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KAZUMASA MORI

ABSTRACT. In this study, we consider the ordering properties of the estimates of the rating scale
model(RSM) and related polytomous item response theory (IRT) models. First, we propose
a kind of approximation to the likelihood functions for these IRT models. The approximated
likelihood functions are derived from the inequality of arithmetic and geometric means. We then
evaluate upper limits of the functions based on the mathematical result of Specht(1960). Next, we
derive the order-preserving statistics for these polytomous IRT models. All sets of statistics are
derived by using the characteristics of arrangement increasing functions (Hollanderet al., 1977,
Marshallet al., 2011). We also carry out simulation study and confirm that our order-preserving
statistics work well in typical educational testing. Finally, it is shown that the order-preserving
statistics of the RSM in three major three estimation methods coincide.

 

In this study, we consider the order-preserving properties of the estimates of the
rating scale model (RSM;Rasch, 1960; Andrich,1978a, 1978b; Andersen,1996) and related poly-
tomous item response theory (IRT) models. First, we introduce the RSM. Consider that a test
comprisesk items administered ton subjects and suppose that each item can takem categories.
The response variable for thei-th subject and thej-th item becomesXijh = {0, 1}. When thei-th
subject responds with anh to thej-th item, the corresponding probability of the RSM is

(1) Pijh(θi,αj) = P (Xijh = 1; θi,αj) =
exp(whθi + ajh)∑m

h=1 exp(whθi + αjh)
.

Here,θi is the ability parameter for thei-th subject,αjh is the item parameter for theh-th category
of thej-th item(αj = (αj1, αj2, · · · , αjm) andwh is the weight coefficient for theh-th category.
Note thatwh is assumed as given. In addition,θ = (θ1, · · · , θn) is ann-dimensional vector of the
ability parameters andα = (α11, · · · , α1m, · · · , αk1, · · · , αkm) is ak ×m-dimensional vector of
the item parameters. To estimate parameters in (1), we often use the maximum likelihood principle.
In the RSM, the form of the likelihood function is

L(θ,α|X) =
n∏

i=1

k∏
j=1

m∏
h=1

P (Xijh = xijh)

=
exp

(∑n
i=1 θi

∑k
j=1

∑m
h=1 whxijh +

∑k
j=1

∑m
h=1 αjh

∑n
i=1 xijh

)
∏n

i=1

∏k
j=1

∑m
h=1 exp(whθi + ajh)

=
exp

(∑n
i=1 θiti +

∑k
j=1

∑m
h=1 αjhrjh

)
C(θ,α)

,(2)
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whereX is a response matrix that consists of all the response variables,ti =
∑k

j=1

∑m
h=1 whxijh

is the score for thei-th subject,rjh =
∑n

i=1 xijh is the number of subjects who response1 to the
h-th category of thej-th item andC(θ,α) =

∏n
i=1

∏k
j=1

∑m
h=1 exp(whθi + αjh).

In IRT, three major estimation methods have been proposed that use a the likelihood function
as in (2) : joint maximum likelihood estimation (JMLE),marginal maximum likelihood estimation
(MMLE; Bock and Lieberman, 1970, Thissen, 1982), and conditional maximum likelihood estima-
tion (CMLE; Andersen, 1972). JMLE estimatesθ andα simultaneously by maximizing (2) in the
RSM. By contrast, CMLE and MMLE removeθ from (2) and estimateα separately. In particu-
lar, CMLE uses a conditional likelihood function in which we assume that the scoreti for the i-th
subject is already given and thus removeθ from the function. We focus on JMLE in this paper.

The RSM has many relations with other polytomous IRT models. For example, when we repa-
rameterizeαjh =

∑q
p=1 vjhpηp in (2), we obtain the linear rating scale model(LRSM; Fischer and

Parzer, 1991). Here,ηp is the "basic parameter,"q < m is a dimension of the basic parameter vector
η andvjhp is the weight coefficient which is assumed as already given. The likelihood function of
the LRSM corresponding to (2) is

(3) L(θ,η|X) =
exp(

∑n
i=1 θiti +

∑q
p=1 ηpr

′
p)

C(θ,η)
,

wherer′p =
∑n

i=1

∑k
j=1 vjhpxijh, C(θ,η) =

∏n
i=1

∏k
j=1

∑m
h=1 exp(whθi +

∑q
p=1 vjhpηp) and

η is theq-dimensional vector of the basic parameters.
Another important model related to the RSM is the partial credit model (PCM; Masters, 1982).

