GEOMETRICAL EXPANSION OF AN OPERATOR EQUATION

Eizaburo Kamei ${ }^{(1)}$

Received October 22, 2015 ; revised November 25, 2015

Abstract

Lawson-Lim [9] had given a generalization of Karcher equation and the equations determining power means. We formulate these operator equations by simpler forms, which are geometrically meaningful.

Let $\mathbb{A}\left(A_{1}, \cdots, A_{n}\right)$ be positive operators and $\omega=\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ be a weight. Then the operator equation $$
0=\sum_{i=1}^{n} \omega_{i} T_{r}\left(X \mid A_{i}\right)
$$ has a unique positive solution for each $r \in[-1,1]$, where $T_{r}(X \mid A)=\frac{X \natural_{r} A-X}{r}$ is the Tsallis relative operator entropy and $A \natural_{r} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} A^{\frac{1}{2}}$ for $r \in \mathbf{R}$. We show the exact form to the unique solution of the above operator equation in the case $n=2$.

1 Introduction. Let \mathbb{P}^{+}be the set of all positive invertible operators acting on a Hilbert space. Lawson-Lim [9] showed the Karcher equation for $A_{1}, \cdots, A_{n} X \in \mathbb{P}^{+}$and a weight $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$
(KE)

$$
0=\sum_{i=1}^{n} \omega_{i} \log \left(X^{-\frac{1}{2}} A_{i} X^{-\frac{1}{2}}\right)
$$

has a unique positive invertible solution $X=G_{K}\left(\omega_{i} ; A_{i}\right)$ which is called (weighted nvariable) Karcher mean. In [2], we introduced the relative operator entropy; for $A, B \in \mathbb{P}^{+}$,

$$
S(A \mid B)=A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=\lim _{t \rightarrow 0} \frac{A \sharp_{t} B-A}{t},
$$

that is, $\left.\frac{d}{d t} A \sharp_{t} B\right|_{t=0}=S(A \mid B)$, where $A \sharp_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}, t \in[0,1]$. From this viewpoint, the equation (KE) is represented by multiplying $X^{\frac{1}{2}}$ on both sides as follows: For $A_{1}, \cdots, A_{n}, X \in \mathbb{P}^{+}$

$$
\begin{equation*}
0=\sum_{i=1}^{n} \omega_{i} S\left(X \mid A_{i}\right) \tag{*}
\end{equation*}
$$

The path $A \sharp_{t} B(t \in[0,1])$ is geodesic in \mathbb{P}^{+}under the Thompson metric, i.e., $d(A, B)=\left\|\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right\|$, and $S(A \mid B)=\left.\frac{d}{d t} A \sharp_{t} B\right|_{t=0}$. Therefore geometrical meaning of $(*)$ is clarified, see Figure 1.

[^0]

Figure 1

In the case $n=2$, the equation $(*)$ is

$$
(1-\alpha) S(X \mid A)+\alpha S(X \mid B)=0, \quad \alpha \in[0,1]
$$

for $A, B, X \in \mathbb{P}^{+}$. It has the unique solution $X=A \not \sharp_{\alpha} B$, this is given in section 3 as Corollary 3 (cf. [6],[9]). Figure 2 shows if a path combining A and B is not geodesic, then X can't be a solution of the operator equation (*). The Figure 3 gives an image that any X on the geodesic path combining A and B can be the solution of the operator equation (*), where the notations $A \sharp_{t} B \supset X \sharp_{y} B$ and $X \sharp_{x} A \subset A \sharp_{t} B$ in Figure 3 mean that the path $A \sharp_{t} B$ contains the paths $X \sharp_{y} B$ and $X \sharp_{x} A$ as subdivisions of itself.
In the final section, we show that the above equation can be more generalized as

$$
\alpha S(X \mid A)+\beta S(X \mid B)=0, \quad \alpha, \beta \in \mathbf{R}
$$

and this has the unique solution $X=A{\underset{\frac{\beta}{\alpha+\beta}}{ }}^{\text {a }}$ also under some reasonable conditions.

