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Abstract. This paper treats the initial-boundary value problem for a semilinear
parabolic equation of forth order which has been presented by Johnson-Orme-Hunt-
Graff-Sudijono-Sauder-Orr [8] to describe the large-scale features of a growing crys-
tal surface under molecular beam epitaxy. In the preceding papers [4, 5, 6, 7], we
have already treated the problem under the Neumann like boundary conditions ∂u

∂n
=

∂
∂n

∆u = 0. In this paper, we want to handle the same equation but under the Dirichlet
boundary conditions u = ∂u

∂n
= 0, more natural boundary conditions than before. In

the previous case, the leading linear operator ∆2 was decomposed into the product
(−∆)2, where −∆ is a negative Laplace operator equipped with the usual Neumann
boundary conditions and is a positive definite self-adjoint operator of L2 space. Such
a favorable decomposition is now no longer available. We have to handle a very fourth
order operator ∆2 equipped with the homogeneous Dirichlet boundary conditions.

Our goal of this paper is to construct a dynamical system generated by the initial-
boundary value problem as done in [4] for the Neumann like boundary conditions.

1 Introduction We study the initial-boundary value problem for a nonlinear parabolic
equation of fourth order

(1.1)


∂u

∂t
= −a∆2u− µ∇ ·

(
∇u

1 + |∇u|2

)
in Ω× (0,∞),

u =
∂u

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

in a two-dimensional bounded domain Ω. Here, Ω denotes a substrate domain and the
unknown function u = u(x, t) denotes a displacement of surface height from the standard
level at position x ∈ Ω and time t. And n(x) denotes the outer normal vector of the
boundary at boundary point x ∈ ∂Ω.

Such a nonlinear parabolic equation has been presented by Johnson-Orme-Hunt-Graff-
Sudijono-Sauder-Orr [8] in order to describe the large-scale features of a growing crystal
surface under molecular beam epitaxy. They pay attentions on the two main effects. One
is diffusion of adatoms on the surface caused by the difference of the chemical potential
proportional to the curvature of the surface. The adatoms have tendency to migrate from
the positions of large curvature to those of small one. Such a current is called the surface
diffusion. According to Mullins [10], a linearized surface diffusion is described by the fourth
order equation ∂u

∂t ≈ −a∆2u. The other is a uphill current of adatoms caused by step
edge barriers [3, 11, 14]. The step edge barriers prevent adatoms from hopping down
from the upper terraces to lower ones. As a consequence, diffusing adatoms preferably
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attach to steps from the terrace below rather than from above and non-equilibrium uphill
currents are induced. Such a current is called the roughening. In the mentioned paper
[8], the authors introduced as a macroscopic representation of the roughening the negative

diffusion equation ∂u
∂t ≈ −µ∇ ·

(
∇u

1+|∇u|2

)
. Combining these positive and negative diffusion

equations, we obtain the fourth order equation of (1.1).
In the preceding papers [4, 5, 6, 7], we used the Neumann like boundary conditions

∂u
∂n = ∂

∂n∆u = 0. The fourth order operator∆2 equipped with these homogeneous boundary
conditions is then decomposed into∆2 = (−∆)2, where −∆ is the negative Laplace operator
equipped with the usual Neumann boundary conditions. Although mathematical treatments
are easier, the boundary conditions ∂

∂n∆u = 0 seem to be somewhat artificial. In this paper,

we want to impose on u the Dirichlet boundary conditions u = ∂u
∂n = 0. Physically, this

means that the surface level is always controlled to u = 0 on the boundary ∂Ω together
with the conditions ∂u

∂n = 0 on the normal derivatives.
We first construct a global solution for any u0 ∈ H−2(Ω). For this purpose, we will

appeal to the general theory of abstract parabolic equations in infinite-dimensional spaces,
see [9, 12, 15]. The theory is available to the higher order semilinear parabolic equations,
too. We secondly construct a dynamical system generated by (1.1) in the underlying space
H−2(Ω). Furthermore, it is shown that the dynamical system has an exponential attractor,
see [1, 13, 15]. In particular, for any initial function u0 ∈ H−2(Ω), the trajectory starting
from u0 admits a nonempty ω-limit set.

