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Abstract. Let A and B be positive definite matrices with 0 <

m ≤ A,B ≤M for some scalar 0 < m ≤M , and σ, τ two arbitrary

means between the harmonic and the arithmetic means. Put h =
M
m . Then for every unital positive linear map Φ,

Φ2(AσB) ≤ K2(h)Φ2(AτB),

Φ2(AσB) ≤ K2(h) (Φ(A)τΦ(B))
2
,

(Φ(A)σΦ(B))2 ≤ K2(h)Φ2(AτB),

(Φ(A)σΦ(B))2 ≤ K2(h)(Φ(A)τΦ(B))2,

where K(h) =
(h+ 1)2

4h
is the Kantorovich constant.

We also give a new characterization of the trace property and

operator monotonicity by the squared Cauchy inequality.

——————————————————————————————

Keywords: Matrix means, unital positive linear maps, Kantorovich
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1. Introduction

Throughout this paper, Mn stands for the algebra of all n×nmatrices

over the field of complex numbers. A continuous function f on an

interval J (⊂ R) is said to be operator monotone if

(1) A ≤ B =⇒ f(A) ≤ f(B)

for any pair of self-adjoint bounded operators A,B on a separable in-

finite dimensional Hilbert space H with spectra σ(A), σ(B) ⊂ J . We
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know that the function f is operator monotone if and only if the in-

equality (1) holds for every self-adjoint matrices A,B of order n for

every n ∈ N.

We reserve M,m for scalars and I (in Mn or in B(H)) for the identity

operator. The axiomatic theory for connections and means for pairs of

positive operators on H have been studied by Kubo and Ando [6]. A

binary operation σ defined on the cone of positive operators is called a

connection if

(i) A ≤ C,B ≤ D implies AσB ≤ BσD;

(ii) C∗(AσB)C ≤ (C∗AC)σ(C∗BC);

(iii) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB.

If IσI = I, then σ is called a mean. This definition can also be defined

for positive operators on a finite dimensional Hilbert space. Opera-

tors on an n-dimensional space are identified with complex matrices of

order n, hence we usually call connections/means in this case matrix

connections/means of order n (see [1]). The fact is that an operator

connection/mean is a matrix connection/mean of every order. How-

ever, throughout this paper operator means/connections will be used

even the main theorem (and some other consequences) still hold for

matrix means/connections.

Many authors study matrix inequalities containing means and uni-

tal positive linear maps on the matrix algebras. Such inequalities are

interesting by themselves and have many applications in quantum in-

formation theory. One of the most important inequalities is the non-

commutative AM-GM inequality which states that, for positive semi-

definite matrices A,B,

(2) A∇B =
A+B

2
≥ A]B,

where, for positive definite matrices A,B,

A]B = A1/2(A−1/2BA−1/2)A1/2

and, for positive semidefinite matrices A,B,

A]B = lim
ε→0+

(A+ εI)](B + εI).
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Moreover, by [11, Lemma 4.2] the left hand side and the right hand

side of Cauchy inequality cover all ordered pairs of positive semidefinite

matrices X ≥ Y . However, this property does not hold for squares

because the following inequality fails in general

(3)
(A+B

2

)2 ≥ (A]B)2.

Indeed, take the following matrices

(4) X =

(
5/6 2

2 5

)
, Y =

(
1 3

3 10

)
.

By help of Matlab, we can see that

det((X + Y )2/4− (X]Y )2) = −1.2301 < 0.

In [2], Lin proved the following Theorem.

Theorem 1.1 ([2]). Let A and B be positive definite matrices with

0 < m ≤ A,B ≤ M for some scalar 0 < m ≤ M , and put h = M
m

.

Then for every unital positive linear map Φ on Mn,

(5) Φ2(A∇B) ≤ K2(h)Φ2(A]B),

and

(6) Φ2(A∇B) ≤ K2(h)(Φ(A)]Φ(B))2,

where K(h) = (h+1)2

4h
is the Kantorovich constant.

It is well-known that the arithmetic mean∇ is the biggest one among

symmetric means (see [6]). A natural question is that: Is the theorem

above still true if we replace the biggest mean by a smaller one? In

this paper, we consider such inequalities for two different means with

Kantorovich constant. In applications, we give an analogous result

of Uchiyama and Yamazaki in [9] and the reverse of Minkovskii type

inequality in [10].

It is well-known that for a monotone increasing function f on R+:

Tr(f(A)) ≤ Tr(f(B)) whenever 0 ≤ A ≤ B. Consequently, for any two

positive semidefinite matrices A,B and p ≥ 0 we have Tr((A]B)p) ≤
Tr((A∇B)p) even the inequality (3) does not hold.
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Also, we can characterize positive linear functionals ϕ on Mn and op-

erator monotone functions satisfying the following inequality: ϕ(f(A]B)) ≤
ϕ(f(A∇B)).

