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ON RELATIONS BETWEEN OPERATOR VALUED α-DIVERGENCE
AND RELATIVE OPERATOR ENTROPIES

Hiroshi Isa(1), Masatoshi Ito(2), Eizaburo Kamei(3),
Hiroaki Tohyama(4) and Masayuki Watanabe(5)

Abstract. Let A and B be two strictly positive operators, and α ∈ (0, 1). The
operator valued α-divergence is defined by

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B = (1 − α)A + αB and A ♯α B = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 . In this paper,

firstly, we show some fundamental relations between operator valued α-divergence and
relative operator entropies (relative operator entropy, Tsallis relative operator entropy
etc.). Next, we introduce noncommutative ratio (A ♮u+v B)(A ♮u B)−1 on the path
A ♮w B, and we discuss noncommutative ratio translation. Moreover, we discuss α-
divergence for operator distributions.

1 Introduction. Throughout this paper, an operator means a bounded linear operator
on a Hilbert space H. An operator T on H is said to be positive (denoted by T ≥ 0) if
(Tx, x) ≥ 0 for all x ∈ H, and an operator T is said to be strictly positive (denoted by
T > 0) if T is invertible and positive.

A relative operator entropy is introduced by Fujii and Kamei [3] as follows: For strictly
positive operators A and B,

S(A|B) ≡ A
1
2 log

(
A− 1

2BA− 1
2

)
A

1
2 .

Moreover, for u ∈ R, Furuta [8] introduced

Su(A|B) ≡ A
1
2

(
A− 1

2BA− 1
2

)u
log
(
A− 1

2BA− 1
2

)
A

1
2

as an extension of S(A|B), and Yanagi, Kuriyama and Furuichi [16] call it generalized
relative operator entropy.

For w ∈ R, we consider a path A ♮w B through A and B defined by [4], [5], [12] etc.:

A ♮w B ≡ A
1
2 (A− 1

2BA− 1
2 )wA

1
2 .

A path through A and B is an extended notion of weighted geometric mean A ♯α B ≡
A

1
2 (A− 1

2BA− 1
2 )αA

1
2 defined for α ∈ [0, 1]. Su(A|B) can be regarded as a tangent vector at

u on the path, and from this viewpoint, we showed several relations between S(A|B) and
Su(A|B) in [9].

Yanagi, Kuriyama and Furuichi [16] introduced Tsallis relative operator entropy as fol-
lows:
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For strictly positive operators A and B,

Tα(A|B) ≡
A

1
2

(
A− 1

2BA− 1
2

)α
A

1
2 −A

α
=

A ♯α B −A

α
, α ∈ (0, 1].

Since lim
α→0

xα−1
α = log x holds for x > 0, we have T0(A|B) ≡ lim

α→0
Tα(A|B) = S(A|B). Tsallis

relative operator entropy can be extended as the notion for α ∈ R. In [9], we showed
the following essential relation between relative operator entropies: For strictly positive
operators A and B, and for α ∈ (0, 1),

(∗) S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) ≤ −S(B|A) = S1(A|B).

In the information geometry, α-divergence defined by Amari [1] plays an important role
as a notion to measure the difference between two probability distributions. Fujii [2] defined
an operator version of α-divergence as follows: For strictly positive operators A and B, and
for α ∈ (0, 1),

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B ≡ (1 − α)A + αB is weighted arithmetic mean. In section 2, we show
some fundamental relations between operator valued α-divergences and relative operator
entropies.

In section 3, we show the following equality for u, v ∈ R:

(♢) (A ♮u+v B)(A ♮u B)−1Su(A|B) = Su+v(A|B).

We call (A ♮u+v B)(A ♮u B)−1 noncommutative ratio on the path A ♮w B, and show a
preservation on this ratio. We call to multiply Su(A|B) by (A ♮u+v B)(A ♮u B)−1 like
the equality (♢) noncommutative ratio translation for generalized relative operator entropy.
Applying noncommutative ratio translation to fundamental relations between operator val-
ued α-divergences and relative operator entropies shown in section 2, we get similar results
to the waving property in [9].

