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ABSTRACT. Let A and B be strictly positive operators on a Hilbert space. For relative
operator entropies S(A|B) = Az log(A_%BA_%)A%, To(A|B) = (A fa B — A) and
Sa(A|B) = A2(A"2BA 2)*log(A"2 BA~2)A?, we showed

(+)  Si(A|B) > —Ti_o(B|A) > Sa(A|B) > Ta(A|B) > S(A|B) for a € (0,1).

Petz gave an operator divergence Do(A|B) = B — A — S(A|B) which we call Petz-
Bregman divergence. Petz also defined Bregman divergence Dy (X,Y") for an operator
valued smooth function ¥ : C — B(H) and X,Y € C, where C is a convex set in a
Banach space.

In this paper, firstly, we define new operator divergences as the differences between
two terms in (*) and represent them by using Do(A|B). Secondly, we let C = R and
show Dy (z,y) = Do(A b, B|A 4, B) for U(t) = Aty B = A2(A"2BA 2)'A? and
z,y € R. Then we have Dy (1,0) = Do(A|B) in particular. Based on this interpreta-
tion, we discuss Bregman divergences Dy (1, 0) for several functions ¥ which relate to
the operator divergences defined above.

1 Introduction. Throughout this paper, a bounded linear operator T' on a Hilbert space
H is positive (denoted by T > 0) if (T€,£€) > 0 for all £ € H, and T is said to be strictly
positive (denoted by T' > 0) if T is invertible and positive.

Fujii and Kamei [2] defined the following relative operator entropy for strictly positive
operators A and B:

S(A|B) = A% log (A*%BA*%) A%
Furuta [7] defined generalized relative operator entropy as follows:
S.(A|B) = A* (A*%BA*%)Q log (A#BA}) 4}, aeR,

We know immediately Sy(A|B) = S(A|B). Yanagi, Kuriyama and Furuichi [15] introduced
Tsallis relative operator entropy as follows:

T.(A|B) = %, a e (0,1],

where A $, B = Az (A_%BA_%> Az for oo € [0,1] is the weighted geometric operator

x

mean (cf. [12]). Since lim
z—0
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= log a holds for a > 0, we have Ty (A|B) = linBTa(A|B) =
a—
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S(A|B). Tsallis relative operator entropy can be extended as the notion for € R. In [§],
we had given the following relations among these relative operator entropies:

(%) S1(A|B) > =Ty _o(B|A) > S,(A|B) > T, (A|B) > S(A|B), a € (0,1).
A path A b, B passing through A and B is given as follows ([3, 4, 11] etc.):
Ay, B= A} (A‘%BA‘%)m A% zeR.

We remark that A t, B= B f;_, Aholds for z € R. If « € [0, 1], the path A §, B coincides

with A #, B. We can regard S, (A|B) as the slope of the tangent line of the path A f, B

at © = a and T,(A|B) as the slope of the line passing through A and A f, B on the path.
Fujii [1] defined an operator valued a-divergence D, (A|B) for a € (0,1) as follows:

_AV,B-A4, B

Da(4]B) = al—a)

where A V, B = (1 — a)A + aB is the weighted arithmetic operator mean. The operator
valued a-divergence has the following relations at end points for interval (0, 1).

Theorem A ([5, 6]). For strictly positive operators A and B, the following hold:

Do(A|B) = lim Da(A[B) = B—A~S(A[B),
a—
Di(A|B) = lim D.(A|B) = A— B— S(B|A).

a—1-0

Petz [14] introduced the right hand side in the first equation in Theorem A as an operator
divergence, so we call Do(A|B) Petz-Bregman divergence. We remark that Dq(A|B) =
Dy(B|A) holds. Figure 1 shows our interpretation of Do (A|B).

In [9], we represented D, (A|B) as follows:

Da(A|B) = 7T1—04(B|A) - Ta(A|B)v o€ (07 ]-)a

which is a difference between two of five terms in (x). Moreover, Do(A|B) can be also
represented as Do(A|B) = T1(A|B) — S(A|B). From these facts, we regard the differences
between the relative operator entropies in (%) as operator divergences. In section 2, we
represent these operator divergences by using Petz-Bregman divergence.