2. Main results

Lemma 2.1. Let A and B be positive definite matrices with 0 < m ≤
A,B ≤ M for some scalar 0 < m ≤ M , and σ, τ two arbitrary means

between the harmonic and the arithmetic means. Then for every unital

positive linear map Φ,

(7) Φ(AσB) +MmΦ−1(AτB) ≤M +m,

and

(8) Φ(A)σΦ(B) +MmΦ−1(AτB) ≤M +m.

Proof. It is easy to see that

(M − A)(m− A)A−1 ≤ 0,

or

mMA−1 + A ≤M +m.

Consequently,

Φ(A) +mMΦ(A−1) ≤M +m.

Similarly,

Φ(B) +mMΦ(B−1) ≤M +m.

Summing up two above inequalities, we get

Φ(A5B) +mMΦ((A!B)−1) ≤M +m.

Besides, by the hypothesis 5 ≥ σ and τ ≥!, we get

Φ(AσB) +mMΦ−1(AτB) ≤ Φ(AσB) +mMΦ((AτB)−1)

≤ Φ(A5B) +mMΦ((A!B)−1)

≤M +m.

By a similar argument, we can get the inequality (8) using the fact

that

Φ(A)σΦ(B) ≤ Φ(A)5 Φ(B) = Φ(A5B).

�
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The following main theorem of this paper is a generalization of Lin’s

result (Theorem 1.1).

Theorem 2.1. Let A and B be positive definite matrices with 0 < m ≤
A,B ≤ M for some scalar 0 < m ≤ M , and σ, τ two arbitrary means

between the harmonic and the arithmetic means. Then for every unital

positive linear map Φ,

(9) Φ2(AσB) ≤ K2(h)Φ2(AτB),

(10) Φ2(AσB) ≤ K2(h) (Φ(A)τΦ(B))2 ,

(11) (Φ(A)σΦ(B))2 ≤ K2(h)Φ2(AτB),

and

(12) (Φ(A)σΦ(B))2 ≤ K2(h)(Φ(A)τΦ(B))2,

where K(h) =
(h+ 1)2

4h
with h =

M

m
.

Proof. We prove the inequality (9). The inequality (9) is equivalent to

the following

Φ−1(AτB)Φ2(AσB)Φ−1(AτB) ≤ K2(h),

or

||Φ(AσB)Φ−1(AτB)|| ≤ K(h).

On the other hand, it is well known that [7, Theorem 1] for A,B ≥ 0,

||AB|| ≤ 1

4
||A+B||2.

So, it is necessary to prove that

1

4mM
||Φ(AσB) +mMΦ−1(AτB)||2 ≤ (M +m)2

4Mm
,

or,

||Φ(AσB) +mMΦ−1(AτB)|| ≤M +m.

The last inequality follows from Lemma 2.1.

The remain inequalities in this theorem can be proved analogously.

�

From the operator monotonicity of the function f(t) = t1/2 on [0,∞)

it obviously implies the following proposition.
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Proposition 2.1. Let 0 < m ≤ A,B ≤ M and σ, τ are two arbitrary

means between the harmonic and the arithmetic means. Then for every

unital positive linear map Φ,

Φ(AσB) ≤ K(h)Φ(AτB),

Φ(AσB) ≤ K(h) (Φ(A)τΦ(B)) ,

Φ(A)σΦ(B) ≤ K(h)Φ(AτB)

and

Φ(A)σΦ(B) ≤ K(h)Φ(A)τΦ(B),

where K(h) =
(h+ 1)2

4h
with h =

M

m
.

Remark 1. From the following well-known fact:

AτB ≤ A∇B ≤ K(h)A!B ≤ K(h)AσB,

it implies immediately Proposition 2.1. On the other hand, it is well-

known in [5] that if σ is a symmetric mean, then

mσM

m∇M
A∇B ≤ AσB.

Therefore, we have

(13)
mσM

m∇M
AτB ≤ AσB.

Also, Theorem 13 in [5] says that if 0 ≤ m ≤ A,B ≤M , then

(14)
2
√
mM

m+M
A∇B ≤ A]B ≤ M +m

2
√
mM

A!B.

Now we will show that the inequality (13) could not be squared when

σ = ], τ = ∇. Indeed, let’s take m = 0.02,M = 11 and the matrices

X, Y as in the equation (4). It is obvious that m ≤ X, Y ≤ M. With

a help of Matlab we get

det(K(h)(X]Y )2 − (X∇Y )2) = −4.1122,

and

det(K(h)(X!Y )2 − (X]Y )2) = −1.7545.

