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ABSTRACT. In this study, we consider the ordering properties of the estimates of the rating scale
model(RSM) and related polytomous item response theory (IRT) models. First, we propose
a kind of approximation to the likelihood functions for these IRT models. The approximated
likelihood functions are derived from the inequality of arithmetic and geometric means. We then
evaluate upper limits of the functions based on the mathematical result of Specht(1960). Next, we
derive the order-preserving statistics for these polytomous IRT models. All sets of statistics are
derived by using the characteristics of arrangement increasing functions (Holetraled 977,
Marshallet al, 2011). We also carry out simulation study and confirm that our order-preserving
statistics work well in typical educational testing. Finally, it is shown that the order-preserving
statistics of the RSM in three major three estimation methods coincide.

1 Introduction In this study, we consider the order-preserving properties of the estimates of the
rating scale model (RSM;Rasch, 1960; Andrich,1978a, 1978b; Andersen,1996) and related poly-
tomous item response theory (IRT) models. First, we introduce the RSM. Consider that a test
comprisesk items administered ta subjects and suppose that each item can takeategories.

The response variable for tligh subject and thg-th item becomes(;;;, = {0, 1}. When thei-th

subject responds with a@nto thej-th item, the corresponding probability of the RSM is

exp(wpb; + ajn)
@ il @) = P X ) > he1 eXp(wpb; + ajn)

Here,0; is the ability parameter for theth subjecte;;, is the item parameter for theth category

of thej-th item (a; = (a1, @52, - , o) andwy, is the weight coefficient for the-th category.
Note thatw, is assumed as given. In additigh~= (64, - - ,0,,) is ann-dimensional vector of the
ability parameters and = (a1, , Q1m, -+, Qr1, "+ , Q) IS @k x m-dimensional vector of

the item parameters. To estimate parameters in (1), we often use the maximum likelihood principle.
In the RSM, the form of the likelihood function is

n k m
Le,alX) = JIIII]P&Xin==in)
i=1j=1h=1
n k m k m n
exp (Zi:l 0i D51 2ohe1 WhTijh + 2251 D pe1 Qjh 2imy xijh)
H:L:1 ?:1 22;1 eXp(thi + CLjh)
, exp (Z:’L:l Oiti + Y5y S,y ajh%‘h)
@) = (6, a) :
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whereX is a response matrix that consists of all the response variatt:)lest:1 Yo WhTijh
is the score for the-th subject;;;, = Z;;l x;5n, 1S the number of subjects who resporisi® the
h-th category of thg-th item andC'(6, o) = [T}, [T}, Spy exp(wyb; + an).

In IRT, three major estimation methods have been proposed that use a the likelihood function
as in (2) : joint maximum likelihood estimation (JMLE),marginal maximum likelihood estimation
(MMLE; Bock and Lieberman, 1970, Thissen, 1982), and conditional maximum likelihood estima-
tion (CMLE; Andersen, 1972). JMLE estimat@sand« simultaneously by maximizing (2) in the
RSM. By contrast, CMLE and MMLE remow from (2) and estimatex separately. In particu-
lar, CMLE uses a conditional likelihood function in which we assume that the scéoethei-th
subject is already given and thus rem@vfrom the function. We focus on JMLE in this paper.

The RSM has many relations with other polytomous IRT models. For example, when we repa-
rameterizey;;, = ZZ:1 vinpTp IN (2), we obtain the linear rating scale model(LRSM; Fischer and
Parzer, 1991). Herey, is the "basic parametery'< m is a dimension of the basic parameter vector
1 andwv;y,, is the weight coefficient which is assumed as already given. The likelihood function of
the LRSM corresponding to (2) is

eXp(Z?:l eltl + Ef}:l in}/?)
C(6.n) ’

3) L(0,n|X) =

wherer), = Y0 328 vinpain, C(0,m) = [T, TT5—) Yohey exp(wnfi + 30 vjnpnp) and
7 is theg-dimensional vector of the basic parameters.