For discrete (positive) probability distributions p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn),
Shannon inequality 0 ≥

∑n
i=1 pi log

qi
pi

holds. Furuta [8] showed operator Shannon inequal-

ity, that is, 0 ≥
∑n

i=1 S(Ai|Bi) for Ai, Bi > 0 (1 ≤ i ≤ n) with
∑n

i=1 Ai =
∑n

i=1 Bi = I.
We call an operator sequence A = (A1, A2, · · · , An) an operator distribution if Ai > 0
(1 ≤ i ≤ n) and

∑n
i=1 Ai = I, since it can be regarded as an operator version of discrete

probability distribution.
Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distributions, and

α ∈ (0, 1). In [9] and [10], we introduced relative operator entropy for operator distributions
S(A|B), Tsallis relative entropy for operator distributions Tα(A|B), and generalized relative
entropy for operator distributions Sα(A|B) as follows:

S(A|B) =
n∑

i=1

S(Ai|Bi), Tα(A|B) =
n∑

i=1

Tα(Ai|Bi), Sα(A|B) =
n∑

i=1

Sα(Ai|Bi).

Yanagi, Kuriyama and Furuichi [16] improved the operator Shannon inequality:

0 ≥ Tα(A|B) ≥ S(A|B), α ∈ (0, 1).

From the viewpoint of this improvement of Shannon inequality, in [9], we got

S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) ≤ −S(B|A) = S1(A|B)
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by (∗) and showed related inequalities. Moreover, in [10], we discussed generalizations of
these inequalities. In section 4, we define α-divergence for operator distributions, and show
its fundamental properties.

2 Operator valued α-divergence and fundamental properties. Amari [1] defined
α-divergence as a notion to measure the difference between two probability distributions as
follows: For two discrete probability distributions p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn),
that is, pi, qi > 0 (1 ≤ i ≤ n) and

∑n
i=1 pi =

∑n
i=1 qi = 1, and for α ∈ R,

Dα[ p : q ] ≡ 4

1− α2

(
1−

n∑
i=1

p
1−α
2

i q
1+α
2

i

)
, α ̸= ±1.

If α = −1, then D−1[p : q] ≡ lim
α→−1

Dα[p : q] =
∑n

i=1 pi log
pi

qi
, and if α = 1, then D1[p : q] ≡

lim
α→1

Dα[p : q] = D−1[q : p]. We call this quantity D−1[p : q] the relative entropy (Kullback-

Leibler divergence, Kullback-Leibler distance), and denote it by DKL( p | q ) ([13], [14]). If
we put t = 1+α

2 , then α-divergence can be expressed as follows:

Dt( p | q ) ≡ D2t−1[ p : q ] =
1

t(1− t)

n∑
i=1

{
(1− t)pi + tqi − p1−t

i qti
}
, t ̸= 0, 1.

Based on this expression, Fujii [2] defined an operator valued α-divergence as follows.

Definition 2.1. For strictly positive operators A and B, and for α ∈ (0, 1), operator valued
α-divergence is defined as follows ([2], [6], [7]):

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B ≡ (1− α)A+ αB and A ♯α B ≡ A
1
2 (A− 1

2BA− 1
2 )αA

1
2 .

In this section, we show some fundamental properties of operator valued α-divergences.
Petz [15] introduced the operator divergence DFK(A|B) ≡ B − A − S(A|B). Fujii et al.
showed the following relation between DFK(A|B) and operator valued α-divergences at end
points for interval (0, 1).

Proposition 2.2. (Fujii-Mićić-Pečarić-Seo, [6], [7]) Let A and B be strictly positive opera-
tors. Then,

D0(A|B) ≡ lim
α→0

Dα(A|B) = DFK(A|B) = B −A− S(A|B),(1)

D1(A|B) ≡ lim
α→1

Dα(A|B) = DFK(B|A) = A−B + S1(A|B)(2)

hold.

The following (1) in Proposition 2.3 interpolates (1) and (2) in Proposition 2.2 since
T0(A|B) = S(A|B) and −S(B|A) = S1(A|B) by (∗).

Proposition 2.3. Let A and B be strictly positive operators. Then,

Dα(A|B) =
1

1− α
(B −A− Tα(A|B)) =

1

α
(A−B − T1−α(B|A)), for α ∈ (0, 1),(1)

D1−α(B|A) = Dα(A|B), for α ∈ [0, 1](2)

hold.
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Proof. (1) This can be shown as follows:

(1− α)Dα(A|B) =
A ∇α B −A ♯α B

α
=

A ∇α B −A

α
− A ♯α B −A

α
= B −A− Tα(A|B),

αDα(A|B) =
A ∇α B −A ♯α B

1− α
=

A ∇α B −B

1− α
− A ♯α B −B

1− α

= A−B − B ♯1−α A−B

1− α
= A−B − T1−α(B|A).