Hence, the following inequalities

K(h)(X]Y )2 ≥ (X∇Y )2, (X]Y )2 ≥ K(h)(X!Y )2

do not hold.
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Corollary 2.1. Let f, g be symmetric operator monotone functions on

[0,∞). Then for any pair 0 < m < M ,

(15) max{f(t)

g(t)
,
g(t)

f(t)
} ≤ (m+M)2

4mM
, t ∈ [m,M ].

Proof. It is necessary to apply [6, Theorem 3.2] and the above Proposi-

tion 2.1 for the symmetric means σ and τ corresponding to the functions

f and g, and definition of means via their representation functions. �

The inequality (15) is interesting by itself, and the authors do not

know any elementary proof even in the case when f(t) =
√
t.

As an application, now we give a similar result as in [9]. Uchiyama

and Yamazaki showed that for an operator monotone function f on

[0,∞) if f(λB + I)−1]f(λA + I) ≤ I for all sufficiently small λ > 0,

then f(λA+ I) ≤ f(λB+ I) and A ≤ B. By applying Proposition 2.1,

we get a similar result for any symmetric mean.

Corollary 2.2. Let f be an operator monotone function on [0,∞)

with f(1) = 1 and σ an arbitrary mean between the harmonic and

the arithmetic ones. Let 0 < m < 1 < M and A,B positive definite

matrices such that 0 < m ≤ A,B ≤ M . If for all sufficiently small

λ > 0

(16) f(λB + I)−1σf(λA+ I) ≤ K−1 (where K =
(m+M)2

4Mm
),

then

f(λA+ I) ≤ f(λB + I) and A ≤ B.

Proof. From the continuity of the function f and assumptions, it follows

that for all sufficiently small λ > 0

m ≤ f(λB + I)−1, f(λA+ I) ≤M.

On account of Proposition 2.1 and (16), we obtain

f(λB + I)−1]f(λA+ I) ≤ K(f(λB + I)−1σf(λA+ I))

≤ I.

By [9, Theorem 1], we get

f(λA+ I) ≤ f(λB + I) and A ≤ B.

�
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The famous Minkovskii determinantal inequality is

det1/n(A+B) ≥ det1/nA+ det1/nB,

for any positive semidefinite matrices of order n A,B. In [10] Bourin

and Hiai obtained the Minkovskii type inequality as follows: Let σ be

an operator mean whose representing function f is geometrically con-

vex, i.e., f(
√
xy) ≥

√
f(x)f(y). Then, for every positive semidefinite

matrices of order n A,B,

det1/n(AσB) ≥ (det1/nA)σ(det1/nB),

and the reverse inequality holds if the representing function is geomet-

rically concave.

Combining the reverse inequalities in Proposition 2.1, we give the

lower bound and upper bound of the value det(AσB) for any operator

mean σ between the arithmetic and the harmonic ones.

Corollary 2.3. Let σ be a symmetric mean. If A,B are positive defi-

nite matrices such that 0 < m ≤ A,B ≤M , then

K−1(det1/n(A)∇det1/n(B)) ≤ det1/n(AσB) ≤ K(det1/n(A)!det1/n(B)),

where K = (M+m)2

4Mm
.

Proof. By Proposition 2.1, we have

A∇B ≤ KAσB.

We also know that det1/n preserves the order of matrices by the famous

Minkovskii determinantal inequality. Consequently,

K−1det1/n(A)∇det1/n(B) ≤ K−1det1/n(A∇B)

≤ det1/n(AσB).

Now we prove the second inequality of the corollary. By Proposition

2.1, we have AσB ≤ KA!B. Hence,

det1/n(AσB) ≤ Kdet1/n(A!B).

Moreover, the function f(t) = 1!t = 2t
1+t

corresponding the harmonic

mean is geometrically concave, by the result in [10] mentioned above,

we have

det1/n(A!B) ≤ det1/n(A)!det1/n(B)
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and then the second inequality is obtained.

�

Now let us consider the problem of characterization of the trace

property which is closed to the characterization of the operator mono-

tonicity. It is well-known that, for a monotone increasing function f

on R+, from the assumption 0 < A ≤ B it follows that

Tr(f(A)) ≤ Tr(f(B)).

Consequently, for any two positive definite matrices A,B we have

Tr(f(A]B)) ≤ Tr(f(A∇B)).

