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Abstract. In this paper, we study the structure of projection methods for
variational inequality problems and then prove weak convergence theorems

which generalize Takahashi and Toyoda [W. Takahashi and M. Toyoda, Weak
convergence theorems for nonepxansive mappings and monotone mappings,
J. Optim. Theory Appl. 118 (2003), 417–428] and Nadezhkina and Taka-
hashi [N. Nadezhkina and W. Takahashi, Weak convergence theorem by an

extragradient method for nonexpansive mappings and monotone mappings, J.
Optim. Theory Appl. 128 (2006), 191-201]. Our proofs are different from
them. Furthermore, using these weak convergence theorems, we obtain some
new results.

1. Introduction

Throughout this paper, we denote by R the set of real numbers and by N the
set of positive integers. Let H be a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖. Let C be a non-empty subset of H. Let T be a mapping of
C into H. We denote by F (T ) the set of fixed points of T and by A(T ) the set of
attractive points [23] of T , i.e.,

F (T ) = {u ∈ C : Tu = u},
A(T ) = {u ∈ H : ‖Tx − u‖ ≤ ‖x − u‖, ∀x ∈ C}.

A mapping T : C → H is said to be k-Lipschitz continuous if there exists k > 0
such that ‖Tx − Ty‖ ≤ k‖x − y‖ for all x, y ∈ C. If a mapping T : C → H is
1-Lipschitz continuous, it is said to be nonexpansive, i.e., ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. A mapping T : C → H is called quasi-nonexpansive if F (T ) 6= ø
and ‖Tx − v‖ ≤ ‖x − v‖ for all x ∈ C and v ∈ F (T ). We note that the condition
F (T ) ⊂ A(T ) always holds if T is quasi-nonexpansive. We denote by I the identity
mapping on H. A mapping A : C → H is said to be monotone if 〈x−y,Ax−Ay〉 ≥ 0
for all x, y ∈ C. Let α > 0. A mapping A : C → H is said to be α-inverse strongly
monotone if 〈x−y,Ax−Ay〉 ≥ α‖Ax−Ay‖2 for all x, y ∈ C. It is obvious that if A
is α-inverse strongly monotone, then A is monotone and 1/α-Lipschitz continuous.
In the case a ∈ (0, 2α], it is known that I − aA is nonexpansive. In fact, we have
that for any x, y ∈ C

‖(I − aA)x − (I − aA)y‖2 ≤ ‖x − y‖2 − a(2α − a)‖Ax − Ay‖2;
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) 6=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) 6= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) 6= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn ⇀ u and u 6= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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We note that a nonexpansive mapping and a mapping satisfying Condition (C)
satisfy (2.5) as s = 1 and s = 3, respectively. We also note that (2.5) is stronger
than (2.4). In fact, if (2.5) holds and u ∈ F (T ), then we have that ‖u−Ty‖ ≤ ‖u−y‖
for all y ∈ C. A mapping T is quasi-nonexpansive if T satisfies F (T ) 6= ø and (2.4).
We finally note that a generalized hybrid mapping satisfies (2.4). Let C be a non-
empty subset of H and let S be a mapping of C into H. I −S is called demiclosed
at 0 if a sequence {xn} in C converges weakly to u ∈ C and limn ‖Sxn − xn‖ = 0,
then u ∈ F (S). The following lemma was proved by Takahashi, Wong and Yao [25].

Lemma 2.1 ([25].). Let C be a non-empty subset of a Hilbert space H and let S be
a generalized hybrid mapping of C into itself. Let {xn} be a sequence in C which
converges weakly to u ∈ H and satisfies limn ‖Sxn − xn‖ = 0. Then u ∈ A(S). In
addition, if C is closed and convex, then u ∈ F (S).

The following lemma was essentially proved in [19].

Lemma 2.2. Let C be a closed and convex subset of a Hilbert space H and let S be
a mapping of C into itself which satisfies (2.5). Let {xn} be a sequence in C which
converges weakly to u ∈ C and satisfies limn ‖Sxn − xn‖ = 0. Then u ∈ F (S).

Proof. Assume u 6= Su. Since {xn} converges weakly to u, from the Opial property
we have lim infn ‖xn − u‖ < lim infn ‖xn − Su‖. We also have that there exists
s ∈ [0,∞) such that

‖xn − Su‖ ≤ s‖xn − Sxn‖ + ‖xn − u‖, ∀n ∈ N.

