies condition (1). Therefore we know that method 1-SLA
is optimal. In this case, because we deal with independent events 1-SLA is described as
follows

(6) ν0 = min{1 ≤ k ≤ n :
n∑

j=k

rj ≤ 1}.

So it is exactly the same rule as in (5). Therefore we get the thesis. Win probability is
calculated as follows

(7) V (n) = Eg(ν0) =
n∏

j=ν0

qj

n∑
s=ν0

rs.

3.1 Extension of Bruss’ theorem ¿From Odds theorem we can find the moment of
last success in n trials. The obvious question is how to find the moment of last l-th success
in n independent trials. Idea is to find such a stopping time τ∗

l that will maximize P (It =
1, It+1 + ... + In = l) and its value. The following theorem gives us the answer of this
question.

Theorem 3. (Bruss, Paindaveine 2000)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1−pj and rj = pj

qj
. Then an optimal rule τn for stopping on the l-th last success exists

and is to stop on the first index (if any) k with Ik = 1 and k ≥ sl where

sl = sup{1, sup{1 ≤ k ≤ n − l + 1 : Rl,k ≥ lRl−1,k and πk ≥ l}}

where

Rl,k =
n∑

j1,...jl=k,all6=

rj1 ...rjl

πk = #{j ≥ k|rj > 0}
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with sup{∅} = −∞. The optimal reward (win probability) is given by:

V (l, n) =
n∏

j=sl

qj
Rl,sl

l!
.

The proof of this fact can be found in [4].
Another similar problem is to stop on any of last l-th success. The following theorem gives
the solution of it.

Theorem 4. (Tamaki 2010)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1 − pj and rj = pj

qj
. Then an optimal rule τn for stopping on any of the l-th last

success exists and is to stop on the first index (if any) k with Ik = 1 and k ≥ sl where

sl = sup{1, sup{1 ≤ k ≤ n : R̂l,k+1 ≥ 1}}

where
R̂l,k =

∑
k≤j1<...<jl≤n

rj1 ...rjl

with sup{∅} = −∞. The optimal reward (win probability) is given by

V (l, n) =
n∏

j=sl

qj

( l∑
j=1

R̂j,sl

)
.

The proof of this fact can be found in [16].

4 Eliminate and Stop. Theorem 2 provides a simple rule for stopping on problems
which can be described via simple indicator functions. As an example we consider Classical
Secretary problem:

4.1 Example 1 - Selecting the best object. Consider the classical secretary problem.
Let Xk be the absolute rank of the k-th candidate. We define

Yk = #{1 ≤ i ≤ k : Xi ≤ Xk}.

The random variable Yk is called the relative rank of k-th candidate.
Let (Ω,F , P ) be the probability space, where elementary events are permutations of the
elements from {1, ..., n} and the probability measure P is the uniform distribution on Ω.
For k = 1, ..., n let Fk = σ{Y1, ..., Yk} be a sequence of σ -fields. It can be proved that Yk

are independent and P (Yk = i) = 1
k , i = 1, ..., k. Set a function

Ik := I{Yk=1}.

Then we get that pk = E[Ik] = P (Yk = 1) = 1
k and qk = k−1

k , rk = 1
k−1 . The optimal

stopping rule is therefore

s = min{1 ≤ k ≤ n :
n∑

i=k

1
i − 1

≤ 1}.

The gain is

V (n) =
s − 1

n

n∑
i=s

1
i − 1

.
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4.2 Example 2A - Selecting the second best object. There are problems that can
be described similarly as in Odds theorem: we want to maximize the probability of unob-
servable event describing them via Indicator functions. But because of non-monotonicity
of the problem there does not exist a simple rule as the above. As an example consider
secretary problem with choosing the second best applicant.
Let A = {Xk = 2} denote an event that k-th absolute rank is equal to 2.

{Xk = 2} =

=
n∪

s=k+1

{Yk = 1, Yk+1 > 1, ..., Ys = 1, Ys+1 > 2, ..., Yn > 2} ∪ {Yk = 2, Yk+1 > 2, ..., Yn > 2} :=

:=
n∪

s=k+1

B
(s)
1 ∪ B2.