In [12] O. E. Tikhonov and A. M. Bikchentaev showed that for a posi-

tive linear functional ϕ on Mn and any given p > 1 if the inequality

ϕ(Ap) ≤ ϕ(Bp)

holds for any pair of positive definite matrices A ≤ B, then ϕ should

be a scalar of the canonical trace. Note that the function f(t) = tp for

p > 1 is not operator monotone on [0,∞). In the following proposition,

replacing A,B by the geometric and the arithmetic means we can get

the characterization of the trace.

Proposition 2.2. For a positive linear functional ϕ on Mn and a given

p > 1. If the following inequality

ϕ((A∇B)p) ≥ ϕ((A]B)p)

holds whenever positive definite matrices A ≤ B, then ϕ is a scalar of

the canonical trace.

Proof. It is well-know that for arbitrary 0 < A ≤ B we can find positive

definite matrices X, Y such that B = X∇Y,A = X]Y (see [11, Lemma

4.2]). In fact, put X = B − B](B − AB−1A) and Y = B + B](B −
AB−1A). By the assumption,

ϕ((X∇Y )p) ≥ ϕ((X]Y )p)

or

ϕ(Ap) ≤ ϕ(Bp).

By the characterization mentioned above, ϕ is a scalar of the trace. �
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The following corollary is just an immediate consequence of [13, The-

orem 1]. However, we can give here a direct proof.

Corollary 2.4. Let H be an infinite dimensional, separable Hilbert

space and ϕ a normal state on B(H) such that its corresponding density

operator is not finite rank. Let f be a function defined on (0,∞). Then

the following statements are equivalent:

(i) f is operator monotone;

(ii) the following inequality

ϕ(f(A∇B)) ≥ ϕ(f(A]B))

holds for any positive operators A,B ∈ B(H) satisfying the

condition σ(A∇B), σ(A]B) ⊂ (0,∞).

Proof. (i) ⇒ (ii) is obvious. Conversely, for arbitrary positive invert-

ible operators X ≤ Y , we can find A,B ≥ 0 such that Y = A∇B,X =

A]B (see [11, Lemma 4.2]). In fact, put A = Y − Y ](Y − XY −1X)

and B = Y + Y ](Y −XY −1X). By the assumption,

ϕ(f(Y )) = ϕ(f(A∇B)) ≥ ϕ(f(A]B)) = ϕ(f(X)).

By [13, Theorem 1], it follows that the function f is operator monotone.

�

3. Some comments on the Kantorovich inequality

The Kantorovich inequality [14] states that for any 0 < m ≤ A ≤M.

and any unital positive linear map Φ,

(17) Φ(A−1) ≤ (M +m)2

4Mm
Φ(A)−1.

From the Kantorovich inequality it is easy to get the following:

Corollary 3.1 ([15]). Let 0 < m ≤ A ≤ M. Then for every unital

positive linear map Φ,

(18) Φ(A−1)]Φ(A) ≤ M +m

2
√
Mm

.

Question: If we replace the geometric mean by an arbitrary mean,

does the inequality (18) hold?
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Counterexample: Let σ be an operator mean corresponding to

the function f(t) = t. Assume that the inequality (18) holds for any

0 < m ≤ A ≤M , then it should hold for A = M . That means,

M−1σM ≤ M +m

2
√
Mm

,

or

M ≤ M +m

2
√
Mm

.

Substitute M = 2 and m = 1 into the latter inequality, we get a

contradiction. Even for symmetric means, for example, the arithmetic

mean, the inequality (18) does not hold.

However, it is easy to see that for a unital positive linear map Φ and

any mean σ,

Φ(A−1)σΦ(B) ≤ m−1σM,

for 0 < m ≤ A,B ≤M , and the latter inequality can be squared.

Back to the above question, if we restrict our attention to the class

of symmetric means, the inequality (18) holds true as follows.

Proposition 3.1. Let 0 < m ≤ A ≤ M. Then for any symmetric

mean σ,

(19) A−1σA ≤
√
K(h′),

where K(h′) = (M ′+m′)2

4M ′m′ and M ′ and m′ are the maximum and the

minimum of the set {M,m, 1/m, 1/M}.

Proof. Let f be the symmetric operator monotone function correspond-

ing to σ. Then the function g(t) = t
f(t)

is symmetric. From Corollary

2.1 and by direct calculation we get

A−1σA = A−1f(A2)

≤ K(h′)A−1g(A2)

= K(h′)Af−1(A2)

= K(h′)(A−1σA)−1.

Then we obtain (19). �
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Let 0 < m ≤ A ≤ M. Then for any symmetric mean σ and any

unital positive linear map Φ,

Φ−1(A)σΦ(A) ≤
√
K(h).
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