By limn ‖Sxn − xn‖ = 0, this implies that lim infn ‖xn − Su‖ ≤ lim infn ‖xn − u‖.
We have a contradiction. This completes the proof. ¤

Let C be a non-empty subset of a Hilbert space H. For a mapping A of C into
H, we define the set vi(C,A) as follows:

vi(C,A) = {v ∈ C : 〈z − v,Az〉 ≥ 0, ∀z ∈ C}.

From [20, Lemma 7.1.7] we have the following:

Lemma 2.3. Let C be a convex subset of a Hilbert space H. Let A be a mapping
of C into H. Then the following hold:

(1) If A is continuous, then vi(C,A) ⊂ V I(C,A).
(2) If A is monotone then 〈y − u,Ay〉 ≥ 〈y − u,Au〉 ≥ 0 for u ∈ V I(C,A) and

y ∈ C. That is, if A is monotone then V I(C,A) ⊂ vi(C,A).
(3) If A is monotone and continuous, then V I(C,A) = vi(C,A).

3. Lemmas

In this section, we present some lemmas which are connected with properties of
projection methods. The following lemma is well-known. For the sake of complete-
ness, we give the proof.

Lemma 3.1. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let A be a mapping of C into H. Let a ∈ (0,∞) and let Va be a mapping of C
into itself defined by Vax = PC(I − aA)x for all x ∈ C. Then F (Va) = V I(C,A).
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Proof. Let u ∈ F (Va). Then u = PC(I − aA)u. From the property of PC we have
that for any y ∈ C

0 ≤ 〈y − u, u − (u − aAu)〉 = 〈y − u, aAu〉 = a 〈y − u, Au〉 .

From a > 0 we have that 〈y − u,Au〉 ≥ 0 for all y ∈ C. This implies u ∈ V I(C,A).
The reverse is similar. ¤
Lemma 3.2. Let c, k > 0 and {an} ⊂ [c,∞). Let C be a non-empty, closed
and convex subset of a Hilbert space H and let A be a monotone and k-Lipschitz
continuous mapping of C into H with V I(C,A) 6= ø. Let {Van} be a sequence of
mappings on C defined by Vanx = PC(I − anA)x for all x ∈ C and n ∈ N . Let
{xn} be a bounded sequence in C. If limn ‖Vanxn − xn‖ = 0, then the weak limit of
any weakly convergent subsequence of {xn} is in V I(C,A).

Proof. Let yn = Vanxn for all n ∈ N . Since {xn} is bounded, {xn} has a weakly
convergent subsequence. Let {xnj} be a subsequence of {xn} which converges
weakly to some u ∈ C. By limn ‖Vanxn − xn‖ = 0, we also have that {ynj}
converges weakly to u. We first show 〈z − u, Az〉 ≥ 0 for all z ∈ C. Take z ∈ C.
Since A is monotone, we have that

〈
z − ynj , Az − Aynj

〉
≥ 0 for all j ∈ N , that is,

(3.1)
〈
z − ynj , Az

〉
≥

〈
z − ynj , Aynj

〉
.

Using ynj = PC(xnj − anj Axnj ) and z ∈ C, we also have from the property of PC

that
0 ≥

〈
z − ynj , (xnj − anj Axnj ) − ynj

〉
.

From anj > 0 we have that

(3.2) 0 ≥ 1
anj

〈
z − ynj , xnj − ynj

〉
−

〈
z − ynj , Axnj

〉
.

It follows from (3.1) and (3.2) that〈
z − ynj , Az

〉
≥ 1

anj

〈
z − ynj , xnj − ynj

〉
+

〈
z − ynj , Aynj − Axnj

〉
.

Since 1/anj ≤ 1/c and A is k-Lipschitz continuous, we have that

(3.3)
〈
z − ynj , Az

〉
≥ −1

c
‖z − ynj‖ ‖xnj − ynj‖ − k‖z − ynj‖ ‖ynj − xnj‖.

Since {ynj} converges weakly to u, we have that 〈z − u,Az〉 ≥ 0. Since z ∈ C is
arbitrary, we have that 〈z − u, Az〉 ≥ 0 for all z ∈ C. By the continuity of A and
Lemma 2.3 (1), we have u ∈ V I(C,A). ¤
Remark 1. The inequality (3.3) is essential in the proof of Lemma 3.2. In the case
lim j anj = 0, we cannot prove the result. This problem appears when we deal with
Halpern’s type iterations with extragradient methods. We really know that there
are some articles which have mathematical errors for this problem.