(2) For α ∈ (0, 1),

D1−α(B|A) = B ∇1−α A−B ♯1−α A

(1− α){1− (1− α)}
=

A ∇α B −A ♯α B

(1− α)α
= Dα(A|B)

holds. In case of α = 0 or α = 1, this can be obtained by Proposition 2.2 and the
relation −S(B|A) = S1(A|B) in (∗).

The following result gives bounds of operator value Dα(A|B).

Theorem 2.4. Let A and B be strictly positive operators. Then,

0 ≤ Dα(A|B) ≤ 1

1− α
D0(A|B),(1)

0 ≤ Dα(A|B) ≤ 1

α
D1(A|B)(2)

hold for α ∈ (0, 1).

Proof. Since A ∇α B ≥ A ♯α B for any α ∈ (0, 1), Dα(A|B) ≥ 0 holds. Moreover, by (∗)
and (1) in Proposition 2.3, we have

Dα(A|B) =
1

1− α
(B −A− Tα(A|B)) ≤ 1

1− α
(B −A− S(A|B)) =

1

1− α
D0(A|B),

Dα(A|B) =
1

α
(A−B − T1−α(B|A)) ≤ 1

α
(A−B + S1(A|B)) =

1

α
D1(A|B).

By the following Theorem 2.5, it is shown that an operator value Dα(A|B) can be
represented by the sum of two operator values for Tsallis entropies.

Theorem 2.5. Let A and B be strictly positive operators. Then,

Dα(A|B) = −{Tα(A|B) + T1−α(B|A)}

holds for α ∈ (0, 1).

Proof. This theorem can be shown as follows:

Dα(A|B) =
A ∇α B −A ♯α B

α(1− α)

=
{(1− α)A + αB} − {(1− α)(A ♯α B) + α(A ♯α B)}

α(1− α)

= −
{
(1− α)(A ♯α B)− (1− α)A

α(1− α)
+

α(B ♯1−α A)− αB

α(1− α)

}
= −

{
A ♯α B −A

α
+

B ♯1−α A−B

1− α

}
= −{Tα(A|B) + T1−α(B|A)}.
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Theorem 2.5 gives a new viewpoint for operator valued α-divergence. Tsallis relative
operator entropy Tα(A|B) can be regarded as the slope of the line through points A and

A ♯α B. Since −T1−α(B|A) = −B ♯1−α A−B
1−α = B−A ♯α B

1−α , we can regard this operator value
as the slope of the line through points A ♯α B and B. Therefore, we can regard Dα(A|B) as
the difference between the slops of these two lines. We illustrate the quantity corresponding
to Dα(A|B) by bold straight line in Figure 1.

-

6

α 1

A

A ♯α B

B

O

■■■−T1−α(B|A)

Tα(A|B)

Dα(A|B)

Figure 1: Dα(A|B) = −T1−α(B|A)− Tα(A|B).

The following result can be shown by Theorem 2.5 and (∗) easily.

Corollary 2.6. Let A and B be strictly positive operators. Then,

Dα(A|B) ≤ S1(A|B)− S(A|B)

holds for α ∈ (0, 1).

3 Noncommutative ratio translation on the path. First, we show the following
result on translation of generalized relative operator entropies.

Proposition 3.1. Let A and B be strictly positive operators. Then,

(A ♮u+v B)(A ♮u B)−1Su(A|B) = Su+v(A|B)

holds for u, v ∈ R.
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Proof. This can be shown as follows:

(A ♮u+v B)(A ♮u B)−1Su(A|B)

= A
1
2

(
A− 1

2BA− 1
2

)u+v

A
1
2A− 1

2

(
A− 1

2BA− 1
2

)−u

A− 1
2

×A
1
2

(
A− 1

2BA− 1
2

)u
log
(
A− 1

2BA− 1
2

)
A

1
2

= A
1
2

(
A− 1

2BA− 1
2

)u+v

log
(
A− 1

2BA− 1
2

)
A

1
2

= Su+v(A|B).