Throughout the paper, Ω denotes a convex or C2, bounded domain in R2. For s ≥ 0,
Hs(Ω) is the complex Sobolev space with exponent s. As usual, H0(Ω) = L2(Ω). For s > 0,
Hs

0(Ω) is the closure of C
∞
0 (Ω) (space of infinitely differentiable functions in Ω with compact

support) in the topology H2(Ω). We shall also use the Sobolev space H−s(Ω) = [Hs
0(Ω)]

′

with negative exponent −s. The coefficients a > 0 and µ > 0 are fixed constants.

2 Abstract formulation In order to employ the theory of abstract parabolic equations,
let us formulate (1.1) as the Cauchy problem for an abstract evolution equation. We first
define a realization of the operator a∆2 under the conditions u = ∂u

∂n = 0 on ∂Ω. For this
purpose, we consider a symmetric sesquilinear form

a(u, v) = a

∫
Ω

∆u ·∆v dx, u, v ∈ H2
0 (Ω),

defined on H2
0 (Ω). Since ∇u ∈ H1

0 (Ω) if u ∈ H2
0 (Ω), u ∈ H2

0 (Ω) satisfies
∂u
∂n = 0 on ∂Ω. Of

course, u ∈ H2
0 (Ω) satisfies u = 0 on ∂Ω. Therefore, u ∈ H2

0 (Ω) satisfies the homogeneous
Dirichlet boundary conditions. Furthermore, as Ω is convex or of class C2, in either case,
the elliptic estimates yield that

(2.1) ‖u‖H2 ≤ C‖∆u‖L2 , u ∈ H2(Ω) ∩H1
0 (Ω).

This then implies the coercive estimate

a(u, u) ≥ δ‖u‖2H2 for all u ∈ H2
0 (Ω),

with some constant δ > 0. As a consequence, we see that a(u, v) determines a linear operator
A from H2

0 (Ω) into H−2(Ω) by the formula a(u, v) = 〈Au, v〉H−2×H2
0
, see [2]. Here, H−2(Ω)

is the dual space of H2
0 (Ω) and these spaces compose a triplet

(2.2) H2
0 (Ω) ⊂ L2(Ω) ⊂ H−2(Ω).
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The operator A thus defined is considered as a realization of a∆2 under the homogeneous
Dirichlet boundary conditions which is a densely defined, closed operator in H−2(Ω) whose
spectrum is contained in the positive real line (0,∞). (Note that the part of A in L2(Ω) is
a positive definite self-adjoint operator of L2(Ω).)

For 0 ≤ θ ≤ 1, Aθ denotes the fractional power of A of exponent θ. Of course, A0 = I
(identity operator on H−2(Ω)) and A1 = A. As a general result (cf. [15, Theorem 2.35]), it

follows from (2.2) that D(A
1
2 ) = L2(Ω) with norm equivalence. From this fact it is further

deduced that, for 1
2 ≤ θ ≤ 1.

(2.3) D(Aθ) = [D(A
1
2 ),D(A)]2θ−1 = [L2(Ω),H

2
0 (Ω)]2θ−1 ⊂ H4θ−2(Ω).

As well, (2.1) can be extended for 1
2 ≤ θ ≤ 1 by

‖u‖H4θ−2 ≤ C‖Aθ− 1
2u‖L2 , u ∈ D(Aθ).