The following lemma plays crucial roll in the proof of Theorem 4.1.

Lemma 3.3. Let C be a non-empty, closed and convex subset of a Hilbert space H.
Let A be an α-inverse strongly monotone mapping of C into H with V I(C,A) 6= ø.
Let {an} be a sequence in [c, d] as 0 < c ≤ d < 2α. Let {Van} be a sequence of
mappings on C defined by Vanx = PC(I − anA)x for x ∈ C. If {xn} is a sequence
in C such that limn ‖xn − u‖ = limn ‖Vanxn − u‖ for some u ∈ V I(C,A), then
limn ‖Vanxn − xn‖ = 0.
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Proof. Set yn = Vanxn = PC(I − anA)xn for all n ∈ N . By Lemma 3.1, we have
that F (Van) = V I(C,A) for n ∈ N . By our assumptions, {xn} and {yn} are
bounded. Since u ∈ V I(C,A) and A is α-inverse strongly monotone, we have

‖yn − u‖2 = ‖PC(I − anA)xn − PC(I − anA)u‖2

≤ ‖(I − anA)xn − (I − anA)u‖2

≤ ‖xn − u‖2 − an(2α − an)‖Axn − Au‖2

for n ∈ N . From an ∈ [c, d] ⊂ (0, 2α), it follows that for n ∈ N

c(2α − d)‖Axn − Au‖2 ≤ an(2α − an)‖Axn − Au‖2 ≤ ‖xn − u‖2 − ‖yn − u‖2.

By c(2α−d) > 0 and limn ‖xn−u‖ = limn ‖yn−u‖, we have limn ‖Axn−Au‖ = 0.
Since PC is firmly nonexpansive and I − anA is nonexpansive, we have

2‖yn − u‖2 = 2‖PC(I − anA)xn − PC(I − anA)u‖2

≤ 2 〈PC(I − anA)xn − PC(I − anA)u, (I − anA)xn − (I − anA)u〉
= 2 〈yn − u, (I − anA)xn − (I − anA)u〉
= ‖yn − u‖2 + ‖(I − anA)xn − (I − anA)u‖2

− ‖(yn − u) − ((I − anA)xn − (I − anA)u)‖2

≤ ‖yn − u‖2 + ‖xn − u‖2

− ‖(yn − xn) + an(Axn − Au)‖2

= ‖yn − u‖2 + ‖xn − u‖2

− ‖yn − xn‖2 − 2an 〈yn − xn, Axn − Au〉 − a2
n‖Axn − Au‖2

for all n ∈ N . Thus it follows that for n ∈ N

‖yn − xn‖2 ≤ ‖xn − u‖2 − ‖yn − u‖2

− 2an 〈yn − xn, Axn − Au〉 − a2
n‖Axn − Au‖2.

By limn ‖xn − u‖ = limn ‖yn − u‖ and limn ‖Axn − Au‖ = 0, we have

limn ‖yn − xn‖ = limn ‖Vanxn − xn‖ = 0.

This completes the proof. ¤

Let {an} be a sequence in (0,∞). Let C be a non-empty, closed and convex subset
of a Hilbert space H. Let A be a mapping of C into H such that V I(C,A) 6= ø.
Let {Van} be a sequence of mappings on C defined by Vanx = PC(I −anA)x for all
x ∈ C and let {Wn} be a sequence of mappings on C such that F (Wn) ⊂ A(Wn)
for all n ∈ N . Then {Wn} said to satisfy Condition (E) with {Van} if there exist
M1,M2 > 0 such that for any n ∈ N

(E1) ‖Wnx − x‖ ≤ M1‖Vanx − x‖, ∀x ∈ C;

(E2) ‖x − Vanx‖2 ≤ M2(‖x − u‖2 − ‖Wnx − u‖2), ∀x ∈ C, u ∈ V I(C,A).

We note that F (Wn) ⊂ A(Wn) and F (Wn) 6= ø if and only if Wn is quasi-
nonexpansive.