We can regard Su(A|B) and Su+v(A|B) as tangent vectors at u and u+ v on the path
A ♮w B, respectively. Then, Proposition 3.1 means that Su+v(A|B) is parallelly transferring
Su(A|B) by v along the path.

Here, we define the following noncommutative ratio on the path A ♮w B, and give a new
viewpoint for the equality in Proposition 3.1.

Definition 3.2. For strictly positive operators A and B, and for u, v ∈ R, noncommutative
ratio on the path A ♮w B is defined as follows:

R(u, v;A,B) ≡ (A ♮u+v B)(A ♮u B)−1.

We have the following property of noncommutative ratio.

Proposition 3.3. Let A and B be strictly positive operators. Then,

(A ♮u+v B)(A ♮u B)−1 = (A ♮v B)A−1,

that is,

R(u, v;A,B) = R(0, v;A,B) = (A ♮v B)A−1

holds for u, v ∈ R.

Proof. This can be shown as follows:

R(u, v;A,B) = (A ♮u+v B)(A ♮u B)−1

= A
1
2

(
A− 1

2BA− 1
2

)u+v

A
1
2A− 1

2

(
A− 1

2BA− 1
2

)−u

A− 1
2

= A
1
2

(
A− 1

2BA− 1
2

)v
A− 1

2

= (A ♮v B)A−1

= R(0, v;A,B).

By Proposition 3.3, R(u, v;A,B) does not depend on u. So, we denote R(u, v;A,B) by
R(v;A,B), or simply R(v) in the rest of this section. We call multiplying by R(v) from
the left side noncommutative ratio translation.

From Proposition 3.1 and Definition 3.2, we get the following immediately.
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Corollary 3.4. Let A and B be strictly positive operators. Then,

R(v)Su(A|B) = Su+v(A|B)

hold for u, v ∈ R.

In particular, by putting u = 0 in Corollary 3.4 , we have

R(v)S(A|B) = Sv(A|B).

Tsallis relative operator entropy can be extended as follows: For strictly positive oper-
ators A and B, and for u ∈ R,

Tu(A|B) ≡ A ♮u B −A

u
.

From above definition and Proposition 3.3, we have

R(v)Tu(A|B) =
A ♮u+v B −A ♮v B

u
.

Let n be an integer. Then, R(n) = (A ♮n B)A−1 = (BA−1)n holds. In [9], we showed
a similar relation to (∗) as follows: For strictly positive operators A, B and u ∈ (n, n+ 1),

(⋆) Sn(A|B) ≤ A ♮u B −A ♮n B

u− n
≤ Su(A|B) ≤ A ♮n+1 B −A ♮u B

n+ 1− u
≤ Sn+1(A|B),

or equivalently,

(⋆⋆) (BA−1)nS(A|B) ≤ (BA−1)nTu−n(A|B) ≤ (BA−1)nSu−n(A|B)

≤ −(BA−1)nTn+1−u(B|A) ≤ (BA−1)nS1(A|B).

The relation (⋆) can be expressed by (⋆⋆) which is the transferred form of (∗) by n along
the path. We call this the waving property in [9].

The relation (⋆⋆) can be generalized as follows:

Corollary 3.5. Let A and B be strictly positive operators and u ∈ (v, v + 1). Then,

Sv(A|B) = R(v)S(A|B) ≤ R(v)Tu−v(A|B) ≤ Su(A|B)

≤ −R(v)Tv+1−u(B|A) = R(u)Tv+1−u(A|B) ≤ Sv+1(A|B)

hold for u, v ∈ R.

Proof. We only show the relation −R(v)Tv+1−u(B|A) = R(u)Tv+1−u(A|B) since the others
can be obtained by the similar way to the proof in [9].
By Proposition 3.3, we have

R(v)Tv+1−u(B|A) = (A ♮v B)A−1Tv+1−u(B|A) = (A ♮v B)A−1B ♮v+1−u A− B

v + 1− u

=
(A ♮v B)A−1(A ♮u−v B)− (A ♮v B)A−1B

v + 1− u

=
A ♮u B −A ♮v+1 B

v + 1− u

= (A ♮u B)A−1A −A ♮v+1−u B

v + 1− u
= −R(u)Tv+1−u(A|B).
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We apply noncommutative ratio translation to fundamental relations shown in section
2, and try to show the similar property to the waving property. To see this, we make some
preparations.