Figure 2

Figure 3

In [9], Lawson-Lim defined the ω-weighted power mean $P_{t}(\omega: \mathbb{A})$ of order t of $\mathbb{A}=$ $\left(A_{1}, \cdots, A_{n}\right)$ as the solution of
(LLE)

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X \sharp_{t} A_{i}\right), \text { for } t \in(0,1] \text {, }
$$

for the weighted geometric operator mean [8] and $\omega=\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ is a weight (cf.[10]).
We show this equation has a geometrical structure.

As an approximation to the relative operator entropy, the Tsallis relative operator entropy is defined in [11] by

$$
T_{r}(X \mid A)=\frac{X দ_{r} A-X}{r}, \text { for a fixed } r \neq 0
$$

where $X \natural_{r} A=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r} X^{\frac{1}{2}}$, which is not a Kubo-Ando mean but still the geodesic in the CPR-geometry [1]. We note that $S(X \mid A)=\lim _{r \rightarrow 0} T_{r}(X \mid A)$ (cf.[3], [4],[5]).

In section 3, we show in the following: For $\alpha \in[0,1]$ and $r \in \mathbf{R}$, the equation

$$
X=(1-\alpha) X \natural_{r} A+\alpha X \bigsqcup_{r} B
$$

has the unique solution $X=A \not \sharp_{\alpha, r} B=A^{\frac{1}{2}}\left\{(1-\alpha) I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} A^{\frac{1}{2}}$. We propose the following operator equation:

$$
\begin{equation*}
0=\sum_{i=1}^{n} \omega_{i} T_{r}\left(X \mid A_{i}\right), \quad r \in \mathbf{R} \tag{**}
\end{equation*}
$$

especially if $r=0,(* *)$ is understood as $(*)$. For the 2 variable equations of $(* *)$ and $(*)$, we can give the solutions.

2 Expanded LL equation. For $t \in(0,1]$, the operator equation (LLE) is understood as
$(* * *)$

$$
0=\sum_{i=1}^{n} \omega_{i} T_{t}\left(X \mid A_{i}\right)
$$

whose unique solution is just $P_{t}(\omega ; \mathbb{A})$, the ω-weighted power mean of order t of \mathbb{A}.
On the other hand, for $t \in[-1,0)$, we show the power mean is also the solution of $(* * *)$. It has a parallelism with the Karcher equation $(*)$ by the use of the relative operator entropy.

For $t \in[-1,0)$, Lawson-Lim $[9]$ give $P_{t}(\omega ; \mathbb{A})$ as the unique positive definite solution of the operator equation
(LLE*)

$$
X=\left(\sum_{i=1}^{n} \omega_{i}\left(X \not \sharp_{-t} A_{i}\right)^{-1}\right)^{-1} \quad \text { or } \quad X^{-1}=\sum_{i=1}^{n} \omega_{i}\left(X^{-1} \sharp_{-t} A_{i}^{-1}\right) \text {, }
$$

and $P_{t}(\omega ; \mathbb{A})=P_{-t}\left(\omega ; \mathbb{A}^{-1}\right)^{-1}$ where $\mathbb{A}^{-1}=\left(A_{1}^{-1}, \cdots, A_{n}^{-1}\right)$. It is rewritten with no use of $\sharp-t$ as follows: $(\mathbf{L L E} *)$ is equivalent to

$$
I=\sum_{i=1}^{n} \omega_{i}\left(X^{\frac{1}{2}} A_{i}^{-1} X^{\frac{1}{2}}\right)^{-t}=\sum_{i=1}^{n} \omega_{i}\left(X^{-\frac{1}{2}} A_{i} X^{-\frac{1}{2}}\right)^{t}
$$