Lemma 3.4. Let {an} be a sequence in (0,∞). Let C be a non-empty, closed
and convex subset of a Hilbert space H. Let A be a mapping of C into H with
V I(C,A) 6= ø. Let {Van} be a sequence of mappings on C defined by Vanx =



PROJECTION METHODS FOR VARIATIONAL INEQUALITY PROBLEMS 7

PC(I − anA)x for x ∈ C. If {Wn} is a sequence of mappings on C which satisfies
Condition (E) with {Van}, then for each n ∈ N

F (Van) = F (Wn) = V I(C,A).

Proof. Fix n ∈ N arbitrarily. We already know that F (Van) = V I(C,A). Let
v ∈ F (Van) = V I(C,A). From (E1) we have

‖Wnv − v‖ ≤ M1‖Vanv − v‖ = 0.

Then ø 6= F (Van) ⊂ F (Wn). Let u ∈ V I(C,A) and w ∈ F (Wn). From (E2) we
have

‖w − Vanw‖2 ≤ M2(‖w − u‖2 − ‖Wnw − u‖2) = M2(‖w − u‖2 − ‖w − u‖2) = 0.

Then F (Wn) ⊂ F (Van). Thus F (Van) = F (Wn) = V I(C,A) for all n ∈ N . ¤

The following lemma is a result to simplify the proof of Lemma 3.6.

Lemma 3.5. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let k > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that V I(C,A) 6= ø. Let a ∈ (0, 1/k]. Let x ∈ C, y = PC(x − aAx),
z = PC(x − aAy) and u ∈ V I(C,A). Then the following hold:

(1) 〈y − z, aAy〉 ≥ 〈u − z, aAy〉;
(2) ‖x−z‖2 +2 〈z − y, aAy〉 ≥ (1−a2k2)‖x−y‖2 +(ak‖x−y‖−‖y−z‖)2 ≥ 0;
(3) ‖z − u‖2 ≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 ≤ ‖x − u‖2.

Proof. We prove (1). Let u ∈ V I(C,A). Since A is monotone, we have

〈y − u,Ay〉 ≥ 〈y − u,Au〉 ≥ 0.

From a > 0 we have that

〈y − z, aAy〉 − 〈u − z, aAy〉 = a 〈y − u,Ay〉 ≥ a 〈y − u, Au〉 ≥ 0

and hence 〈y − z, aAy〉 ≥ 〈u − z, aAy〉. We prove (2). By y = PC(x − aAx) and
z ∈ C, we have

〈z − y, (x − aAx) − y〉 ≤ 0.

Then the following inequality holds:

〈z − y, x − y〉 − 〈z − y, aAy〉 = 〈z − y, (x − aAx) − y〉 + a 〈z − y,Ax − Ay〉
≤ a 〈z − y,Ax − Ay〉 .

Since A is k-Lipschitz continuous and ak ≤ 1, it follows that

‖x − z‖2 + 2 〈z − y, aAy〉
=

(
‖x − y‖2 + ‖z − y‖2 − 2 〈z − y, x − y〉

)
+ 2 〈z − y, aAy〉

≥ ‖x − y‖2 + ‖z − y‖2 − 2a 〈z − y,Ax − Ay〉
≥ ‖x − y‖2 + ‖y − z‖2 − 2ak‖z − y‖ ‖x − y‖
= (1 − a2k2)‖x − y‖2 + (ak‖x − y‖ − ‖y − z‖)2 ≥ 0.



8 RIEKO KUBOTA, WATARU TAKAHASHI, AND YUKIO TAKEUCHI

We prove (3). Using z = PC(x − aAy), (1), (2) and properties of PC , we have

‖z − u‖2 ≤ ‖(x − aAy) − u‖2 − ‖(x − aAy) − z‖2

= (‖x − u‖2 + ‖aAy‖2 − 2 〈x − u, aAy〉)
− (‖x − z‖2 + ‖aAy‖2 − 2 〈x − z, aAy〉)

= ‖x − u‖2 − ‖x − z‖2 − 2 〈z − u, aAy〉
≤ ‖x − u‖2 − ‖x − z‖2 − 2 〈z − y, aAy〉
≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 − (ak‖x − y‖ − ‖z − y‖)2

≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 ≤ ‖x − u‖2.

This completes the proof. ¤

Lemma 3.6. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let k > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that V I(C,A) 6= ø. Let 0 < d < 1/k and {an} be a sequence in (0, d ].
Let {Van} be a sequence of mappings on C defined by Vanx = PC(I − anA)x for
x ∈ C and let {Uan} be a sequence of mappings on C defined by

Uanx = PC(I − anAVan)x

for x ∈ C. Then each Uan is a quasi-nonexpansive mapping such that F (Van) =
F (Uan) = V I(C,A) and {Uan} satisfies Condition (E) with {Van}.