The PCM is special case of the RSM. In other words, when we substitutewh = h for the probability
function of the RSM (1), we get the that of the PCM. The likelihood function of the PCM is

(4) L(θ,β|X) =
exp(

∑n
i=1 θit

∗
i +

∑k
j=1

∑m
h=1 βjhrjh)

C(θ,β)
,

whereβjh is the item parameter for theh-th category of thej-th item,β is thek ×m-dimensional
vector of the item parameters,t∗i =

∑k
j=1

∑m
h=1 hxijh, C(θ,β) =

∏n
i=1

∏k
j=1

∑m
h=1 exp(hθi +

βjh), andβ = (β11, · · · , β1m, · · · , β11, · · · , βk1, · · · , β11, · · · , βkm). In (4), by reparameterizing
βjh =

∑q
p=1 ujhpγp, we drive the linear partial credit model (LPCM; Glas and Verhelst,1989;

Fischer and Ponocny, 1994). Here,γp is the basic parameter andujhp is the weight coefficient
which is assumed as already given. The likelihood function of the LPCM is

(5) L(θ,β|X) =
exp(

∑n
i=1 ηit

∗
i +

∑q
p=1 γqr

∗
q )

C(θ,γ)
,

wherer∗p =
∑n

i=1

∑k
j=1

∑m
h=1 ujhpxijh, C(θ,γ)

∏n
i=1

∏k
j=1

∑m
h=1 exp(hθi +

∑q
p=1 ujhpγp)

andγ is thep-dimensional vector of the basic parameters.
Specht(1960) considered the upper limit of an inequality between the arithmetic mean and geo-

metric mean. Following Seo (2000), lety1, · · · , ym ∈ [d,D] with D ≥ d > 0. Then, this inequality
is such that

(6) S(z) m
√
y1y2 · · · ym ≥ y1 + y2 + · · ·+ ym

m
,

wherez = D/d andS(z) are defined as

(7) S(z) =
(z − 1)z

1
z−1

e log z
(z > 1) andS(1) = 1 (z = 0).
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Here, we callS(z) Specht’s ratio. Then, we consider the approximation below:

(8) mAM(y) = y1 + y2 + · · ·+ ym ≃ m m
√
y1y2 · · · ym = mGM(y),

wherey = (y1, y2, · · · , ym). We can evaluate the difference in the above approximation by using a
ratio, that is

(9) DR(y) =
y1 + y2 + · · ·+ ym
m m

√
y1y2 · · · ym

.

Here, we callDR(y) the "difference ratio" betweenAM(y) andGM(y). From (6), it holds that
S(z) ≥ DR(y) ≥ 1. This means that we can evaluate the upper limit of the least difference for (9)
from S(z) in (6).

By substituting (8) withyh = exp(whθi + αjh) for eachi andj into (2), we get

(10)
m∑

h=1

exp(whθi + αjh) ≃ m m

√√√√ m∏
h=1

exp(whθi + αjh)

L(θ,α|X) ≃
exp(

∑n
i=1 θiti +

∑k
j=1

∑m
h=1 αjhrjh)

mnk
∏n

i=1

∏k
j=1

∏m
h=1 exp(whθi + αjh)

=
exp(

∑n
i=1 θiti +

∑k
j=1

∑m
h=1 αjhrjh)

C̃(θ,α)
= L̃(θ,α|X),(11)

whereC̃(θ,α) = mnk
∏n

i=1

∏k
j=1

m
√∏m

h=1 exp(whθi + αjh). These approximations of the like-
lihood functions can also be applied to (3), (4), and (5), which means that we can consider approxi-
mated likelihood functions to the the models related to the RSM.