Furthermore it is given with the use of the Tsallis relative operator entropy; for n positive operators $\mathbb{A}=\left(A_{1}, \cdots, A_{n}\right)$ and a weight $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$, we can propose the operator equation $0=\sum_{i=1}^{n} \omega_{i} T_{r}\left(X \mid A_{i}\right)$, for $r \in \mathbb{R}$. Lawson-Lim [9] teaches us this equation has a unique positive solution if $r \in[-1,1]$.
Theorem 1. Let $\mathbb{A}=\left(A_{1}, \cdots, A_{n}\right)$ be positive operators and $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ be a weight. Then for each $r \in[-1,1]$, the operator equation

$$
\begin{equation*}
0=\sum_{i=1}^{n} \omega_{i} T_{r}\left(X \mid A_{i}\right) \tag{**}
\end{equation*}
$$

has a unique positive solution.

3 On 2 variable expanded Karcher equation. Let A and B be positive invertible operators on a Hilbert space. The operator power mean we use in this note is the following:

$$
A \sharp_{\alpha, r} B=A^{\frac{1}{2}}\left\{(1-\alpha) I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} A^{\frac{1}{2}}=A \bigsqcup_{\frac{1}{r}}\left\{A \nabla_{\alpha}\left(A \bigsqcup_{r} B\right)\right\},
$$

where $0 \leq \alpha \leq 1$ and $r \in \mathbf{R}$. We regard this as a path combining A and B for each $r \in \mathbf{R}$, and $A \not \sharp_{\alpha, 1} B=A \nabla_{\alpha} B=(1-\alpha) A+\alpha B$, weighted arithmetic operator mean, $A \not \sharp_{\alpha, 0} B=A \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$, weighted geometric operator mean and $A \sharp_{\alpha,-1} B=A \Delta_{\alpha} B=2\left(A^{-1}+B^{-1}\right)^{-1}$, weighted harmonic operator mean.
Related to the representing function $1 \sharp_{\alpha, r} x$, we consider for a fixed $x>0$ and $r \in \mathbb{R}$, the function $\psi(\alpha)=\left(1-\alpha+\alpha x^{r}\right)^{\frac{1}{r}}, \alpha \in[0,1]$, and

$$
\frac{d}{d \alpha} \psi(\alpha)=\left(1-\alpha+\alpha x^{r}\right)^{\frac{1}{r}-1} \frac{x^{r}-1}{r}=\left(1-\alpha+\alpha x^{r}\right)^{\frac{1}{r}}\left(1-\alpha+\alpha x^{r}\right)^{-1} \frac{x^{r}-1}{r}
$$

So we gave in [4] the relative operator entropy along this path as follows:

$$
\begin{equation*}
S_{\alpha, r}(A \mid B)=\left(A \not \sharp_{\alpha, r} B\right)\left(A \nabla_{\alpha}\left(A \natural_{r} B\right)\right)^{-1} T_{r}(A \mid B), \tag{৫}
\end{equation*}
$$

especially $S_{0, r}(A \mid B)=T_{r}(A \mid B)$.
$T_{r}(A \mid B)$ has a property that for $t \in[0,1], t T_{r}(A \mid B)=T_{r}\left(A \mid A \not \sharp_{t, r} B\right)([4],[5],[7])$.

Theorem 2. For $A, B, X \in \mathbb{P}^{+}$and $\alpha \in[0,1], r \in \mathbf{R}$, the operator equation

$$
(1-\alpha) T_{r}(X \mid A)+\alpha T_{r}(X \mid B)=0
$$

has a unique solution $X=A \sharp_{\alpha, r} B$.
We give the follwing Figure 4 as an image of this theorem.