Proof. We show that {Uan} satisfies Condition (E1). Fix n ∈ N arbitrarily. Since
0 < ank ≤ dk < 1, PC is nonexpansive and A is k-Lipschitz continuous, we have
that for all x ∈ C

‖Uanx − Vanx‖ = ‖PC(x − anAVanx) − PC(x − anAx)‖
≤ ‖(x − x) − an(AVanx − Ax)‖ ≤ ank‖Vanx − x‖

and hence

‖Uanx − x‖ ≤ ‖Uanx − Vanx‖ + ‖Vanx − x‖
≤ ank‖Vanx − x‖ + ‖Vanx − x‖
≤ (1 + ank)‖Vanx − x‖ ≤ 2‖Vanx − x‖.

This implies that {Uan} satisfies Condition (E1) as M1 = 2. We show that {Uan}
satisfies Condition (E2). Fix n ∈ N arbitrarily. Let x ∈ C, u ∈ V I(C,A) and set
y = Vanx. By Uanx = PC(x − anAy) and Lemma 3.5 (3), we have

‖Uanx − u‖2 ≤ ‖x − u‖2 − (1 − a2
nk2)‖x − y‖2 ≤ ‖x − u‖2.

Thus we have that for x ∈ C and u ∈ V I(C,A)

(a) ‖Uanx − u‖ ≤ ‖x − u‖;
(b) (1 − d2k2)‖x − Vanx‖2 ≤ (1 − a2

nk2)‖x − Vanx‖2 ≤ ‖x − u‖2 − ‖Uanx − u‖2.

From (b), it follows that {Uan} satisfies Condition (E2) as M2 = 1/(1 − d2k2). We
have from Lemma 3.4 that F (Van) = F (Uan) = V I(C,A) for each n ∈ N . By (a),
each Uan is a quasi–nonexpansive mapping. This completes the proof. ¤
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4. Main Results

We present our main results.

Theorem 4.1. Let C be a closed and convex subset of a Hilbert space H and let
α > 0. Let A be an α-inverse strongly monotone mapping of C into H. Let {an}
be a sequence in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of
C into itself defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a mapping
of C into itself such that F (S) ⊂ A(S) and I − S is demiclosed at 0. Assume
F (S)∩V I(C,A) 6= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C
and let {xn} and {yn} be sequences in C defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Under our assumptions, it follows that each Van is a nonexpansive mapping
such that F (Van) = V I(C,A) 6= ø. Since F (S) ⊂ A(S) and F (S) 6= ø, S is also
quasi-nonexpansive. Let w ∈ F (S) ∩ V I(C,A). We have that

‖xn+1 − w‖ ≤ αn‖SVanxn − w‖ + (1 − αn)‖xn − w‖
≤ αn‖xn − w‖ + (1 − αn)‖xn − w‖ = ‖xn − w‖

for all n ∈ N . Then {‖xn−w‖} is non-increasing and converges to some s ∈ [0,∞).
It follows that {xn} are bounded. We also have that

αn‖xn+1 − w‖ + (1 − αn)(‖xn+1 − w‖ − ‖xn − w‖)
≤ αn‖SVanxn − w‖ ≤ αn‖Vanxn − w‖ ≤ αn‖xn − w‖.

Since αn ∈ [a, b] and ‖xn+1 − w‖ − ‖xn − w‖ ≤ 0, we have that

‖xn+1 − w‖ + 1
a (‖xn+1 − w‖ − ‖xn − w‖) ≤ ‖Vanxn − w‖ ≤ ‖xn − w‖

for all n ∈ N . This implies limn ‖Vanxn − w‖ = limn ‖xn − w‖ = s. We have from
Lemma 3.3 that limn ‖Vanxn − xn‖ = 0. On the other hand, we have from (2.1)
that for any x, y ∈ H and α ∈ R

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Setting α = αn, x = SVanxn − w, y = xn − w, we have that for any n ∈ N

αn(1 − αn)‖SVanxn − xn‖2

= αn‖SVanxn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

≤ αn‖xn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

= ‖xn − w‖2 − ‖xn+1 − w‖2.