The sets B
(s)
1 , B2 for all indexes s are disjoint. We have that

(8) P (A) = P (Xk = 2) = P (
n∪

s=k+1

B
(s)
1 ∪ B2) =

n∑
s=k+1

P (B(s)
1 ) + P (B2).

First calculate P (B2). Let us introduce function G

(9) G(Yi) =
{

I{Yi=2} for i = k
I{Yi∈{1,2}} for k + 1 ≤ i ≤ n.

(10) P (B2) = P (G(Yk) = 1, G(Yk+1) = 0, ..., G(Yn) = 0) = P (
n∑

i=k

G(Yi) = 1).

Now we calculate P (B(s)
1 ). Let us introduce function F(s)

(11) F(s)(Yi) =
{

I{Yi=1} for k ≤ i ≤ s
I{Yi∈{1,2}} for s < i ≤ n

P (
n∪

s=k+1

B
(s)
1 ) =

n∑
s=k+1

P (B(s)
1 ) =

=
n∑

s=k+1

P (Fs(Yk) = 1, Fs(Yk+1) = 0, ..., Fs(Ys) = 1, Fs(Ys+1) = 0, ..., Fs(Yn) = 0) =

(12) =
n∑

s=k+1

P (
n∑

i=k

Fs(Yi) = 2).

From 8, 10 and 12 we get that

(13)
n∑

s=k+1

P (
n∑

i=k

Fs(Yi) = 2) + P (
n∑

i=k

G(Yi) = 1).
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We are looking for such τ∗ ∈ T that P (A) is the greatest, i.e.

τ∗ = arg sup
τ∈T

P (A).

From Theorem 2 we can find a stopping time τ2 ∈ T that:

τ2 = arg sup
τ∈T

P (
n∑

i=τ

G(Yi) = 1).

We have

pi = P (G(Yi) = 1) =
{

P (Yi = 2) = 1
k for i = k

P (Yi ∈ {1, 2}) = 2
i for k + 1 ≤ i ≤ n

and

qi =
{

k−1
k for i = k

i−2
i for k + 1 ≤ i ≤ n

ri =
{ 1

k−1 for i = k
2

i−2 for k + 1 ≤ i ≤ n

For i = 1, p1 = 0, q1 = 1, r1 = 1. We get that

τ2 = sup{1, sup{1 ≤ k ≤ n :
1

k − 1
+

n∑
i=k+1

2
i − 2

≥ 1}}.

τ2 = sup{1, sup{1 ≤ k ≤ n :
n−1∑
i=k

1
i − 1

≥ k − 2
2k − 2

}}.

The win probability is V (n) = (k−1)2

n(n−1) (
1

k−1 +
∑n

i=k+1
2

i−2 ).

From Theorem 3 we can find a stopping time τ
(s)
1 ∈ T that

τ
(s)
1 = arg sup

τ∈T
P (

n∑
i=τ

Fs(Yi) = 2).

We have

pi = P (Fs(Yi) = 1) =
{

P (Yi = 1) = 1
i for k ≤ i ≤ s

P (Yi ∈ {1, 2}) = 2
i for s < i ≤ n

and

qi =
{

i−1
i for k ≤ i ≤ s

i−2
i for s < i ≤ n

ri =
{ 1

i−1 for k ≤ i ≤ s
2

i−2 for s < i ≤ n

Let us consider the following inequality

n∑
i,j=k,i 6=j

rirj ≥ 2
n∑

j=k

rj .
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LHS =
n∑

i,j=k,i 6=j

rirj = ((
n∑

i=k

ri)2 −
n∑

i=k

r2
i ) =

=((
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

).

RHS =2
n∑

i=k

rj = 2(
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

).

We get that

τ
(s)
1 = sup{1, sup{1 ≤ k ≤ n − 1 : (

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

≥ 2(
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

) and πk ≥ 2}}.