On the other hand, for an operator valued smooth function ¥ : C — B(H) and X,Y €
C, where C is a convex set in a Banach space, Petz [14] defined a divergence Dy (X,Y) as
follows:

Dy(X,Y) = ¥(X) - ¥(Y)— lim Y +aX V) - W)

a—+0 (6%

We call Dy (X,Y) ¥-Bregman divergence of Y and X in this paper. Petz gave some examples
for invertible density matrices X and V. If ¥(X) = n(X) = Xlog X and X commutes
with YV, then Dg(X,Y) =Y — X 4+ X(logX — logY), and if ¥(X) = tr n(X), then
Dy(X,Y) =tr X(log X —logY), which is the usual quantum relative entropy.

In section 3, we let C = R and show Dy (z,y) = Do(A b, B|A b, B) for U(t)=Af B
and z,y € R. Then we have Dy (1,0) = Do(A|B) in particular. Based on this interpretation,
we discuss U-Bregman divergences Dy (1,0) for several functions ¥ which relate to the
operator divergences given in section 2.
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A path
At B

Figure 1: An interpretation of Do(A|B).

2 Divergences given by the differences among relative operator entropies. As
we mentioned in section 1, we regard the differences between the relative operator entropies
in (%) as operator divergences. There are 10 such divergences. For convenience, we use
symbols A; for them as follows:

AL =TL(AIB) - S(AIB),  A; = Sa(A[B) — Tu(A|B),
Az = —T1_o(B|A) = Sa(A|B), Ay =51(A[B) + T1-a(B|A),
As = Sa(A[B) = S(AIB),  Ag=—Ti o(B|A) — Ta(A|B) = Da(A|B),
A7 = 51(A[B) — Sa(A|B), Ag = —Ti-a(B|A) — S(A[B),
Ao = Si(AIB) ~ Tu(A[B),  Asp = Si(A|B) - S(A|B).
In this section, we consider a relation between each of Ay, .-+, Ajg and the Petz-Bregman

divergence Dy(A|B). It is sufficient to consider A;, Ag, As and Ay since the following
relations hold:

Ay = Ay + Ao, Ag = Aoy + As, A7 = Az + Ay,
Ag=A1+Ax+ A3, Ag=As+As+ Ay, Aig=A1+A0+ A3+ Ay

The order of the differences among Ay, .-+, Ajg are given as in Table 1.
The next lemma is essential tools in our discussion.

Lemma 2.1 ([8, 9]). For strictly positive operators A and B, the following hold for s,t € R:

(1) St(A|A s B) = sSs(A|B),
(2) St(A|B) = —=S1-+(B|A).
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e Table 1 ~

S1(A|B) — S(A|B) > S1(A|B) — Ta(A|B) > S1(A|B) — Sa(A|B) > S1(A|B) + Ti—a(B|A) > 0
VI VI VI

—Ty_o(B|A)—S(A|B) > —~T1_o(B|A)~Ta(A|B) > —Ti_o(B|A)—Sa(A|B) > 0
VI VI

Sa(A|B) — S(A[B) > Sa(A|B) — Ta(A|B)

VI VI
T.(A|B)—S(A|B) 0
VI
0
\_ J

The following are results on Ay, As, Az and Ay.
Theorem 2.2. For strictly positive operators A and B, the following hold:

() Ay = Ta(AIB) - S(AIB) = ~Dy(AlA ta B) fora € (0,1),

() Ay = Su(AIB) - Tu(A|B) = ~Dy(A ta BIA) fora € (0,1]

3) Ay = —Ti wu(B|A)— Su(AB) = ﬁDO(A 4. B|B) fora € [0,1),
(@) A = SAB) 4T a(BA) = 1 Do(BlA ta B) forac[0,1)

Proof. (1) By (1) in Lemma 2.1, we have
Aty B—A
A B-A

T.(AIB) - S(AlB) = S

(A|B) = é(A fa B—A—aS(AB))
= é(A fo B—A—-S(A|At. B)) = éDO(A\A fa B).