Since {‖xn − w‖} is a convergent sequence and αn ∈ [a, b] for all n ∈ N , we have
that limn ‖SVan

xn − xn‖ = 0. Moreover, since

‖SVanxn − Vanxn‖ ≤ ‖SVanxn − xn‖ + ‖Vanxn − xn‖.
for all n ∈ N , we have that

limn ‖Syn − yn‖ = limn ‖SVanxn − Vanxn‖ = 0.

Since {xn} is bounded, there exists a weakly convergent subsequence. Let
{xnj} be a subsequence of {xn} which converges weakly to some u ∈ C. From
limn ‖Vanxn−xn‖ = 0, {ynj} also converges weakly to u. Since A is monotone and
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1/α-Lipschitz continuous, from lim j ‖Vanj
xnj − xnj‖ = 0 and Lemma 3.2, we have

u ∈ V I(C,A). Since I −S is demi–closed at 0 and limn ‖SVanxn −Vanxn‖ = 0, we
also have u ∈ F (S). Thus u ∈ V I(C,A) ∩ F (S).

Finally, let us show that {xn} converges weakly to u ∈ V I(C,A) ∩ F (S). Let
{xni} and {xnj} be subsequences of {xn} which converge weakly to u, v ∈ V I(C,A)∩
F (S), respectively. To have the result, it is sufficient to show u = v. Assume u 6= v.
By the Opial property, we have that

lim i ‖xni − u‖ < lim i ‖xni − v‖ = lim j ‖xnj − v‖
< lim j ‖xnj − u‖ = lim i ‖xni − u‖.

This is a contradiction. Then we have u = v. Therefore we have the desired
result. ¤

Theorem 4.2. Let C be a closed and convex subset of a Hilbert space H and let
k > 0. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let
{an} be a sequence in [c,∞) as c ∈ (0,∞). For each n ∈ N , let Van be a mapping of
C into itself defined by Vanx = PC(I−anA)x for all x ∈ C. Let {Wn} be a sequence
of mappings on C with F (Wn) ⊂ A(Wn) such that {Wn} satisfies Condition (E)
with {Van}. Let S be a mapping of C into itself such that F (S) ⊂ A(S) and I − S
is demiclosed at 0. Assume F (S) ∩ V I(C,A) 6= ø. Let {αn} be a sequence in [a, b]
as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn}, {yn}, {zn} be sequences defined by

yn = Vanxn, zn = Wnxn, xn+1 = αnSWnxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. By Lemma 3.4, we know that Wn is quasi-nonexpansive and F (Wn) =
V I(C,A) for all n ∈ N . Since F (S) ⊂ A(S) and F (S) ∩ V I(C,A) 6= ø, S is also
quasi-nonexpansive. Let w ∈ F (S) ∩ V I(C,A). We have that

‖xn+1 − w‖ ≤ αn‖SWnxn − w‖ + (1 − αn)‖xn − w‖
≤ αn‖xn − w‖ + (1 − αn)‖xn − w‖ = ‖xn − w‖

for all n ∈ N . Then {‖xn−w‖} is non–increasing and converges to some s ∈ [0,∞).
Thus we have that {xn} are bounded. As in the proof of Theorem 4.1, we also have
that

αn‖xn+1 − w‖ + (1 − αn)(‖xn+1 − w‖ − ‖xn − w‖)
≤ αn‖SWnxn − w‖ ≤ αn‖Wnxn − w‖ ≤ αn‖xn − w‖.

Since αn ∈ [a, b] and ‖xn+1 − w‖ − ‖xn − w‖ ≤ 0, we have

‖xn+1 − w‖ + 1
a (‖xn+1 − w‖ − ‖xn − w‖) ≤ ‖Wnxn − w‖ ≤ ‖xn − w‖

for all n ∈ N . This implies limn ‖Wnxn −w‖ = s. By (E2) of Condition (E), there
is M2 > 0 such that

‖Vanxn − xn‖2 ≤ M2(‖xn − w‖2 − ‖Wnxn − w‖2)

for all n ∈ N . Since limn ‖xn − w‖ = limn ‖Wnxn − w‖ = s, we have that
limn ‖Vanxn −xn‖ = 0. By (E1) of Condition (E), we also have that limn ‖Wnxn−
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xn‖ = 0. On the other hand, using (2.1), we have that for any n ∈ N

αn(1 − αn)‖SWnxn − xn‖2

= αn‖SWnxn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

≤ αn‖xn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

= ‖xn − w‖2 − ‖xn+1 − w‖2.