Lemma 3.6. Let A and B be strictly positive operators. Then,

(A ♮u B) ♮w (A ♮u+v B) = A ♮u+vw B

holds for u, v, w ∈ R.

Proof. By Lemma 4.2 in [11], T ∗(X ♮u Y )T = (T ∗XT ) ♮u (T ∗Y T ) holds for any invertible
operator T , for any positive invertible operators X, Y and for u ∈ R. Therefore, we have

(A ♮u B) ♮w (A ♮u+v B) =
{
A

1
2 (A− 1

2BA− 1
2 )uA

1
2

}
♮w

{
A

1
2 (A− 1

2BA− 1
2 )u+vA

1
2

}
= A

1
2

{
(A− 1

2BA− 1
2 )u ♮w (A− 1

2BA− 1
2 )u+v

}
A

1
2

= A
1
2 (A− 1

2BA− 1
2 )u+vwA

1
2

= A ♮u+vw B.

In [12], Kamei showed some kind of the additivity for entropy

S(A|A ♯t B) = tS(A|B)

for t ∈ [0, 1]. The following is an extension of this result.

Proposition 3.7. Let A and B be strictly positive operators. Then,

Su(A ♮v B|A ♮v+w B) = wSv+uw(A|B)

holds for u, v, w ∈ R.

Proof. Since lim
t→0

xu+t−xu

t = xu lim
t→0

xt−1
t = xu log x holds for x > 0, we have

lim
t→0

X ♮u+t Y −X ♮u Y

t
= Su(X|Y )

for strictly positive operators X, Y and w ∈ R. Therefore, by Lemma 3.6, we get

Su(A ♮v B|A ♮v+w B) = lim
t→0

(A ♮v B) ♮u+t (A ♮v+w B)− (A ♮v B) ♮u (A ♮v+w B)

t

= w lim
wt→0

A ♮v+uw+wt B −A ♮v+uw B

wt
= wSv+uw(A|B).

We give the special cases of Proposition 3.7 which are useful in our calculations.



On relations between operator valued α-divergence and relative operator entropies 9

Corollary 3.8. Let A and B be strictly positive operators. Then,

S(A ♮v B|A ♮v+w B) = wSv(A|B),(1)

Su(A ♮v B|A ♮v+1 B) = Su+v(A|B)(2)

hold for v, w ∈ R.

For the following two operator values which appear in (⋆),

A ♮u B −A ♮n B

u− n
=

(A ♮n B) ♯u−n (A ♮n+1 B)−A ♮n B

u− n
= Tu−n(A ♮n B|A ♮n+1 B),

A ♮u+1 B −A ♮u B

n+ 1− u
= − (A ♮n B) ♯u−n (A ♮n+1 B)−A ♮n+1 B

n+ 1− u

= −
(A ♮n+1 B) ♯1−(u−n) (A ♮n B)−A ♮n+1 B

1− (u− n)

= −T1−(u−n)(A ♮n+1 B|A ♮n B)

hold.
From these facts and (2) in Corollary 3.8, the relation (⋆) is equivalent to the following:

S(A ♮nB|A ♮n+1 B) ≤ Tu−n(A ♮nB|A ♮n+1 B) ≤ Su−n(A ♮n B|A ♮n+1 B)

≤ −T1−(u−n)(A ♮n B|A ♮n+1 B) ≤ S1(A ♮n B|A ♮n+1 B).

We show the similar phenomena for each operator value Su(A|B), Tu(A|B), and Dα(A|B).

Theorem 3.9. Let A and B be strictly positive operators. Then,

R(v)Su(A|B) = Su(A ♮v B|A ♮v+1 B),(1)

R(v)Tu(A|B) = Tu(A ♮v B|A ♮v+1 B)(2)

hold for u, v ∈ R.

In particular, by putting u = 0 in Theorem 3.9, we have

R(v)S(A|B) = S(A ♮v B|A ♮v+1 B).

Proof. (1) By Corollary 3.4 and (2) in Corollary 3.8, we have

R(v)Su(A|B) = Su+v(A|B) = Su(A ♮v B|A ♮v+1 B).