Which after some simplifications gives us

τ
(s)
1 = sup{1, sup{1 ≤ k ≤ n − 1 :

s∑
i=k

(
i

i − 1
)2 +

n∑
i=s+1

(
i

i − 2
)2 − (

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2

≤ n − k + 1 and πk ≥ 2}}.

The value of the problem is (according to Theorem 3)

V (n) =
(k − 1)(s − 1)

n(n − 1)
((

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

).

Remark 5. Exact results for stopping on second best object can be found in [11]. The above
probabilities are conditional probabilities that selected relatively best object is the second one
from the end. Denote as k∗ the first moment after k when relatively first occurs and let
Sj := Ij + ... + In. Then we have the following approximation

P (Xk∗ = 2|Sk = 2) =

=
n∑

s=k+1

k

s(s − 1)
( n∑

l=s+1

s

l(l − 1)
(1 − 2

n∑
j=l+1

l(l − 1)
j(j − 1)(j − 2)

)
)
→

→x

∫ 1

x

1
t2

(
t

∫ 1

t

1
u2

(1 − 2
∫ 1

u

u2

z3
dz)du

)
dt =

=x

∫ 1

x

t(1 − t)
t2

dt = x(x − 1 − log(x)) := v(x).

(14)

We have that

(15) k∗ = s∗2, x∗ :=
s∗2
n

→ e−2 ≈ 0.13534 as n → ∞.

Approximated reward (probability of stopping on relative rank 1, such that Sk = 2) is

(16) V (2, n) → 22

2!e2
=

2
e2

≈ 0.27067 as n → ∞.

But approximating win probability of P (Xk∗ = 2) we get that P (Xk∗ = 2) = v(x). Substi-
tuting x∗ = e−2 to this formula we get

(17) v(e−2) = e−2 + e−4 ≈ 0.15361.
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4.3 Reduction of states We want to consider the above example as a stopping problem
of some Markov chain. It is obvious that the problem is not monotone. Thus we can not use
1-SLA method. In similar problems we would like to find the most simple optimal stopping
rule. But the simplest rule is provided by monotone problems. Idea is to eliminate those
states that spoils monotonicity and afterwards use 1-SLA.
State reduction approach (SRA). Let us assume that the model (X1, P1), where X1

is a state space and P1 is a transition matrix is given. Let Zn be a Markov chain in this
model and let τ1, ..., τn be the sequence of the moments of first,..., n-th exit of Zn from
set D ⊂ X1. Consider the chain Z ′

n = Zτn . Denote by X2 = X1 \ D. Let us denote by
u1(z, X2, ·) the distribution of the Markov chain Zn for the initial model at the moment τ1

of first exit from D starting at z, z ∈ D.

The sequence Z ′
n is a Markov chain in model (X2, P2), where the transition matrix is

given by the formula

(18) p2(x, y) = p1(x, y) +
∑
z∈D

p1(x, z)u1(z, X2, y), x, y ∈ X2.

In case when D = {ẑ} and it is not absorbing point we get simpler formula

(19) p2(x, y) = p1(x, y) +
p1(x, ẑ)p1(ẑ, y)

1 − p1(ẑ, ẑ)
.

New model is called D-reduced model. Zn and Z ′
n are different chains, with different

state spaces and transition probabilities, but there are some characteristics that are common
for them. We formulate one result that will be used later.

Lemma 1. Let us assume that we have two models (X1, P1) and (X2, P2) defined as above,
U ⊂ X2 and τU , (τ ′

U ) be the moment of first visit to U in the first (second) model. Then

∀x ∈ X2 u1(x,U, y) = u2(x, U, y), (x ∈ X2, y ∈ U).

Proof of this lemma can be found in [13]. In a finite model we can use procedure of
eliminating states recursively by eliminating on each step one state. This is very simple
implication from the Lemma 1.
Elimination theorem. Let us assume that we have Markov model M = (X, P1, g), where
X is a state space, and P1 is a transition matrix and g is reward function. Let Zn be
a Markov chain specified on this model with initial point z. We denote by Pz, Ez the
probability measure and expectation of the Markov chain with the initial point z. We
introduce natural filtration and with respect to it we define stopping times. Denote by T
the set of all stopping times.