In this study, we consider the ordering properties of the estimates in the RSM and the related
polytomous IRT models with the approximated likelihood functions as in (11). We assume that
the response matrixX is already given, all estimates derived fromX exist, and each estimate is
unique. Note that most conventional studies (e.g., Hemkeret al.,1997;Van der Ark,2005, 2010)
have considered the properties of other ordering: stochastic ordering (SO). In other words, they
regardX as a matrix that consists of random variables and consider the ordering properties of
estimators with SO.

The remainder of the paper is organized as follows. The preliminaries and main results are pre-
sented in section 2. Some performances that the approximations denoted above holds are evaluated
by simulation studies in section 3. Finally, section 4 discusses our results and concludes.

2 Preliminaries and main results In this study, we use some characteristics of arrangement in-
creasing (AI) functions (Hollanderet al., 1977) to consider the order preserving properties of the
estimates. First, we introduce some definitions, as per Marshallet al. (2011), Boland and Proschan
(1988) and Mori(2015).

Definition 1. Leta andb ben-dimensional vectors. We define equality
a
= as

(aΠ, bΠ)
a
= (a, b),

whereΠ is an arbitraryn×n permutation matrix. In this definition, we find(a, b)
a
= (aΠ1, bΠ1)

a
=

(a↑, bΠ1)
a
= (aΠ2, bΠ2)

a
= (a↓, bΠ2), whereΠ1 is a matrix such thataΠ1 = a↑ andΠ2 is a

matrix such thataΠ2 = a↓. Here, we use the ordered vectorsa↑ anda↓, which are vectors with
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the components ofa arranged in ascending order and descending order, respectively. Note it is not
always hold thatbΠ1 = b↑ or bΠ2 = b↓. For detail, see below Example 3.

Then, we define a partial order
a
≤ for the vector arguments.

Definition 2. Leta andb ben-dimensional vectors. First, we permutea andb so that

(12) (a, b)
a
= (a↑, b

′).

Here,b′ = bΠ1 andΠ1 form the permutation matrix such thataΠ1 = a↑. Then, we generate a
vectorb∗l,m from b′ in (12) by interchanging thel-th andm-th component (l < m) of b such that

bl > bm. Finally, we define the partial order
a
≤ as

(a↑, b
′)

a
≤ (a↑, b

∗
l,m).

Therefore, it holds that(a↑, b↓)
a
= (a↓, b↑)

a
≤ (a, b)

a
≤ (a↑, b↑)

a
= (a↓, b↓).

Here we show an example for the equality
a
= and the inequality

a
≤.

Example 3. Leta = (7, 5, 3, 1) andb = (6, 4, 8, 2). Then,

(a, b)
a
= ((1, 3, 5, 7), (2, 8, 4, 6))

a
≤ ((1, 3, 5, 7), (2, 4, 8, 6))

a
≤ ((1, 3, 5, 7), (2, 4, 6, 8))

a
= ((7, 5, 3, 1), (8, 6, 4, 2)).

Definition 4. An AI function is a function,g, with two n-dimensional vector arguments that pre-

serve the ordering
a
≤. Thus, ifg is AI, it holds thatg(a, b) ≤ g(a↑, b

∗
l,m) for n-dimensional vectors

a,b,a↑,b∗l,m, such that(a, b)
a
≤ (a↑, b

∗
l,m).

Here, we find

(13) g(a↑, b↓) = g(a↓, b↑) ≤ g(a, b) ≤ g(a↑, b↑) = g(a↓, b↓)

for AI function g.
Next, we prepare a general result as lemma (without proof) that describes the necessary and

sufficient condition for AI functions containing summation forms.
Lemma 5. (Marshallet al., 2011, p.233) Ifg has the formg(a, b) =

∑n
i=1 ϕ(ai, bi), theng is AI if

and only ifϕ is L-superadditive.
Here, L-superadditive is the function that satisfies

∂

∂a∂b
ϕ(a, b) ≥ 0.

Then, we consider the log likelihoods derived from (11) for preparation:

(14) log L̃(θ,α|t, r) =
n∑

i=1

θiti +
k∑

j=1

m∑
h=1

αjhrjh − log C̃(θ,α).