Another important model related to the RSM is the partial credit model (PCM; Masters, 1982).
The PCM is special case of the RSM. In other words, when we substifute i for the probability
function of the RSM (1), we get the that of the PCM. The likelihood function of the PCM is

exp(Yo1ey 0it; + Y5 Sory Binrin)
c(e,8) ’

whereg;,, is the item parameter for theth category of thg-th item, 3 is thek x m-dimensional
vector of the item parameters, = Z;“:l Yoy haijn, C(6,8) = [T, Hle S one . exp(hb; +

Bin), andB = (Bi1, -+ 5 Bim, - b1 5 Breis -+ Bit, -+ 5 Bem)- IN (4), by reparameterizing

Bin = Y 5—1 Ujnpyp, We drive the linear partial credit model (LPCM; Glas and Verhelst,1989;
Fischer and Ponocny, 1994). Herg, is the basic parameter andy,, is the weight coefficient

which is assumed as already given. The likelihood function of the LPCM is

exp(Doi_y mit] + ZZ:1 YaT)
C(0,7) ’

Wherer; = 22;1 Z§:1 Z;anl UjnpTijh, C(6,7) H:'L:1 H§:1 22;1 exp(hf; + 2221 UjnpTp)
and~ is thep-dimensional vector of the basic parameters.
Specht(1960) considered the upper limit of an inequality between the arithmetic mean and geo-
metric mean. Following Seo (2000), let, - - - , ym € [d, D] with D > d > 0. Then, this inequality
is such that

(6) S(2) ¥/y1y2 Ym

(4) L(6,8|X) =

(5) L(0,8|X) =

Z?Jl-l-yz-i--~--i-ym
m

wherez = D/d andS(z) are defined as

(z — 1)zﬁ
elog z

@) S(z) = (z>1)andS(1)=1(z=0).
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Here, we callS(z) Specht’s ratio. Then, we consider the approximation below:

8 mAM(y) =y1 +y2 +- +ym=m VY2 Ym = mGM (y),

wherey = (y1,92, -, ym ). We can evaluate the difference in the above approximation by using a
ratio, that is

(9) DR(y):yl+y2+.'+ym.

m 1n/y1y2 e ym

Here, we callDR(y) the "difference ratio" betweeA M (y) andGM (y). From (6), it holds that
S(z) > DR(y) > 1. This means that we can evaluate the upper limit of the least difference for (9)
from S(z) in (6).

By substituting (8) withy;, = exp(wn; + «;5) for eachi andj into (2), we get

(10) Z exp(wpb; + ajp) ¥m 7 H exp(wpb; + ajp)
h=1 h=1

k
exp(3oiey Oiti + D51 Dopey @nTin)
mm [, H?:l [Th: exp(wab; + ajn)
k
exp(3oiy Oiti + 3251 Doney @jnTin)

(11) = C(0.0) =L(0,a|X),

L(6,a|X)

1

whereC(0, ) = m™* [T1_, TT5_; %/TIh; exp(wnbi + o). These approximations of the like-
lihood functions can also be applied to (3), (4), and (5), which means that we can consider approxi-
mated likelihood functions to the the models related to the RSM.

In this study, we consider the ordering properties of the estimates in the RSM and the related
polytomous IRT models with the approximated likelihood functions as in (11). We assume that
the response matriX is already given, all estimates derived frokhexist, and each estimate is
unique. Note that most conventional studies (e.g., Herekexl,1997;Van der Ark,2005, 2010)
have considered the properties of other ordering: stochastic ordering (SO). In other words, they
regard X as a matrix that consists of random variables and consider the ordering properties of
estimators with SO.

The remainder of the paper is organized as follows. The preliminaries and main results are pre-
sented in section 2. Some performances that the approximations denoted above holds are evaluated
by simulation studies in section 3. Finally, section 4 discusses our results and concludes.

2 Preliminaries and main results In this study, we use some characteristics of arrangement in-
creasing (Al) functions (Hollandeet al., 1977) to consider the order preserving properties of the
estimates. First, we introduce some definitions, as per Marshall (2011), Boland and Proschan
(1988) and Mori(2015).