(2) By Proposition 3.3 and Lemma 3.6, we get

R(v)Tu(A|B) = (A ♮v B)A−1Tu(A|B)

=
(A ♮v B)A−1(A ♮u B)− (A ♮v B)A−1A

u

=
A ♮u+v B −A ♮v B

u

=
(A ♮v B) ♮u (A ♮v+1 B)−A ♮v B

u
= Tu(A ♮v B|A ♮v+1 B).
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Theorem 3.10. Let A and B be strictly positive operators. Then,

R(v)Dα(A|B) = Dα(A ♮v B|A ♮v+1 B)

holds for α ∈ (0, 1) and v ∈ R.

Proof. By Proposition 3.3 and Lemma 3.6, we have

R(v)Dα(A|B) = (A ♮v B)A−1Dα(A|B)

= (A ♮v B)A−1A ∇α B −A ♯α B

α(1− α)

=
(1− α)(A ♮v B)A−1A+ α(A ♮v B)A−1B − (A ♮v B)A−1(A ♯α B)

α(1− α)

=
(1− α)(A ♮v B) + α(A ♮v+1 B)−A ♮v+α B

α(1− α)

=
(A ♮v B) ∇α (A ♮v+1 B)− (A ♮v B) ♯α (A ♮v+1 B)

α(1− α)

= Dα(A ♮v B|A ♮v+1 B).

Theorem 3.9 can be generalized as follows.

Theorem 3.11. Let A and B be strictly positive operators. Then,

wR(v)Suw(A|B) = Su(A ♮v B|A ♮v+w B),(1)

wR(v)Tuw(A|B) = Tu(A ♮v B|A ♮v+w B)(2)

hold for u, v, w ∈ R.

Proof. (1) By Corollary 3.4 and Proposition 3.7, we have

wR(v)Suw(A|B) = wSv+uw(A|B) = Su(A ♮v B|A ♮v+w B).

(2) By Proposition 3.3 and Lemma 3.6, we get

wR(v)Tuw(A|B) = w(A ♮v B)A−1Tuw(A|B)

= w
(A ♮v B)A−1(A ♮uw B)− (A ♮v B)A−1A

uw

=
A ♮v+uw B −A ♮v B

u

=
(A ♮v B) ♮u (A ♮v+w B)−A ♮v B

u
= Tu(A ♮v B|A ♮v+w B).

By using Theorem 3.10, we get the following properties by applying noncommutative ra-
tio translation to fundamental relations between operator valued α-divergences and relative
operator entropies shown in section 2.
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Theorem 3.12. Let A and B be strictly positive operators. Then,

R(v)D0(A|B) = D0(A ♮v B|A ♮v+1 B),(1-a)

R(v)D1(A|B) = D1(A ♮v B|A ♮v+1 B),(1-b)

R(v)Dα(A|B) = −R(v){Tα(A|B) + T1−α(B|A)},(2)

0 ≤ R(v)Dα(A|B) ≤ 1

1− α
R(v)D0(A|B),(3-a)

0 ≤ R(v)Dα(A|B) ≤ 1

α
R(v)D1(A|B),(3-b)

R(v)Dα(A|B) ≤ R(v){S1(A|B)− S(A|B)}(4)

hold for α ∈ (0, 1) and v ∈ R.

Proof. These can be obtained by applying Theorem 3.9 and Theorem 3.10 to Proposition
2.2, Theorem 2.5, Theorem 2.4, and Corollary 2.6.

Remark 1. Although noncommutative ratio translation has been defined as multiplying
each operator value by noncommutative ratio R(v) from the left side, this is equivalent to
multiplying the operator value by R(v)∗ from the right side. For instance, in Theorem 3.9,

R(v)Su(A|B) = Su(A|B)R(v)∗,(1)

R(v)Tu(A|B) = Tu(A|B)R(v)∗(2)

hold for u, v ∈ R.

Remark 2. In [9], we introduced Dr(A,B) ≡ A ♮r+1 B − A ♮r B − Sr(A|B) for r ∈ R as a
generalization of DFK(A|B) = D0(A|B). We remark that Dv(A,B) = R(v)D0(A|B) holds
for v ∈ R by (2) in Corollary 3.8 and (1-a) in Theorem 3.12.