As C̃(θ,α) is invariant for the rearrangement withinθ andα, C̃(θ,α) = C̃(θΠ1,αΠ2) for any
permutation matricesΠ1 andΠ2. Thus, we can only focus on parts of log likelihood function (14)
for evaluating order-preserving properties, which are

(15)
n∑

i=1

θiti +
k∑

j=1

m∑
h=1

αjhrjh = l̃1(θ, t) + l̃2(α, r)
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Here,t andr are vectors that consist of{ti} and{rjh}, respectively.
Now, we propose our propositions.

Proposition 6. Let θ̂ and α̂ be maximum likelihood estimates for the log likelihood function
log L̃(θ,α|t, r) in (14). Then,θ̂∗ and α̂∗ maximizeslog L̃(θ,α|t↑, r↑) if and only if θ̂∗ = θ̂↑
andα̂∗ = α̂↑.
Proof. First, we assume the maximum likelihood estimatesθ̂ andα̂ are already given. Then, we
find thatl̃1(θ̂, t) andl̃2(α̂, r) in (15) are permutation-invariant within each set of vectors(θ̂, t) and
(α̂, r), which means that̃l1(θ̂, t) = l̃1(θ̂Π1, tΠ1) and l̃2(α̂, r) = l̃2(α̂Π2, rΠ2) for any permuta-
tion matrices,Π1 andΠ2. From this permutation invariance and the uniqueness of the maximum
likelihood estimates, we obtain

l̃1(θ̂, t) + l̃2(α̂, r) = l̃1(θ̂Π
∗
1, t↑) + l̃2(α̂Π∗

2, r↑) = l̃1(θ̂
∗, t↑) + l̃2(α̂

∗, r↑),

whereΠ∗
1 andΠ∗

2 are permutation matrices such thattΠ∗
1 = t↑ andrΠ∗

2 = r↑. Thus, we find that
bothθ̂∗ andα̂∗ are rearranged forms of̂θ andα̂, respectively.

On the contrary, as̃l1(θ̂, t) is L-superadditive for variableŝθi andti, it follows that l̃1(θ̂, t) is
AI according to the Lemma 5. We find thatl̃2(α̂, r) is AI in the same the manner. Then, from the
property of the AI functions described in (13), it holds that

l̃1(θ̂↓, t↑) ≤ l̃1(θ̂
∗, t↑) ≤ l̃1(θ̂↑, t↑),

l̃2(α̂↓, r↑) ≤ l̃2(α̂
∗, r↑) ≤ l̃2(α̂↑, r↑).

As θ̂∗ andα̂∗ are the estimates that maximizel̃1(θ̂, t↑) and l̃2(α̂, r↑) respectively, it follows that
θ̃ = θ̃↑ andα̂∗ = α̂↑.

Conversely, if we set̃θ = θ̃↑ andα̂∗ = α̂↑, we find thatl̃1(θ̂, t↑) and l̃2(α̂, r↑) reach their
maximum becausẽl1 andl̃2 are AI. Then, it is shown that̂θ∗ andα̂∗ maximizelog L̃(θ,α|t↑, r↑).
2

Our results in Proposition 6 hold in related models such as the LRSM, PCM and LPCM. The
approximated likelihood functions corresponding to (11) in the the LRSM are

(16) L̃(θ,η|X) =
exp(

∑n
i=1 θiti +

∑q
p=1 ηpr

′
p)

C̃(θ,η)
,

Here,C̃(θ,η) = mnk
∏n

i=1

∏k
j=1

m

√∏m
h=1 exp(whθi +

∑q
p=1 vjhpηp) . In (16), we focus on

n∑
i=1

θiti +

q∑
p=1

ηqr
′
q = l̃1(θ, t) + l̃2(η, r

′),

Then, below Proposition 6 holds.
Proposition 7. Let θ̂ andη̂ be the maximum likelihood estimates for the log likelihood function

log L̃(θ,η|t, r′) from (2). Then,θ̂∗ andη̂∗ maximizelog L̃(θ,η|t↑, r′↑) if and only if θ̂∗ = θ̂↑ and
η̂∗ = η̂↑.
Proof. The proof is done in the same way as in Proposition 1. We assume thatθ̂ andη̂ are already
given. l̃1(θ, t) and l̃2(η, r