Figure 4

Proof of Theorem 2. The following equivalent relations lead us to the conclusion.

$$
\begin{aligned}
& (1-\alpha) T_{r}(X \mid A)+\alpha T_{r}(X \mid B)=0 \\
& \Longleftrightarrow \quad(1-\alpha)\left(X \natural_{r} A-X\right)+\alpha\left(X \mathfrak{q}_{r} B-X\right)=0 \\
& \Longleftrightarrow \quad(1-\alpha)\left(X \natural_{r} A\right)+\alpha\left(X \natural_{r} B\right)=X \\
& \Longleftrightarrow \quad(1-\alpha)\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r}+\alpha\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{r}=I \\
& \Longleftrightarrow \quad \alpha\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{r}=I-(1-\alpha)\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r} \\
& \Longleftrightarrow \quad B=\alpha^{-\frac{1}{r}} X^{\frac{1}{2}}\left(I-(1-\alpha)\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r}\right)^{\frac{1}{r}} X^{\frac{1}{2}} \\
& \Longleftrightarrow \quad A^{-\frac{1}{2}} B A^{-\frac{1}{2}}=\alpha^{-\frac{1}{r}} A^{-\frac{1}{2}} X^{\frac{1}{2}}\left(I-(1-\alpha)\left(X^{\frac{1}{2}} A^{-1} X^{\frac{1}{2}}\right)^{-r}\right)^{\frac{1}{r}} X^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& \stackrel{(*)}{=} \alpha^{-\frac{1}{r}}\left(I-(1-\alpha)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{-r}\right)^{\frac{1}{r}} A^{-\frac{1}{2}} X A^{-\frac{1}{2}} \\
& \Longleftrightarrow \quad\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=\alpha^{-1}\left(I-(1-\alpha)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{-r}\right)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r} \\
& \Longleftrightarrow \quad \alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r}-(1-\alpha) I \\
& \Longleftrightarrow \quad(1-\alpha) I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r} \\
& \Longleftrightarrow \quad A^{-\frac{1}{2}} X A^{-\frac{1}{2}}=\left\{(1-\alpha) I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} \\
& \Longleftrightarrow \quad X=A^{\frac{1}{2}}\left\{(1-\alpha) I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} A^{\frac{1}{2}}=A \not \sharp_{\alpha, r} B .
\end{aligned}
$$

The equation $\stackrel{(*)}{=}$ holds because $Y f\left(Y^{*} Y\right)=f\left(Y Y^{*}\right) Y$ for a continuous function f on an interval containing spectra of $Y^{*} Y$ and $Y Y^{*}$.

Since $T_{0}(A \mid B)=\lim _{r \rightarrow 0} T_{r}(A \mid B)=S(A \mid B)$ and $A \not \sharp_{\alpha, 0} B=\lim _{r \rightarrow 0} A \not \sharp_{\alpha, r} B=A \not \sharp_{\alpha} B$, we have the following if $r=0$ (cf.[6],[9]):

Corollary 3. For $A, B, X \in \mathbb{P}^{+}$and $\alpha \in[0,1]$, the operator equation

$$
(1-\alpha) S(X \mid A)+\alpha S(X \mid B)=0
$$

has a unique solution $X=A \not \sharp_{\alpha} B$.

4 Generalizations of Theorem 2 and Corollary 3. In this section, we point out that Theorem 2 has more general form.

Theorem 4. Let $A, B, X \in \mathbb{P}^{+}$and $\alpha, \beta \in \mathbf{R}$ such that $\alpha+\beta \neq 0$ and $\alpha \beta \neq 0$. If the operator equation

$$
\beta T_{r}(X \mid A)+\alpha T_{r}(X \mid B)=0
$$

holds, then $\frac{\beta}{\alpha+\beta} I+\frac{\alpha}{\alpha+\beta}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} \geq 0$ and this equation has the unique solution

$$
X=A^{\frac{1}{2}}\left\{\frac{\beta}{\alpha+\beta} I+\frac{\alpha}{\alpha+\beta}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} A^{\frac{1}{2}}
$$

Proof. The following equation $\stackrel{(*)}{=}$ is led by the same reason in the proof of Theorem 2.