Let v be the value function, i.e. v(z) = supτ∈T Ezg(Zτ ). Let T be an averaging operator.
By D let us denote a subset of X and by τD we denote moment of first visit of the chain in
set D, i.e: τD = min{k ≥ 1 : Zk ∈ D}.

Definition 4. We call a set S an optimal stopping set if

S = {x : v(x) = g(x)} and P (τS < ∞) = 1.

The idea of state elimination approach is to eliminate states where is not optimal to
stop. We want to eliminate those states, where doing one step more is optimal. In this case
we want to satisfy the condition

(20) Tg(x) > g(x).
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Theorem 6. (Sonin 1995)
Let M1 = (X1, P1, g) be an OSP,D ⊆ {z ∈ X1 : T1g(z) > g(z)} and P1,x(τX1\D < ∞) = 1
for all x ∈ D. Consider an OSP M2 = (X2, P2, g) with X2 = X1 \ D, p2(x, y) defined by
(18). Let S be the optimal stopping set in M2. Then S is the optimal stopping set in the
problem M1 also and v1(x) = v2(x), ∀x ∈ X2.

Second theorem from [13] deals with situation when the problem can be divided into
disjoint classes with two properties:

• for any class the transition probability from each state in one class to another class
are the same for all states in first class

• the reward function is a constant inside of each of these classes.

Theorem 7. Let M1 = (X1, P1, g) and M2 = (X2, P2, g) be two optimal stopping problems
and let f : X1 → M2 be surjection such that

• P1(x, f−1(y)) = p2(f(x), y) ∀x ∈ X1, y ∈ X2

• g(x) = g(f(x)) ∀x ∈ X1.

Then

1. v1(x) = v2(f(x)), ∀x ∈ X1

2. if S2 is an optimal stopping set for the problem X2 then S1 = {f−1(S2)} is an optimal
stopping set for the problem M1.

Proof. 1. Denote f(z) = y. Then

Tg1(x) =
∑

z

p1(x, z)g1(z) =

=
∑

f−1(y)

p1(x, f−1(y))g1(f−1(y)) =

=
∑

y

p2(f(x), y)g2(f(f−1(y))) = Tg2(f(x)).

Thus

v1(x) = max{g1(x), T v1(x)} = max{g2(f(x)), T v2(f(x))} = v2(f(x)).

2.

S2 = {y : g2(y) = v2(y)}.

f−1S2 = f−1{y : g2(y) = v2(y)} = {x : g2(f(x)) = v2(f(x))} =
= {x : g1(x) = v1(x)} = S1.
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4.4 The monotonicity of the model after the state reduction Consider a Markov
model (X1, P1, g), where X1 is a state space and P1 is a transition matrix. Let Zn be a
Markov chain in this model with special absorbing state 0. Denote Gk = gk(Z1, .., Zk)
Consider sets

D(1) = {zk ∈ X1 : Gk < E[Gk+1|Fk]}.

We denote by Ti an averaging operator in model Xi.
Idea is to eliminate all states from set D. We do it sequentially till we get such a model
(Xj , Pj , g), that Tjg(z) ≤ g(z). It means that

D(j) = {z ∈ Xj : Gk < E[Gk+1|Fk]} = ∅

and therefore

(21) ∀ z ∈ Xj : Tjg(z) ≤ g(z).

We get that new Markov chain Z
(j)
k . For every index k we have that

G
(j)
k ≥ E[G(j)

k+1|F
(j)
k ].

Denote this set by Aj
k. It is easy to see that in this model condition (1) is satisfied. Thus

we get a monotone stopping problem.
In this new problem we want to find an optimal stopping rule. But according to Theorem
1 1-SLA is optimal for this problem.