(2) By Lemma 2.1, we have

Su(a1B) - Tu(41B) = AARE g ap) = La- Ak Bras.ap)

(A— Aty B+Si(A|A t, B))

= L(A-Ata B-S(Ata BIA) = ~Di(Ate BlA).

(3) By Lemma 2.1 and (2) in this theorem, we have

—T1-o(B|A) = So(A|B) = —Ti_o(B|A)+S1-o(B|A) = ﬁDO(B f1—a A|B)

1
EDO(A fa B|B).
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(4) By (2) in Lemma 2.1 and (1) in this theorem, we have

Ty o(BlA) + Si(A|B) = Ti_o(B|A)—S(B|A)
1 1
= EDO(B\B f1-a 4) = EDO(B|A fa B).
B ,,,,,
path
A bz (A fa B)
Do(A|B
Ats B
/
S(A|B)
A= SR o« V.
= : |
o & 1

Figure 2: An interpretation of Do(A|A §, B) = A4, B— A— S(A|A 4, B).

Figure 2 shows an interpretation of Dy(A|A £, B) appeared in (1) in Theorem 2.2, and
in Figure 3 we illustrate an interpretation of (1) and (2) in Theorem 2.2.
Theorem 2.2 leads the next theorem.

Theorem 2.3. For strictly positive operators A and B, the following hold:

Da(AIB) = ——Do(A o BIB) + ~Do(A o BIA) fora € (0,1).

Proof. By (2) and (3) in Theorem 2.2, we have

Da(A|B) = _Tlfa(B|A) - Ta(A|B)
— (<Ti_a(BIA) — Sa(AIB) + (Sa(AIB) — To(A|B))

1 1
— 1= Do(A ta BIB)+ ~Do(A ta BlA).
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path
A Atz B
B ,,,,,,,,,,,,,,,,,,,,,,,,,,,
ailDo(A
Sa(A|B)
&1Do(AlA Ba B)

Ao B--------- : Ta(@/
0 & i "2

Figure 3: An interpretation of S, (A|B) — T (A|B) = a™'Dy(A b, B|A)
and T,(A|B) — S(A|B) = a~1Dy(A|A t, B).

By Theorem 2.3, we have
a(l —a)Dy(A|B) = aDy(A s B|B)+ (1 — a)Do(A f, B|A)
= a(B—Atfs B-S(Atl, B|B)) +(1-a)(A— Aty B—S(At, B|A))
= AV,B-Atf, B—((1-a)S(At. BJA)+aS(A 4, B|B)),
and then
(1—)S(A fa B|A)+aS(A t. B|B) =0,
since D, (A|B) =

(1 — «)S(X]A) + aS(X|B) = 0 which is called Karcher equation. For 2-variable cases,
we can rewrite the result of Lawson-Lim [13] as follows:

This means that A f, B is a solution of

Theorem 2.4 ([13]). For strictly positive operators A, B and X, and for o € [0, 1],
(1-a)S(X|A)+aS(X|B)=0 if and only if X = A 4, B.

3 U-Bregman divergences on the differences of relative operator entropies. In
this section, we consider W-Bregman divergence in the case C = R as follows: For an
operator valued smooth function ¥ : R — B(H) and z,y € R,

Dy(,y) = ¥(z) — ¥(y) - lim_ Yy +a - y) = ¥(y)
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From the following proposition, it is natural that we consider Dg(1,0) as a divergence
of operators A and B.

Proposition 3.1. Let V(t) = A by B for strictly positive operators A and B. Then for
z,y €R,

Dy(z,y) = Do(A ty B|A b, B).
In particular, Dy (1,0) = Do(A|B).

Proof.