$$
\begin{array}{ll}
& \beta T_{r}(X \mid A)+\alpha T_{r}(X \mid B)=0 \\
\Longleftrightarrow & \beta\left(X \natural_{r} A-X\right)+\alpha\left(X \natural_{r} B-X\right)=0 \\
\Longleftrightarrow & \beta\left(X \mathfrak{\natural}_{r} A\right)+\alpha\left(X দ_{r} B\right)=(\alpha+\beta) X \\
\Longleftrightarrow & \beta\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r}+\alpha\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{r}=(\alpha+\beta) I \\
\Longleftrightarrow & \alpha\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{r}=(\alpha+\beta) I-\beta\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r} \\
\Longleftrightarrow & \left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{r}=\frac{\alpha+\beta}{\alpha} I-\frac{\beta}{\alpha}\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r} \geq 0 \\
\Longleftrightarrow & B=X^{\frac{1}{2}}\left(\frac{\alpha+\beta}{\alpha} I-\frac{\beta}{\alpha}\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{r}\right)^{\frac{1}{r}} X^{\frac{1}{2}} \\
\Longleftrightarrow & A^{-\frac{1}{2}} B A^{-\frac{1}{2}}=A^{-\frac{1}{2}} X^{\frac{1}{2}}\left(\frac{\alpha+\beta}{\alpha} I-\frac{\beta}{\alpha}\left(X^{\frac{1}{2}} A^{-1} X^{\frac{1}{2}}\right)^{-r}\right)^{\frac{1}{r}} X^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& \quad \stackrel{(*)}{=}\left(\frac{\alpha+\beta}{\alpha} I-\frac{\beta}{\alpha}\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{-r}\right)^{\frac{1}{r}} A^{-\frac{1}{2}} X A^{-\frac{1}{2}} \\
\Longleftrightarrow & \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=\left(\frac{\alpha+\beta}{\alpha} I-\frac{\beta}{\alpha}\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{-r}\right)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r} \\
\Longleftrightarrow & \alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=(\alpha+\beta)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r}-\beta I, \\
\Longleftrightarrow & \beta I+\alpha\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=(\alpha+\beta)\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r}, \\
\Longleftrightarrow & \beta \\
\Longleftrightarrow & \alpha+\frac{\alpha}{\alpha+\beta}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}=\left(A^{-\frac{1}{2}} X A^{-\frac{1}{2}}\right)^{r} \geq 0 \\
\Longleftrightarrow & A^{-\frac{1}{2}} X A^{-\frac{1}{2}}=\left\{\frac{\beta}{\alpha+\beta} I+\frac{\alpha}{\alpha+\beta}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} \\
\Longleftrightarrow & X=A^{\frac{1}{2}}\left\{\frac{\beta}{\alpha+\beta} I+\frac{\alpha}{\alpha+\beta}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r}\right\}^{\frac{1}{r}} A^{\frac{1}{2}}
\end{array}
$$

The next theorem is a modification of Corollary 3, which is given as the case $r=0$ in Theorem 4. But we here pose an independent proof of Theorem 4.
Theorem 5. For $\alpha, \beta \in \mathbf{R}$ such that $\alpha+\beta \neq 0$ and $\alpha \beta \neq 0$, the operator equation

$$
\beta S(X \mid A)+\alpha S(X \mid B)=0
$$

has the unique solution $X=B \square_{\frac{\beta}{\alpha+\beta}} A=A \square_{\frac{\alpha}{\alpha+\beta}} B$.
We recall $r S(A \mid B)=S\left(A \mid A \natural_{r} B\right)$ for $r \in \mathbf{R}$, (cf.[4],[5],[7]), and prepare the next lemma.
Lemma 6. (cf.[9]) Let $A, B, X \in \mathbb{P}^{+}$, then the following hold:

$$
S(X \mid A)+S(X \mid B)=0 \quad \text { if and only if } \quad X=A \sharp B
$$