Definition 1. Leta andb ben-dimensional vectors. We define equaltyas

(aIl, bII) £ (a, b),

wherell is an arbitraryh x n permutation matrix. In this definition, we fir{d, b) = (all;, bll;) <
(at,bll;) = (allz,blly) = (ay,blly), wherell; is a matrix such thaall; = a4 andll, is a
matrix such thatll, = a;. Here, we use the ordered vectarsanda, which are vectors with
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the components af arranged in ascending order and descending order, respectively. Note it is not
always hold thabll, = by or bll, = b,. For detail, see below Example 3.

Then, we define a partial ordérfor the vector arguments.
Definition 2. Let a andb ben-dimensional vectors. First, we permutendb so that

(12) (a,b) = (a4, b).

Here,b’ = bII; andII; form the permutation matrix such thail; = a4. Then, we generate a
vectord; . from b’ in (12) by interchanging theth andm-th componenti( < m) of b such that

b; > b,,. Finally, we define the partial ordé:r as
(aT7 b/) < (aTv bzm)

Therefore, it holds thaiar, b,) < (a,,b) < (a,b) < (ar,b:) 2 (a,by,).

Here we show an example for the equaffyand the inequallt)g.
Example 3 Leta = (7,5,3,1) andb = (6,4, 8,2). Then,

(a,b) £ ((1,3,5,7), (2,8,4,6)) < ((1,3,5,7), (2,4,8,6))
<((1,3,5,7),(2,4,6,8)) < ((7,5,3,1), (8,6, 4,2)).

Definition 4. An Al function is a functiong, with two n-dimensional vector arguments that pre-
serve the ordering. Thus, ifg is Al, it holds thatg(a, b) < g(a+, b} ,,,) for n-dimensional vectors

ab,ayby ., suchthata,b) < (ar,b;.,,).
Here, we find

(13) glay,by) = g(ay, by) < g(a,b) < g(ay,by) = g(ay, by)

for Al function g.
Next, we prepare a general result as lemma (without proof) that describes the necessary and
sufficient condition for Al functions containing summation forms.
Lemma 5. (Marshallet al, 2011, p.233) If has the forny(a, b) = >_." | ¢(a;, b;), theng is Al if
and only if¢ is L-superadditive.
Here, L-superadditive is the function that satisfies

0
> 0.
aaab¢(“’ b) 20

Then, we consider the log likelihoods derived from (11) for preparation:

(14) log L(6, at, T) Zet +ZZajhrJh log C(0, cv).

7=1h=1

As C(8, ) is invariant for the rearrangement withthandax, C'(8, o) = C(811;, ally) for any
permutation matriceH; andIl,. Thus, we can only focus on parts of log likelihood function (14)
for evaluating order-preserving properties, which are

m

(15) ZQt —&—ZZaJhr]h =0(0,t) + Io(a,7)

j=1h=1
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Here,t andr are vectors that consist §f;} and{r; }, respectively.

Now, we propose our propositions.
Proposition 6. Let & and & be maximum likelihood estimates for the log likelihood function
log L(6, alt, ) in (14). Then,@* and&* maximizeslog L (6, a|t;, r¢) if and only if 6* = 6,
anda™® = ap.
Proof. First, we assume the maximum likelihood estimatemnd & are already given. Then, we
find thatl, (6, t) andiy(a, ,7) in (15) are permutation-invariant within each set of vectég) and
(&, r), which means that (6, t) = i1 (011, tI1,) andly (&, r) = ly(Adly, 711,) for any permuta-
t|on matrices,II; andIl;. From this permutation invariance and the uniqueness of the maximum
likelihood estimates, we obtain

11(0,t) + la(&,r) = 11 (0117, ty) + lo(AII5, ) = 11(07, t) + l2(6", rp),
wherell} andII} are permutation matrices such thtll; = ¢ andrll} = r4. Thus, we find that
both6* anda* are rearranged forms éfandé, respectively.
On the contrary, ak (8, t) is L-superadditive for variable® andt;, it follows thatl, (6, ) is
Al according to the Lemma 5. We find that{ &, =) is Al in the same the manner. Then, from the
property of the Al functions described in (13), it holds that

Zl(élmtT) < Zl(é*vtT) < Z1(9T7tT)7
LGy, rt) < (&%) < (G, p).
As 6* and&* are the estimates that maximizé®, t;) andiy (&, 1) respectively, it follows that
0= BT anda* = CAET
Conversely, if we sef = 6, anda* = &y, we find thatll(e ty) andly(&, r+) reach their

maximum becausk andi, are Al. Then, it is shown tha@* andé&* maximizelog L(6, alty, ry).
O