′) are permutation-invariant. Then, we find that bothθ̂∗ and η̂∗ are
rearranged forms of̂θ and η̂, respectively. As̃l1(θ, t) and l̃2(η, r′) are AI, l1 and l2 reach the
maximum wheñl1(θ↑, t↑) andl̃2(η↑, r

′
↑). Consequently,̂θ∗ = θ̂↑ andη̂∗ = η̂↑. Conversely, if we

setθ̂∗ = θ̂↑ andη̂∗ = η̂↑, it holds thatθ̂∗ andη̂∗ maximizelog L̃(θ,η|t↑, r′↑) becausel1 andl2
are AI.2
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The approximated likelihood functions in the PCM and LPCM are

(17) L̃(θ,β|t∗, r) =
exp(

∑n
i=1 θit

∗
i +

∑k
j=1

∑m
h=1 βjhrjh)

C̃(θ,β)
,

(18) L̃(θ,γ|t∗, r∗) =
exp(

∑n
i=1 ηit

∗
i +

∑q
p=1 γpr

∗
p)

C̃(θ,γ)
.

We also find that below Corollary 8 and 9 from these likelihood functions hold.
Corollary 8 . Let θ̂ andβ̂ be the maximum likelihood estimates for the log likelihood function

log L̃(θ,β|t∗, r) from (17). Then,θ̂∗ andβ̂∗ maximizelog L̃(θ,β|t∗↑, r↑) if and only if θ̂∗ = θ̂↑

andβ̂∗ = β̂↑.

Corollary 9 . Let θ̂ andγ̂ be the maximum likelihood estimates for the log likelihood function
log L̃(θ,γ|t∗, r∗) from (18). Then,θ̂∗ andγ̂∗ maximizelog L̃(θ,γ|t∗↑, r∗↑) if and only if θ̂∗ = θ̂↑
andγ̂∗ = γ̂↑.

3 Simulation studies In the next step, we evaluate the ranges within which approximation (10)
holds in the RSM by using simulation studies. We setn = 50, 100, k = 10, 20, 30, andm =
3, 5, 7, 9, 11 and generate parameters from the settings below:

θi ∼ N(0, 12), αjh ∼ N(0, 12), wh = ωh + 1, ωh ∼ [N(0, 22)]+

i = 1, 2, · · · , n, j = 1, 2, · · · , k, h = 1, 2, · · · ,m,(19)

whereN denotes a normal distribution. Here,[a]+ is a positive part of real valuea, which means
[a]+ = a with a > 0 and[a]+ = 0 with a ≤ 0. These settings are practical for educational testing.
Then, we generate response matrixX, statisticsti, andyjh from (1). We also calculate a kind of
"capacity factor" that isCF = DR(y)/S(z) for the approximation (10). Here,DR(y) andS(z)
are defined in (9) and (7), respectively. Finally, we evaluate Kendall’s rank correlation coefficients
for (t,θ) and(y,α) as efficiency indexes for the difference in approximation (10). We repeat the
procedure above 1000 times.

Table 1, Table 2, and Table 3 show the medians of Kendall’s correlations for(t,θ) and(y,α).
First, all the correlation coefficients for(t,θ) are quite high and stable because eachti is a suffi-
cient statistic forθi, as Andersen(1996) pointed out. We also find that the correlation coefficients
for (y,α) are high and depend on the size of categorym. In other words, the correlations for
(y,α) worsen asm increases. In section 1, we found that the least difference of the upper limit for
the approximation (10) was evaluated byS(z) in (7) and thatS(z) only depends on the maximum
and minimum values of the elements(y1, y2, · · · , ym). Indeed, the correlation coefficients actually
decrease with the size of categorym under usual conditions, although the least difference corre-
sponding toS(z) in (7) does not depend on a such criterion. This is because the differences in (10)
are relatively better than the least differences, as evaluated below.