We next define a realization of the nonlinear operator −µ∇·
(

∇u
1+|∇u|2

)
in the framework

of (2.2). Since ∇ is a bounded operator from L2(Ω) into H−1(Ω), if ∇u
1+|∇u|2 is in L2(Ω),

then we see that ∇ ·
(

∇u
1+|∇u|2

)
∈ H−1(Ω) ⊂ H−2(Ω). So, it is natural to set

(2.4) f(u) = −µ∇ ·
(

∇u

1 + |∇u|2

)
, u ∈ H1(Ω).

In view of (2.3), D(A
3
4 ) ⊂ H1(Ω). This shows that f is defined on the domain D(A

3
4 ) and

can be regarded as a subordinate operator to A.
We thus arrive at an abstract formulation of (1.1) which is written as

(2.5)


du

dt
+Au = f(u), 0 < t < ∞,

u(0) = u0,

in the underlying space H−2(Ω). It is now possible to apply the various results of the theory
of semilinear abstract parabolic equations.

3 Construction of solutions We begin with constructing local solutions to (2.5) by
using [15, Theorem 4.4]. To this end, it suffices to verify a suitable Lipschitz condition for
f(u). In fact, for u, v ∈ H1(Ω),

∇u

1 + |∇u|2
− ∇v

1 + |∇v|2
=

(1 + |∇v|2)∇(u− v)− (|∇u|2 − |∇v|2)∇v

(1 + |∇u|2)(1 + |∇v|2)

=
∇(u− v)

1 + |∇u|2
− (|∇u| − |∇v|)(|∇u|+ |∇v|)∇v

(1 + |∇u|2)(1 + |∇v|2)
.

Therefore, ∥∥∥∥ ∇u

1 + |∇u|2
− ∇v

1 + |∇v|2

∥∥∥∥
L2

≤ C‖u− v‖H1 .

This then yields that

‖f(u)− f(v)‖H−1 ≤ C‖A 3
4 (u− v)‖H−2 , u, v ∈ D(A

3
4 ),
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i.e., f fulfills [15, (4.21)] with η = 3
4 .

As a direct consequence of [15, Theorem 4.4], for any u0 ∈ H−2(Ω), there exists a unique
local solution to (2.5) in the function space:

(3.1) u ∈ C([0, Tu0 ];H
−2(Ω)) ∩ C1((0, Tu0 ];H

−2(Ω)) ∩ C((0, Tu0 ];H
2
0 (Ω)).

The local solution u satisfies the estimate

(3.2) t‖u(t)‖H2 + t
3
4 ‖u(t)‖H1 + ‖u(t)‖H−2 ≤ Cu0 , 0 < t ≤ Tu0 .

The time Tu0 > 0 and constant Cu0 are determined by the norm ‖u0‖H−2 alone.
For constructing global solutions, the essential thing is to establish the a priori estimates

for local solutions, cf. [15, Corollary 4.3]. By the smoothing effect of solutions seen by
(3.1) we have u(t) ∈ H2(Ω) for any t > 0. So, in proving the a priori estimates (and
hence constructing a global solution to (2.5)), there is no loss of generality to assume that

u0 ∈ L2(Ω) = D(A
1
2 ). Under this assumption, let u denote any local solution to (2.5) in

the space:

(3.3) u ∈ C([0, Tu];L2(Ω)) ∩ C1((0, Tu];H
−2(Ω)) ∩ C((0, Tu];H

2
0 (Ω)).

Proposition 3.1. There exists a constant C > 0 such that the estimate

‖u(t)‖L2 ≤ C(‖u0‖L2 + 1), 0 ≤ t ≤ Tu,

holds true for any local solution u lying in (3.3), C being independent of the interval [0, Tu].

Proof. Take a scaler product of the equation of (2.5) and u. Noting that ‖u(t)‖2L2
is

differentiable for t > 0 with derivative d
dt‖u(t)‖

2
L2

= 2Re 〈dudt (t), u(t)〉H−2×H2
0
and that

〈Au(t), u(t)〉H−2×H2
0
= a(u(t), u(t)), we have

1

2

d

dt

∫
Ω

|u|2dx+ a

∫
Ω

|∆u|2dx = µ

∫
Ω

|∇u|2

1 + |∇u|2
dx

≤ µ|Ω|.