Since {‖xn − w‖} converges and αn ∈ [a, b] for all n ∈ N, we have limn ‖SWnxn −
xn‖ = 0. Moreover, since

‖SWnxn − Wnxn‖ ≤ ‖SWnxn − xn‖ + ‖Wnxn − xn‖.

for all n ∈ N , we have that

limn ‖Szn − zn‖ = limn ‖SWnxn − Wnxn‖ = 0.

Since {xn} is bounded, there exists a weakly convergent subsequence. Let {xnj} be
a subsequence of {xn} which converges weakly to some u ∈ C. By limn ‖Vanxn −
xn‖ = 0 and limn ‖Wnxn − xn‖ = 0, we also have that {ynj} and {znj} converge
weakly to u. Since A is monotone and k-Lipschitz continuous, from lim j ‖Vanj

xnj −
xnj‖ = 0 and Lemma 3.2, we have that u ∈ V I(C,A). Since I − S is demi–
closed at 0 and lim j ‖SWnj xnj − Wnj xnj‖ = 0, we also have u ∈ F (S). Thus u ∈
V I(C,A)∩F (S). To show that {xn} converges weakly to a point of V I(C,A)∩F (S),
let {xni} and {xnj} be subsequences of {xn} which converge weakly to u, v ∈
V I(C,A) ∩ F (S), respectively. To have the result, it is sufficient to show u = v.
Assume u 6= v. As in the proof of Theorem 4.1, we have that

lim i ‖xni − u‖ < lim i ‖xni − v‖ = lim j ‖xnj − v‖
< lim j ‖xnj − u‖ = lim i ‖xni − u‖.

This is a contradiction. Then we have the desired result. ¤

5. Applications

Using Theorems 4.1 and 4.2, we present some new results. The following are
extensions of Theorem 1.1.

Theorem 5.1. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into
itself defined by Van

x = PC(I − anA)x for all x ∈ C. Let S be a generalized hybrid
mapping of C into itself. Assume that F (S)∩V I(C,A) 6= ø. Let {αn} be a sequence
in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Since S : C → C is generalized hybrid, S satisfies F (S) ⊂ A(S). By
Lemma 2.1 we have that I − S is demiclosed at 0. Then, by Theorem 4.1, we have
the desired result. ¤
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Theorem 5.2. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S : C → C be a mapping such
that, for some s ∈ [0,∞),

(5.1) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.

Assume that F (S)∩V I(C,A) 6= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1.
Let x1 ∈ C and let {xn} and {yn} be sequences in C defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Since S is a mapping satisfying (5.1), S satisfies F (S) ⊂ A(S). By Lemma
2.2 we have that I − S is demiclosed at 0. Then, by Theorem 4.1, we have the
desired result. ¤

Using Theorem 5.2, we have the following result.

Theorem 5.3. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for x ∈ C. Let S : C → C be a mapping which
satisfies Condition (C). Assume that F (S)∩V I(C,A) 6= ø. Let {αn} be a sequence
in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. If a mapping S satisfies Condition (C), then we know that S satisfies (5.1).
Thus we obtain the desired result from Theorem 5.2. ¤

As in the proofs of Theorems 5.1 and 5.2 we have the following extensions of
Theorem 1.2 from Lemma 3.6 and Theorem 4.2.

Theorem 5.4. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c, d] as 0 < c ≤ d < 1/k. For each n ∈ N , let Van and Uan be mappings
of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C,

respectively. Let S : C → C be a generalized hybrid mapping. Assume that F (S) ∩
V I(C,A) 6= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and
let {xn}, {yn}, {zn} be sequences defined by

yn = Van
xn, zn = Uan

xn, xn+1 = αnSUan
xn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Theorem 5.5. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
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sequence in [c, d] as 0 < c ≤ d < 1/k. For each n ∈ N , let Van and Uan be mappings
of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C,

respectively. Let S : C → C be a mapping such that, for some s ∈ [0,∞),

‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.

Assume that F (S)∩V I(C,A) 6= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1.
Let x1 ∈ C and let {xn}, {yn}, {zn} be sequences defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).
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équations intégrales � h , Fund. Math. 3 (1922), 133–181.
[3] F. E. Browder, “Nonlinear operators and nonlinear equations of evolution in Banach spaces”,

Nonlinear functional analysis, Proc. Sympos. Pure Math., Vol XVIII, Part2, Chicago, III.,
(1968), Amer. Math. Soc., Providence, R.I., (1973), 251–262.