Table 4, Table 5, and Table 6 present the medians of CFs. All of the CFs are very small, which
means that the DRs are very small compared with the least differences. Thus, our approximation
works well in these settings. Then, we evaluate more detail of the the CFs. For eachk andm, the CF
increases with the size of categorym. This finding means that the difference by (10) worsens asm
becomes large. This result is consistent with the decreasing of the correlation coefficients denoted
above.

Finally, we conclude that approximation (10) shows relatively strong performance and that this
approximation and the order-preserving statisticst andy are acceptable in typical educational test-
ing.
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k 10
n 50 100
m 3 5 7 9 11 3 5 7 9 11
Cor (t,θ) 0.879 0.908 0.914 0.916 0.913 0.888 0.908 0.916 0.920 0.920
Cor(y,α) 1 0.847 0.831 0.826 0.824 1 0.872 0.851 0.846 0.851

Table 1: Medians of Kendall’s correlations for(t,θ) and(y,α) (L = 10)

k 20
n 50 100
m 3 5 7 9 11 3 5 7 9 11
Cor (t,θ) 0.935 0.948 0.950 0.952 0.955 0.941 0.953 0.955 0.954 0.953
Cor(y,α) 1 0.872 0.831 0.828 0.822 1 0.872 0.852 0.849 0.852

Table 2: Medians of Kendall’s correlations for(t,θ) and(y,α) (L = 20)

k 30
n 50 100
m 3 5 7 9 11 3 5 7 9 11
Cor (t,θ) 0.954 0.963 0.964 0.966 0.966 0.956 0.966 0.967 0.968 0.969
Cor(y,α 1 0.872 0.838 0.827 0.820 1 0.872 0.850 0.846 0.852

Table 3: Medians of Kendall’s correlations for(t,θ) and(y,α) (L = 30)

k 10
n 50 100
m 3 5 7 9 11 3 5 7 9 11
CF 2.87× 10−6 3.70× 10−6 4.99× 10−6 5.95× 10−6 9.29× 10−6 4.15× 10−7 5.59× 10−7 7.71× 10−7 9.14× 10−7 1.14× 10−7

Table 4: Medians of the CFs for approximation (10)(L = 10)

k 20
n 50 100
m 3 5 7 9 11 3 5 7 9 11
CF 1.95× 10−6 4.18× 10−6 3.69× 10−6 7.75× 10−6 7.92× 10−6 2.98× 10−7 6.92× 10−7 7.32× 10−7 1.08× 10−6 1.45× 10−7

Table 5: Medians of the CFs for approximation (10)(L = 20)

k 30
n 50 100
m 3 5 7 9 11 3 5 7 9 11
CF 2.99× 10−6 3.46× 10−6 5.64× 10−6 6.16× 10−6 8.92× 10−6 1.94× 10−7 4.95× 10−7 6.48× 10−7 7.72× 10−7 1.03× 10−6

Table 6: Medians of the CFs for approximation (10)(L = 30)
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4 Conclusion and discussionIn this study, we considered the ordering properties of the RSM
and related polytoumous IRT models in JMLE with approximation (10). We also evaluated the
difference in such an approximation by using simulation study and concluded that this approxima-
tion and the order-preserving statistics proposed in this study are acceptable in typical educational
testing.

For the other estimation methods in RSM, namely CMLE and MMLE, the order-preserving
statistics concur with those in JMLE when (10) holds. First we consider the relations between the
estimates in JMLE and CMLE. The estimates in JMLE are biased comparing with those in CMLE
(e.g. Andersen,1980, Theorem 6.1) and the bias is positive. Thus, the ordering of estimates in JMLE
and CMLE concur, although the estimates in JMLE are biased. Consequently, the order-preserving
statistics in JMLE agree with those in CMLE.

Then, we consider the relations between the estimates in CMLE and MMLE. Andersen(1996)
found that CMLE and MMLE agree whenn is large, that means that estimates in the CMLE and the
MMLE concur. Thus, it is clear that the ordering of estimates and the order-preserving statistics in
these estimations concur. Finally, we find that the order-preserving statistics in all three estimations
agree.
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