Lemma 2. Suppose that we have Markov model (X1, P1, g) and reduced model (X2, P2, g)
such that condition (21) is satisfied. Then 1-SLA stopping rule optimal in model X2 is also
optimal is X1.

Proof. Suppose that in reduced model X1. From SRA we can reduce this model to X2. We
do it sequentially till condition (21) is satisfied. Therefore stopping set is

X2 = {z : gk(z′1, ..., z
′
k) ≥ E[gk(z′1, ..., z

′
k, Z ′

k+1)|z′1, ..., z′k])}

where Z ′
i is a Markov chain in reduced model. Consider set A′

k = {Gk ≥ E[Gk+1|F ′
k]},

where F ′
k is sigma-field generated by Z ′

1, ..., Z
′
k. We show that A′

k ⊂ A′
k+1.

Take an arbitrary elementary event ω ∈ A′
k. Then we have

Gk+1 = gk+1(Z ′
1(ω), ..., Z ′

k(ω), Z ′
k+1(ω)) (∗)

Since Z ′
k+1(ω) ∈ X2 thus we have:

(∗) ≥ E[gk+1(Z ′
1(ω), ..., Z ′

k+1(ω), Z ′
k+2)|Z ′

1(ω), ..., Z ′
k+1(ω)])

Therefore ω ∈ A′
k+1. Because ω and k was arbitrary we have that

ω ∈ A′
k ⇒ ω ∈ A′

k+1,

A′
k ⊂ A′

k+1.

So we have that 1-SLA is optimal in model X2. From Theorem 6 we have the that the same
stopping rule is valid in model X1.
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4.5 General model for monotone problems One of the most important modifications
of Odds theorem provided in [8] was finding the connection between Bruss’ result and 1-
SLA method. Let Z1, Z2, ... be a stochastic process on an arbitrary space with special
absorbing state which will be denoted as 0. Zk denote the set of random variables observed
after k − 1 success up to and including success k. If there are less than k successes then
Zk = 0. Assume that the process will be absorbed with probability one. We want to predict
when the process will first hit state 0. If we predict correctly then we win 1, if we predict
incorrectly we win nothing, if the process hits 0 before our prediction then we win ω < 1.
Therefore the pay-off function is given by

Gn = ωI(Zn = 0) + I(Zn 6= 0)P (Zn+1 = 0|Gn)
G∞ = ω.

(22)

where Gn = σ(Z1, ..., Zn).
This problem is solved by 1-SLA described in Definition 2. The optimal stopping rule is
given by

(23) ν1 = min{k ≥ 1 : Zk = 0 or (Zk 6= 0 and
Wk

Vk
≤ 1 − ω)}

where

Vk = P (Zk+1 = 0|Gk)
Wk = P (Zk+1 6= 0, Zk+2 = 0|Gk).

¿From the condition in Definition 1 it is easy to see that the sufficient condition for the
problem to be monotone is

(24)
Wk

Vk
is a.s non-increasing in k.

Theorem 8. (Ferguson 2008)
Suppose that process Z1, Z2, ... has an absorbing state 0 such that probability that the pro-
cess is absorbed is 1 and that the stopping problem with reward sequence (22) satisfies the
condition (24). Then the 1-SLA is optimal.

The problem for the Bruss’ theorem deals with situation where we observe independent
indicators and natural filtration generated by this indicators. Nevertheless this method can
be also applied to possibly dependent indicators. Then we have that

Vk = P (Ik+1 = Ik+2 = ... = 0|Gk)

Wk =
∞∑

j=k+1

P (Ik+1 = Ik+2 = ... = Ij−1 = 0, Ij = 1, Ij+1 = Ij+2 = ... = 0|Gk).

In Bruss’ result we have also ω = 0. From Theorem 8 we get the following corollary.