Aty B—Ab, B
Dy(z,y) = Aty B—Aly B~ lim "

At, B-—AtY, B- lirr+10 (Aby B) b (A B)— Aty B by [10, Lemma 2.2]
a—r @)

Al B—Aly B—S(A1, BlAL. B) = Do(Al, B|AfL B).

O

In the rest of this section, we obtain Dy (1,0) for functions ¥ which relate to the operator
divergences A1, Ay, As and Ag in section 2.

Theorem 3.2. For strictly positive operators A and B, the following hold:
(1) If U(t) = Ty(A|B) — S(A|B), then

Dy(1,0) = DO(A\B)—%S(A|B)A‘1S(A|B).
@) Tf U(t) = Si(A|B) — S(AB), then
Du(1,0) = Do(A|B) + Do(B|A) — S(A|B)A"'S(A|B).
(3) If W(t) = Sy(A[B) — T,(A|B), then
Dy (1,0) = DO(B|A)—%S(A|B)A*IS(A|B).

Proof. (1) For a > 0, we have

a®—1—aloga

. 1 2
dmy = 3(lesa)
Replacing a by A_%BA_%7 we have
. T.(A|B) — S(A|B) _ A3((A"3BA"3)* — I —alog(A~2BA™3)) Az
lim = lim 5
a—+0 [e% a—+0 (6%
1 1 1 1 1 1
= ;A (log(A~2BA™2))%A% = 5S(AIB)AT'S(A|B),
then
Dy(1,0) = Ti(A|B) - S(A|B) — (To(A|B) — S(A|B))
iy Ta(AIB) = S(A]B) — (To(A]B) — S(A|B))
a—+0 (%
To(A|B) — S(A|B)

= Ti(A|B) - S(A|B) — lim

a—+0 o

= Dy(A|B) — %S(A|B)A*15(A\B).
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(2) For a > 0, we have

. a%loga—loga 9
i = = (loga)”
Replacing a by A_%BA_%7 we have

. SalAIB) ~ S(A1B)

a—+0 «

Nl
Nl

o A ((A=2BA~7)*log(A"2BA~2) —log(A"2BA"%))A
o ai>n—&l-0 «
— Az(log(A"2BA™%))A% = S(A|B)A™'S(A|B),

then by (2) in Lemma 2.1,

Dy(1,0) = S$i(A|B) - S(A|B) — (So(AIB) — S(A|B))
o Sa(A]B) — S(A|B) — (So(A|B) — S(A|B))
a——+0 [6%
Sa(A|B) — S(A|B)

S1(A|B) — S(AB) — lim_ -
(B—A-S(A|B)) + (A— B—S(B|A)) — S(A|B)A™'S(A|B)
= Dy(A|B) + Do(B|A) — S(A|B)A™'S(A|B).

(3) This relation is obtained from (1) and (2) immediately.
O

Theorem 3.3. Let ¥(t) = Dy(A|B) fort € [0,1] and strictly positive operators A and B.
Then

Dy(1,0) = Do(BIA) ~2Do(A[B) + 3S(A|B)A™'S(A]B)

Proof. For a > 0, we have

l—at+aa—a*—a(l —a)la—1-1loga)

.
a0 a?(l—a)
. —1l4+a—a%*loga— (1 —2a)(a—1—1loga)
= lim
a—+0 2a — 3a?
—  lim —a“(loga)?® +2(a — 1 —loga)
a—+0 2 — ba

1
= —§(loga)2 +a—1-loga.

Replacing a by A_%BA_%, we have

AV, B—A t,
 Du(AIB) - Dy(AIB) . et - (B-A-S(AB))
lim = lim
a—+0 o a—+0 o
_ AVaB—AﬁaB—oz(l—a)(B—A—S(A|B))
B ai>n41-0 a2(1 — Oé)

_ —%S(A|B)A’1S(A|B)+D0(A|B)7
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then

Dy(1,0) = Di(AIB) - Dy(A1B) — tim DetAIB) = DolAIE)

Do(B|A) ~ 2Do(A|B) + 5 S(AIB)A™'S(A|B).
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