Our results in Proposition 6 hold in related models such as the LRSM, PCM and LPCM. The
approximated likelihood functions corresponding to (11) in the the LRSM are

eXP(Z?:l 0t + 22:1 77107"1/::)
C(0,m)

)

(16) L(0,n|X) =

Here,C(0,n) = m"™ ]I, H;?:l w\t/]'[;":1 exp(wnb; + 211 vinpnp) - IN (16), we focus on

n q
D Oiti+ > ngry =1(6,t) + L(n,7'),
i= p=1

Then, below Proposition 6 holds.

Proposition 7. Let# andn be the maximum likelihood estimates for the log likelihood function
log L(6, n|t, =) from (2). Thenf* and#* maximizelog L(6,n[t;,r}) ifand only if * = 6; and
N =
Proof. The proof is done in the same way as in Proposition 1. We assuntedhdt are already
given. 1,(0,t) and 12(7], ") are permutation-invariant. Then, we find that béthand n* are
rearranged forms of and 7, respectively. Ad,(6,t) and lg(n, ") are Al, l; andl, reach the
maximum wheril(GT,tT) andlz(m, rT) Consequentlyd* = GT andn* = n;. Conversely, if we
setf* = OT and7n* = 7, it holds that9* and7* maximizelog L (6, n[ty, r1) becausé; andly
are Al.O
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The approximated likelihood functions in the PCM and LPCM are

, . k
exp (Yo, ity + 3051 Doney BinTin)

17) L(,8|t",r) = 50.5)

)

eXP(Z?ﬂ nit; + 22:1 7177”;)
C(0,7)
We also find that below Corollary 8 and 9 from these likelihood functions hold.

Corollary 8. Letd and3 be the maximum likelihood estimates for the log likelihood function
log L(0, B|t*, r) from (17). Theng* and3* maximizelog L(8, 3|t%, r+) if and only if 0* = 6,

andB* = ;.

(18) L(@,~4lt",r") =

Corollary 9. Letd and+4 be the maximum likelihood estimates for the log likelihood function
log L(@, v|t*, ) from (18). Thenp* and4* maximizelog L(60, v|t;, 1) if and only if 6* = 6,
andy* = 4.

3 Simulation studies In the next step, we evaluate the ranges within which approximation (10)
holds in the RSM by using simulation studies. We set 50,100, & = 10,20,30, andm =
3,5,7,9,11 and generate parameters from the settings below:

0; ~ N(0,1%), ajn ~ N(0,1%),w), = wp, + 1,wy ~ [N(0,2%)]"
(19) i:1527"'7n7j:1727"'7k7h:1727"'5ma

where N denotes a normal distribution. Helfe] ™" is a positive part of real value, which means

[a]t = awitha > 0and[a]* = 0 with a < 0. These settings are practical for educational testing.
Then, we generate response maiXix statisticst;, andy;;, from (1). We also calculate a kind of
"capacity factor" that is”F' = DR(y)/S(z) for the approximation (10). Herd)R(y) and.S(z)

are defined in (9) and (7), respectively. Finally, we evaluate Kendall’s rank correlation coefficients
for (t,0) and(y, ) as efficiency indexes for the difference in approximation (10). We repeat the
procedure above 1000 times.

Table 1, Table 2, and Table 3 show the medians of Kendall's correlatiors, #y and (y, «).

First, all the correlation coefficients f@t, 8) are quite high and stable because edk a suffi-

cient statistic ford;, as Andersen(1996) pointed out. We also find that the correlation coefficients
for (y, ) are high and depend on the size of categery In other words, the correlations for

(y, &) worsen asn increases. In section 1, we found that the least difference of the upper limit for
the approximation (10) was evaluated $§-) in (7) and thatS(z) only depends on the maximum

and minimum values of the elemerits, o, - - - , v ). Indeed, the correlation coefficients actually
decrease with the size of categoryunder usual conditions, although the least difference corre-
sponding taS(z) in (7) does not depend on a such criterion. This is because the differences in (10)
are relatively better than the least differences, as evaluated below.