By (2.1) there exists a constant δ > 0 such that

1

2

d

dt

∫
Ω

|u|2dx+ δ

∫
Ω

|u|2dx ≤ µ|Ω|.

Solving this integral inequality, we obtain that

‖u(t)‖2L2 ≤ e−2δt‖u0‖2L2 + µδ−1|Ω|, 0 ≤ t ≤ Tu.

Proposition 3.1 shows that the norm ‖u(t)‖L2 remains uniformly bounded for any inter-
val [0, Tu]. This then means that one can always extend any local solution with a uniform
time interval to obtain a global solution in the space:

(3.4) u ∈ C([0,∞);L2(Ω)) ∩ C1((0,∞);H−2(Ω)) ∩ C((0,∞);H2
0 (Ω)).

Of course, the global solution satisfies the similar estimate

(3.5) ‖u(t)‖2L2
≤ e−2δt‖u0‖2L2

+ µδ−1|Ω|, 0 ≤ t < ∞.

Finally, let us remark that, if the initial function u0 is real, then the solution u(t) with
u(0) = u0 is also real for every time t > 0. In fact, we notice that the complex conjugate u of
the solution u to (2.5) satisfies the same evolution equation for every t. So, u is a solution
satisfying an initial condition u(0) = u0. If u0 is real, i.e., u0 = u0, then uniqueness of
solution implies u(t) = u(t) and u(t) must be real for every t.



Stationary Solution Epitaxial Growth 5

4 Dynamical systems The next step is to observe that the problem (2.5) generates a
dynamical system. For this purpose, we can again follow the general procedure for semilinear
abstract parabolic equations, see [15, Section 6.5].

For u0 ∈ H−2(Ω), let u(t;u0) denote the global solution of (2.5), and set

S(t)u0 = u(t;u0), 0 ≤ t < ∞.

Then, S(t) is a nonlinear semigroup acting on H−2(Ω), i.e., S(0) = I and S(t + s) =
S(t)S(s) for 0 ≤ s, t < ∞. Furthermore, S(t) is seen to be continuous in the sense that
(t, u0) 7→ S(t)u0 is continuous from [0,∞)×H−2(Ω) into H−2(Ω). Whence, S(t) defines a
dynamical system in H−2(Ω) which is denoted by (S(t), H−2(Ω)).

We can see from the dissipative estimate (3.5) that (S(t),H−2(Ω)) has an exponen-
tial attractor. Remember that a set M satisfying the following conditions is called the
exponential attractor:

1. M is a compact subset of H−2(Ω) with finite fractal dimension.

2. M is a positively invariant set of S(t), i.e., S(t)M ⊂ M for any 0 < t < ∞.

3. There exists an exponent k > 0 such that, for any bounded subset B of H−2(Ω), it
holds true that

h(S(t)B,M) ≤ CBe
−kt, 0 < t < ∞,

with a constant CB > 0.

Here, h(B1, B2) = supf∈B1
infg∈B2

‖f − g‖H−2 is a semi-distance of two bounded subsets
B1 and B2.

As explained in [15, Section 6.4], the compact smoothing property

(4.1) ‖S(t∗)u0 − S(t∗)v0‖L2 ≤ C‖u0 − v0‖H−2 , u0, v0 ∈ B,

of S(t) provides existence of exponential attractors, where B is an attractive, positively
invariant, compact subset of H−2(Ω) and where t∗ > 0 is any fixed time. But, this property
is also easily verified from the known estimates (3.2) and (3.5). In fact, let B be any bounded
subset of H−2(Ω). Then, it follows from (3.2) that there exist a bounded ball B2,B of L2(Ω)
and time tB > 0 both depending on B such that S(TB)B ⊂ B2,B . In addition, (3.5) yields
that, for any u0 ∈ B,