Corollary 1. Suppose the Bernoulli variables I1, I2, ... satisfy the condition that there are
finite number of successes with probability one. Let G1,G2, ... be an increasing sequence of
sigma-fields such that {Ik = 1} is in Gk for any k = 1, 2, ... . Then among stopping rules
adapted to the sequence {Gk}, the rule (23) is an optimal stopping rule provided condition
(24) is satisfied.
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It is easy to see that this corollary implies the Bruss’ theorem. In the theorem of

Bruss indicators Ik are independent so the ratio
Wk

Vk
in (23) may be written as

Wk

Vk
=∑∞

j=k+1

pj

1 − pj
. All conditions for monotonicity of the problem are satisfied. Thus problem

is monotone and 1-SLA is optimal. This also proves the Bruss’ result in the infinite horizon
case. Using this approach we can easily find 1-SLA rule in reduced model from Lemma 2.
Therefore it is also optimal stopping rule in non-reduced model.

4.6 Example 2B - Selecting the second best object We want to find optimal stop-
ping set for event {Xk = 2}. Gain function is given by:

g((n, k)) = E[I{Xn=2}|Yn = k], n = 1, ..., N ; k = 1, ..., n.

Because absolute rank 2 we can obtain only if we focus on relative ranks 1 or 2 then we get
that

g((n, l)) = 0, ∀ l ≥ 3.

g((n, 1)) = E[I{Xn=2}|Yn = 1] =

= P (Xn = 2|Yn = 1) =

(
1
0

)(
N−2
n−1

)(
N
n

) =

=
(N − 2)!

(n − 1)!(N − n − 1)!
· n!(N − n)!

N !
=

n(N − n)
N(N − 1)

.

(25)

g((n, 2)) = E[I{Xn=2}|Yn = 2] =

= P (Xn = 2|Yn = 2) =

(
1
1

)(
N−2
n−2

)(
N
n

) =

=
(N − 2)!

(n − 2)!(N − n)!
· n!(N − n)!

N !
=

n(n − 1)
N(N − 1)

.

(26)

Define mapping

f((Y1, ..., Yk)) =

 (k, 2) for Yk = 2
(k, 1) for Yk = 1
(k, 0) otherwise

New transition probabilities are given by p2((k−1, j), (k, 1)) = p2((k−1, j), (k, 2)) = 1
k and

p2((k − 1, j), (k, 0)) = k−2
k . We want to create a simpler model M3 and eliminate states in

which is not optimal to stop. First notice that all states (n, l) where l ≥ 3 are eliminated,
because

Tg(n, l) > 0 = g(n, l).

Thus we get new model M3:

1. X3 is set of all pairs (n, k), where 1 ≤ n ≤ N and k = 1, 2

2. transition matrix is defines as

p3((n, k), (m, j)) =
n(n − 1)

m(m − 1)(m − 2)
, 2 ≤ n < m ≤ N,

p3((1, 1), (2, j)) =
1
2
, j = 1, 2

and satisfies monotonicity property, i.e. for m ≤ n, p3((n, k), (m, j)) = 0 .
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3. Zn be a Markov chain with initial point z = (1, 1).

There are also some states with relative ranks 1 and 2 that should be eliminated. We
will find condition for that. First calculate Tg(n, j), j = 1, 2.

Tg(n, 1) =
∑

p((n, 1), (m, k))g((m, k)) =

=
N∑

m=n+1

p((n, 1), (m, 1))g((m, 1)) + p((n, 1), (m, 2))g((m, 2)) =

=
N∑

m=n+1

n(n − 1)
m(m − 1)(m − 2)

m(N − m)
N(N − 1)

+
n(n − 1)

m(m − 1)(m − 2)
m(m − 1)
N(N − 1)

=

=
N∑

m=n+1

n(n − 1)
N(N − 1)(m − 2)

(
N − m

m − 1
+ 1

)
=

=
n(n − 1)
N(N − 1)

N∑
m=n+1

1
m − 2

(
N − m + m − 1

m − 1

)
=

=
n(n − 1)

N

N∑
m=n+1

1
(m − 1)(m − 2)

.