Table 4, Table 5, and Table 6 present the medians of CFs. All of the CFs are very small, which
means that the DRs are very small compared with the least differences. Thus, our approximation
works well in these settings. Then, we evaluate more detail of the the CFs. Fdr aadh, the CF
increases with the size of category This finding means that the difference by (10) worsens.as
becomes large. This result is consistent with the decreasing of the correlation coefficients denoted
above.

Finally, we conclude that approximation (10) shows relatively strong performance and that this
approximation and the order-preserving statistiasdy are acceptable in typical educational test-

ing.
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k 10

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor(t,6) | 0.879| 0.908 | 0.914| 0.916 | 0.913| 0.888| 0.908 | 0.916 | 0.920| 0.920

Corly, ) 1] 0.847| 0.831| 0.826| 0.824 1] 0.872| 0.851| 0.846| 0.851
Table 1: Medians of Kendall’s correlations f@, ) and(y, ) (L = 10)

K 20

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor(t,6) | 0.935| 0.948| 0.950| 0.952| 0.955| 0.941| 0.953| 0.955| 0.954| 0.953

Cor(y, o) 1|0.872| 0.831| 0.828 | 0.822 1|0.872| 0.852| 0.849 | 0.852
Table 2: Medians of Kendall's correlations f@, ) and(y, o) (L = 20)

k 30

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor(t,6) | 0.954| 0.963| 0.964 | 0.966 | 0.966 | 0.956 | 0.966 | 0.967 | 0.968 | 0.969

Cornly, o 1|0.872| 0.838| 0.827 | 0.820 1|0.872| 0.850| 0.846 | 0.852
Table 3: Medians of Kendall’s correlations fr, 8) and(y, ) (L = 30)

K 10

n 50 100

m 3] 5] 7] 9] 11 3] 5] 7] 9] 11

CF[287x10 °[370x 10 °[4.99x10° [595x10°°[9.29x10°° [ 415x 10" [ 559 x 10~ | 7.71 x 107" | 914 x 107 [ 1.14 x 10"

Table 4: Medians of the CFs for approximation (10)= 10)

3 20

n 50 100

m 3] 5 7] 9] 11 3] 5] 7] 9] i1

CF | 1.95x10° [418x10° | 3.69x 10 ° | 7.75 x 100 [ 7.92x 10 ° [ 2.98 x 107 | 6.92x 107 | 7.32 x 10" | 1.08 x 10 ° | 1.45 x 10

Table 5: Medians of the CFs for approximation (10)= 20)

K 30

n 50 100

m 3] 5] 7] 9] 11 3] 5] 7 9] 11

CF[299x107°[346x10~° [ 564 x107° [ 6.16 x 1075 [ 8.92x 1079 [ 1.94 x 1077 | 4.95x 10" | 6.48 x 107 | 7.72x 107 | 1.03x 10~°

Table 6: Medians of the CFs for approximation (10)= 30)
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4 Conclusion and discussionin this study, we considered the ordering properties of the RSM
and related polytoumous IRT models in JMLE with approximation (10). We also evaluated the
difference in such an approximation by using simulation study and concluded that this approxima-
tion and the order-preserving statistics proposed in this study are acceptable in typical educational
testing.

For the other estimation methods in RSM, namely CMLE and MMLE, the order-preserving
statistics concur with those in JMLE when (10) holds. First we consider the relations between the
estimates in JMLE and CMLE. The estimates in JMLE are biased comparing with those in CMLE
(e.g. Andersen,1980, Theorem 6.1) and the bias is positive. Thus, the ordering of estimates in JIMLE
and CMLE concur, although the estimates in JMLE are biased. Consequently, the order-preserving
statistics in JMLE agree with those in CMLE.

Then, we consider the relations between the estimates in CMLE and MMLE. Andersen(1996)
found that CMLE and MMLE agree whenis large, that means that estimates in the CMLE and the
MMLE concur. Thus, it is clear that the ordering of estimates and the order-preserving statistics in
these estimations concur. Finally, we find that the order-preserving statistics in all three estimations
agree.
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26750075.
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