4 α-divergence for operator distributions. On operator entropies for operator
distributions A = (A1, · · · , An) and B = (B1, · · · , Bn), in [9], we obtained that the relations

S(A|B) ≤ Iα(A|B) ≤ Tα(A|B) ≤ 0,

0 ≤ −T1−α(B|A) ≤ −I1−α(B|A) ≤ S1(A|B)

and

Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A)

hold for 0 < α < 1, where Iα(A|B) ≡
1

α
log

n∑
i=1

Ai ♯α Bi is Rényi relative operator entropy

for operator distributions. By these inequalities and Corollary 3.5, we have

S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) = Tα
1−α(A|B) ≤ S1(A|B)

for 0 < α < 1, where T v
α(A|B) ≡

n∑
i=1

Ri(v)Tα(Ai|Bi) for v ∈ R and Ri(v) = R(v;Ai, Bi),

as used in section 3. In this section, we investigate fundamental properties and relations
between α-divergences and relative operator entropies for operator distributions.

Here, we define α-divergence for operator distributions.
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Definition 4.1. For operator distributions A = (A1, A2, · · · , An) and B = (B1, B2, · · · ,
Bn), and for α ∈ (0, 1), α-divergence for operator distributions is defined as follows:

Dα(A|B) ≡
n∑

i=1

Dα(Ai|Bi) =

n∑
i=1

Ai ∇α Bi −Ai ♯α Bi

α(1− α)
.

As in section 2, we show fundamental properties of α-divergences for operator distributions.

Proposition 4.2. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. Then,

D0(A|B) ≡ lim
α→0

Dα(A|B) = −S(A|B),(1)

D1(A|B) ≡ lim
α→1

Dα(A|B) = S1(A|B)(2)

hold.

Proof. We only show the proof of equality (1) since the equality (2) can be shown similarly.
By Proposition 2.2, we have

D0(A|B) =
n∑

i=1

D0(Ai|Bi) =
n∑

i=1

{Bi −Ai − S(Ai|Bi)} = −S(A|B).

By Proposition 2.3, Theorem 2.4, Theorem 2.5 and Corollary 2.6, we get the following
Proposition 4.3, Theorem 4.4, Theorem 4.5 and Corollary 4.6, respectively.

Proposition 4.3. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. Then,

Dα(A|B) = − 1

1− α
Tα(A|B) = − 1

α
T1−α(B|A), for α ∈ (0, 1),(1)

D1−α(B|A) = Dα(A|B), for α ∈ [0, 1](2)

hold.

Theorem 4.4. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distribu-
tions. Then,

0 ≤ Dα(A|B) ≤
1

1− α
D0(A|B),(1)

0 ≤ Dα(A|B) ≤
1

α
D1(A|B)(2)

hold for α ∈ (0, 1).

Theorem 4.5. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distribu-
tions. Then,

Dα(A|B) = −{Tα(A|B) + T1−α(B|A)}

holds for α ∈ (0, 1).
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Corollary 4.6. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distri-
butions. Then,

Dα(A|B) ≤ S1(A|B)− S(A|B)

holds for α ∈ (0, 1).

From above discussion, we remark that the relations

αTα(A|B) = (1− α)T1−α(B|A)

and
Tα(A|B) ≥ −(1− α){S1(A|B)− S(A|B)}

hold for α ∈ (0, 1).
Finally, we apply noncommutative ratio translation to α-divergence for operator distri-

butions by the following notation:

Definition 4.7. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. For v ∈ R and α ∈ (0, 1), we define Dv

α(A|B) as follows:

Dv
α(A|B) ≡

n∑
i=1

Ri(v)Dα(Ai|Bi).

Then, we get the following from Theorem 3.12.

Corollary 4.8. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distri-
butions. Then,

Dv
0(A|B) =

n∑
i=1

Ri(v)D0(Ai|Bi),(1-a)

Dv
1(A|B) =

n∑
i=1

Ri(v)D1(Ai|Bi),(1-b)

Dv
α(A|B) = −

n∑
i=1

Ri(v){Tα(Ai|Bi) + T1−α(Bi|Ai)},(2)

0 ≤ Dv
α(A|B) ≤

1

1− α
Dv

0(A|B),(3-a)

0 ≤ Dv
α(A|B) ≤

1

α
Dv

1(A|B),(3-b)

Dv
α(A|B) ≤

n∑
i=1

Ri(v){S1(Ai|Bi)− S(Ai|Bi)}(4)

hold for α ∈ (0, 1) and v ∈ R.
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