‖S(t)u0‖2L2
= ‖S(t− TB)S(TB)u0‖2L2

≤ e−2δ(t−TB)R2,B + µδ−1|Ω|, ∀t ≥ TB ,

where R2,B is the radius of B2,B . This shows that the ball B(0;
√
1 + µδ−1|Ω|) of L2(Ω)

is an absorbing set. Let B be the collection of all trajectories starting from this ball.
Obviously, B is an absorbing and invariant set; moreover, since B is a bounded subset of
L2(Ω), it is a compact set of H−2(Ω). Finally, the desired Lipschitz condition (4.1) can be
verified by using the standard techniques described in [15, Subsection 6.5.3]. In this way,
we verify that our dynamical system admits an exponential attractor.

Finally, let us notice that S(t) defines a dynamical system even in the space L2(Ω)
and the restricted dynamical system denoted by (S(t), L2(Ω)) also admits an exponential
attractor. In fact, as seen in (3.4), S(t) maps L2(Ω) into itself. In addition, it is proved that
S(t) is continuous from L2(Ω) into itself. Therefore, (2.5) generates a dynamical system
in L2(Ω), too. Furthermore, the exponential attractor M in H−2(Ω) constructed above is
obviously a bounded subset of D(A) (= H2

0 (Ω)), and remains to be an exponential attractor
of (S(t), L2(Ω)).
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5 Lyapunov function Multiply the equation of (1.1) by −∂u
∂t and integrate the product

in Ω. By somewhat formal computations, its real part is given by

−
∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx = aRe

∫
Ω

∆u
∂

∂t
∆udx− µRe

∫
Ω

[
∇u

1 + |∇u|2

]
· ∂

∂t
∇u dx

=
1

2

d

dt

∫
Ω

[
a|∆u|2 − µ log(1 + |∇u|2)

]
dx.

These computations then suggest that the functional

(5.1) Φ(u) =
1

2

∫
Ω

[
a|∆u|2 − µ log(1 + |∇u|2)

]
dx, u ∈ H2

0 (Ω),

becomes a Lyapunov function of the dynamical system.
In order to justify this, however, we need a higher regularity of solution u than the

known (3.4). Let u0 ∈ H2
0 (Ω) and assume that the solution to (2.5) belongs to

(5.2) u ∈ C1((0,∞);L2(Ω)) and ∆2u ∈ C((0,∞);L2(Ω)).

It is clear that

‖∆u(t+ h)‖2L2
− ‖∆u(t)‖2L2

= (∆[u(t+ h)− u(t)],∆u(t+ h)) + (∆u(t), ∆[u(t+ h)− u(t)])

= (u(t+ h)− u(t), ∆2u(t+ h)) + (∆2u(t), u(t+ h)− u(t)).

In view of (5.2), it is observed that

d

dt
‖∆u(t)‖2L2

=

(
du

dt
(t),∆2u(t)

)
+

(
∆2u(t),

du

dt
(t)

)
= 2Re

(
∆2u(t),

du

dt
(t)

)
.

In the meantime, for u, v ∈ H2
0 (Ω), consider∫

Ω

[log(1 + |∇v|2)− log(1 + |∇u|2)]dx.

For a.e. x ∈ Ω, we have

log[1 + |∇v(x)|2]− log[1 + |∇u(x)|2] =
∫ 1

0

d

dθ
log{1 + |∇[θv(x) + (1− θ)u(x)]|2}dθ

=

∫ 1

0

2Re∇[v(x)− u(x)] · ∇u(x) + 2θ|∇[v(x)− u(x)]|2

1 + |∇[θv(x) + (1− θ)u(x)]|2
dθ.