(27)

Similarly

Tg(n, 2) =
∑

p((n, 2), (m, k))g((m, k)) =

=
N∑

m=n+1

p((n, 2), (m, 1))g((m, 1)) + p((n, 2), (m, 2))g((m, 2)) =

=
N∑

m=n+1

n(n − 1)
m(m − 1)(m − 2)

m(N − m)
N(N − 1)

+
n(n − 1)

m(m − 1)(m − 2)
m(m − 1)
N(N − 1)

=

=
N∑

m=n+1

n(n − 1)
N(N − 1)(m − 2)

(
N − m

m − 1
+ 1

)
=

=
n(n − 1)
N(N − 1)

N∑
m=n+1

1
m − 2

(
N − m + m − 1

m − 1

)
=

=
n(n − 1)

N

N∑
m=n+1

1
(m − 1)(m − 2)

.

(28)

We see that Tg((n, 1)) = Tg((n, 2)). From (20), (25) and (27) we get

(29)
N∑

m=n+1

1
(m − 1)(m − 2)

>
N − n

(n − 1)(N − 1)

and from (20), (26) and (28)

(30)
N∑

m=n+1

1
(m − 1)(m − 2)

>
1

N − 1
.
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Then we eliminate states for which conditions (29) and (30) are satisfied and recalculate
transition probabilities using (29). We get simpler model M4 and from Theorem 6 we know
that optimal stopping set in M4 is also optimal stopping set in M1.

From calculus we know that

(31)
N∑

m=n+1

1
(m − 1)(m − 2)

=
N − n

(n − 1)(N − 1)
.

It means that we do not eliminate any state (n, 1) and eliminate states (n, 2) such that

N − n

(n − 1)(N − 1)
>

1
N − 1

N − n

n − 1
> 1

n <
N + 1

2
.

(32)

Denote: K = bN
2 c. According to the Lemma 1 we can eliminate the states recursively using

formula (18). Therefore the new transition probabilities are

(33)

p4((n, 1), (m, 1)) =
n

m(m − 1)
, 1 ≤ n < m ≤ K

p4((n, 1), (m, j)) =
n(K − 1)

m(m − 1)(m − 2)
, n ≤ K < m

p4((n, k), (m, j)) =
n(n − 1)

m(m − 1)(m − 2)
, K < n < m

Continuing this procedure of course should give us the minimal optimal stopping set and
transition probabilities. Once again calculate Tg(n, j), j = 1, 2.
For n < K

Tg(n, 1) =

=
K∑

m=n+1

n

m(m − 1)
· m(N − m)

N(N − 1)
+

N∑
m=K+1

n(K − 1)
m(m − 1)(m − 2)

m(N − m) + m(m − 1)
N(N − 1)

=

=
n

N(N − 1)
(
(N − 1)

K∑
m=n+1

1
m − 1

− K + n + N − K
)

=

=
n

N

K∑
m=n+1

1
m − 1

+
n

N(N − 1)
(N + n − 2K).

(34)

Using 20 we get

(35)
K∑

m=n+1

1
m − 1

>
2(K − 1)
N − 1

.

From this we find an index k∗ such that the above condition is satisfied. Of course neither
for n ≥ K states (n, 1) and states (n, 2) are eliminated.
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It is easy to check, that there are no more states that can be eliminated. Thus the optimal
stopping rule is

N∗ = min{1 ≤ n ≤ N : (Yn = 1 and
bN

2 c∑
m=n+1

1
m − 1

≤
2(bN

2 c − 1)
N − 1

)

or (Yn ∈ {1, 2} and n > bN

2
c)}.

Now from Lemma 2 we know that the same optimal stopping rule holds for initial model.

5 Conclusion We have shown two important results: one is that Odds Theorem comes
from problem of optimal stopping of Markov chains. Second is that optimal stopping
problem of Markov chain can be reduced to monotone stopping problem. The procedure is
the following: eliminate those states which is not optimal to stop on, apply 1-SLA method
to find the optimal stopping rule and calculate the expected reward. This explains why
the procedure was called ’Eliminate and stop’. This algorithm can be used to solve many
problems. One of them is ’secretary problem’.
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