[4] R. E. Bruck, “A simple proof of the mean ergodic theorems for nonlinear contractions in
Banach spaces”, Israel J. Math. 32 (1974), 107–116.

[5] P. E. Combettes and S. A. Hirstoaga, “Equilibrium programing in Hilbert spaces”, J. Non-
linear Convex Anal. 6 (2005), 117–136.

[6] J. G. Falset, E. L. Fuster, and T. Suzuki, “ Fixed point theory for a class of generalized
nonexpansive mappings”, J. Math. Anal. Appl. 375 (2011) 185–195.

[7] H. Iiduka, W. Talahashi, and M. Toyodai, “ Approximation of solutions of variational in-
equalities for monotone mappings”, Panamer. Math. J. 14 (2004), 49–61.

[8] G. M. Korpelevich, “The extragradient method for finding saddle points and other problems”,
Matecon 12 (1976), 747–756.

[9] P. Kocourek, W. Takahashi, and J.-C. Yao, “Fixed point theorems and weak convergence
theorems for genelalized hybrid mappings in Hilbert spaces”, Taiwanese J. Math. 14 (2010),
2497–2511.

[10] F. Kosaka and W. Takahashi, Existence and approximation of fixed points of firmly
nonexpansive-type mappings in Banach spaces, SIAM. J.Optim. 19 (2008), 824-835.

[11] F. Kosaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related
to maximal monotone operators in Banach spaces., Arch. Math. (Basel) 91 (2008), 166-177.

[12] M. A. Krasnoselskii, “Two remarks on the method of successive approximations”, Uspehi
Mat. Nauk 10 (1955), 123–127 (Russian).

[13] R. Kubota and Y. Takeuchi, “On Ishikawa’s strong convergence theorem”, to apear.
[14] F. Liu and M. Z. Nashed, “Regularization of nonlinear ill-posed variational inequalities and

convergence rates”, Set-valued Anal. 6 (1998), 313-344.
[15] W. R. Mann, “Mean value methods in iteration”, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[16] N. Nadezhkina and W. Takahashi, “Strong convergence theorem by the hybrid and extragradi-

ent method for nonexpansive mappings and monotone mappings”, Kyoto University Research

Information Repository, 1396 (2004), 42–48.
[17] N. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method

for nonexpansive mappings and monotone mappings”, J. Optim. Theory Appl. 128 (2006),
191-201.

[18] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive
mappings”, Bull. Amer. Math. Soc. 73 (1967), 591–597.

[19] T. Suzuki, “Fixed point theorems and convergence theorems for some generalized nonexpan-

sive mappings”, J. Math. Anal. Appl. 340, (2008) 1088-1095.
[20] W. Takahashi, “Nonlinear Functional Analysis”, Yokohama Publishers, Yokohama, 2000.



14 RIEKO KUBOTA, WATARU TAKAHASHI, AND YUKIO TAKEUCHI

[21] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yoko-

hama, 2009.
[22] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Non-

linear Convex Anal. 11 (2010), 79–88.
[23] W. Takahashi and Y. Takeuchi, “Nonlinear ergodic theorem without convexity for generalized

hybrid mappings in a Hilbert space”, J. Nonlinear Convex Anal. 12 No 2 (2011), 399–406.
[24] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonepxansive mappings and

monotone mappings”, J. Optim. Theory Appl. 118 (2003), 417–428.
[25] W. Takahashi, N.-C. Wong, and J.-C. Yao, “Attractive point and weak convergence theorems

for new generalized hybrid mappings in Hilbert spaces”, J. Nonlinear Convex Anal. 13 (2012),
745–757.

Communicated by Wataru Takahashi

(Rieko Kubota) Yokohama So-gakukan High School, 1-43-1 Mutsuura-Higashi, Kanazawa,

Yokohama 236-0037, Japan
E-mail address: lri2e3ko 9@yahoo.co.jp

(Wataru Takahashi) Department of Applied Mathematics, National Sun Yat-sen Uni-
versity, Kaohsiung 80424, Taiwan; Keio Research and Education Center for Natural
Sciences, Keio University, Japan; and Department of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

(Yukio Takeuchi) Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Mi-

nami, Yokohama 232-0063, Japan
E-mail address: aho31415@yahoo.co.jp