Proof of Theorem 5. Since

$$
\beta S(X \mid A)+\alpha S(X \mid B)=S\left(X \mid X \natural_{\beta} A\right)+S\left(X \mid X দ_{\alpha} B\right)=0, \quad \alpha, \beta \in \mathbf{R},
$$

we have $X=\left(X দ_{\beta} A\right) \sharp\left(X দ_{\alpha} B\right)$ by the above lemma, which is equivalent to

$$
I=\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{\beta} \sharp\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{\alpha} .
$$

Since $C \sharp D=I \Longleftrightarrow C=D^{-1}$ for $C, D \in \mathbb{P}^{+}$, we have

$$
\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{\alpha}=\left(X^{-\frac{1}{2}} A X^{-\frac{1}{2}}\right)^{-\beta}
$$

that is,

$$
A=X^{\frac{1}{2}}\left(X^{-\frac{1}{2}} B X^{-\frac{1}{2}}\right)^{-\frac{\alpha}{\beta}} X^{\frac{1}{2}}=X \natural_{-\frac{\alpha}{\beta}} B=B \bigsqcup_{\frac{\alpha+\beta}{\beta}} X .
$$

Hence $B^{-\frac{1}{2}} A B^{-\frac{1}{2}}=\left(B^{-\frac{1}{2}} X B^{-\frac{1}{2}}\right)^{\frac{\alpha+\beta}{\beta}}$, we have $\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{\frac{\beta}{\alpha+\beta}}=B^{-\frac{1}{2}} X B^{-\frac{1}{2}}$, and

$$
X=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{\frac{\beta}{\alpha+\beta}} B^{\frac{1}{2}}=B \square_{\frac{\beta}{\alpha+\beta}} A=A \square_{\frac{\alpha}{\alpha+\beta}} B .
$$

So we have

$$
\beta S\left(\left.A \bigsqcup_{\frac{\alpha}{\alpha+\beta}} B \right\rvert\, A\right)+\alpha S\left(\left.B \bigsqcup_{\frac{\beta}{\alpha+\beta}} A \right\rvert\, B\right)=0 .
$$

References

[1] J.I.Fujii, On geometric structure of positive definite matrices (Kyoto, 2013), Surikaisekikenkyusho Kokyuroku 1893, 122-125.
[2] J.I.Fujii and E.Kamei, Relative operator entropy in noncommutative information theory, Math. Japon., 34(1989), 341-348.
[3] H.Isa, M.ito, E.Kamei, H.Tohyama and M.Watanabe, Relative operator entropy, operator divergence and Shannon inequality, Sci. Math. Jpn., 75(2012), 289-298.
[4] H.Isa, M.ito, E.Kamei, H.Tohyama and M.Watanabe, Extensions of Tsallis relative operator entropy and operator valued distance, Sci. Math. Jpn., 76(2013), 427-435.
[5] H.Isa, M.ito, E.Kamei, H.Tohyama and M.Watanabe, Expanded relativee operator entropies and operator valued α-divergnce, J. Math. Sys. Sci., 5(2015), 215-224.
[6] H.Isa, M.ito, E.Kamei, H.Tohyama and M.Watanabe, Some operator divergences based on Petz-Bregman divergence, preprint.
[7] E.Kamei, Paths of operators parametrized by operator means, Math. Japon., 39(1994), 395400.
[8] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 248(1980), 205-224.
[9] J.Lawson and Y.Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc., B1(2014), 1-22.
[10] Y.Seo, Operator power means due to Lawson-Lim-Pálfia for $1<t<2$, Linear Algebra Appl., 459(2014), 342-356.
[11] K.Yanagi, K.Kuriyama, S.Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Algebra Appl., 394(2005), 109-118.

Communicated by Jun Ichi Fujii
${ }^{(1)} 1-1-3$, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, Japan, 639-0202.
ekamei1947@yahoo.co.jp

[^0]: 2010 Mathematics Subject Classification. 47A63 and 47A64.
 Key words and phrases. relative operator entropy, Tsallis relative operator entropy, Karcher equation, power mean, Karcher mean.