Moreover, since

1

1 + |∇[θv(x) + (1− θ)u(x)]|2
=

1

1 + |∇u(x)|2

− 2θRe∇[v(x)− u(x)] · ∇u(x) + θ2|∇[v(x)− u(x)]|2

{1 + |∇[θv(x) + (1− θ)u(x)]|2}(1 + |∇u(x)|2)
,
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we have∣∣∣∣log[1 + |∇v(x)|2]− log[1 + |∇u(x)|2]− 2Re∇[v(x)− u(x)] · ∇u(x)

1 + |∇u(x)|2

∣∣∣∣
≤ C{|∇[v(x)− u(x)]|2 + |∇[v(x)− u(x)]|4}.

Therefore, integration in Ω yields that∣∣∣∣∫
Ω

[
log(1 + |∇v|2]− log(1 + |∇u|2)− 2Re∇[v − u] · ∇u

1 + |∇u|2

]
dx

∣∣∣∣
≤ C{‖∇(v − u)‖2L2

+ ‖∇(v − u)‖4L4
}.

We here use Galiardo-Nireberg’s inequality ([15, Theorem 1.37]) to obtain that

‖∇(v − u)‖L4 ≤ C‖∇(v − u)‖
1
2

L2
‖∇(v − u)‖

1
2

H1 ≤ C‖v − u‖
1
2

H1‖v − u‖
1
2

H2

≤ C‖v − u‖
1
4

L2
‖v − u‖

3
4

H2 .

Then,∣∣∣∣∫
Ω

{
log(1 + |∇v|2]− log(1 + |∇u|2) + 2Re

[
∇ ·

(
∇u

1 + |∇u|2

)
(v − u)

]}
dx

∣∣∣∣
≤ C‖v − u‖L2(‖v − u‖H2 + ‖v − u‖3H2).

Let us apply this estimate with v = u(t + h) and u = u(t), where u is the solution
mentioned above. Then, since ‖u(t+ h)− u(t)‖H2 → 0 as h → 0, it is easily verified that

d

dt

∫
Ω

log[1 + |∇u(t)|2]dx = −2Re

∫
Ω

∇ ·
(

∇u(t)

1 + |∇u(t)|2

)
du

dt
(t) dx.

We have thus proved that, for any solution lying in (5.2), the function Φ(u(t)) is differ-
entiable with derivative

(5.3)
d

dt
Φ(u(t)) = −

∥∥∥∥dudt (t)
∥∥∥∥2
L2

, 0 < t < ∞.

6 Numerical Results We shall conclude this paper with illustrating some numerical
examples. Let us consider (1.1) in the square domain Ω = (0, 1)× (0, 1). The coefficient a
is fixed as a = 1 but µ > 0 is treated as a control parameter. The initial function is taken
as

u0(x1, x2) = 0.1[sin(2 · 3.14x1)× sin(2 · 3.14x2)], (x1, x2) ∈ Ω,

which is a perturbation of the null solution u ≡ 0. Clearly, the null solution is a unique
homogeneous stationary solution.

Set first µ = 12. As seen by Figure 1, the solution tends to the null solution as t → ∞.
The graph of Lyapunov function along this trajectory is given by Figure 2.

Take next µ = 13. As seen by Figure 3, the solution no longer tends to the null solution.
Instead, the small perturbation grows into two columns of ridges. One can count in each
column 12 ridges. The graph of Lyapunov function along the trajectory is given by Figure
4.

Finally, take a sufficiently large µ, say µ = 40. As seen by Figure 5, the perturbation
again grows into two columns of ridges. The number of ridges in a column increases more
than in the case of µ = 13. As before, the Lyapunov function is monotone decreasing along
the trajectory, see Figure 6.
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Fig. 1: Dynamics for µ = 12
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Fig. 2: Lyapunov function for µ = 12
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Fig. 3: Dynamics for µ = 13
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Fig. 4: Lyapunov function for µ = 13
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Fig. 5: Dynamics for µ = 40
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Fig. 6: Lyapunov function for µ = 40




