HOMOGENEOUS STATIONARY SOLUTION TO EPITAXIAL GROWTH MODEL UNDER DIRICHLET CONDITIONS

Somayyeh Azizi and Atsushi Yagi ${ }^{1}$

Received October 2, 2015 ; revised December 9, 2015

Abstract

This paper continues a study on the initial-boundary value problem for a nonlinear parabolic equation of fourth order under the homogeneous Dirichlet boundary conditions. The parabolic equation has been presented by Johnson-Orme-Hunt-Graff-Sudijono-Sauder-Orr [10] in order to describe the large-scale features of a growing crystal surface under molecular beam epitaxy. In the previous papers [1, 2], we constructed a dynamical system generated by the problem and showed that every trajectory converges to some stationary solution as $t \rightarrow \infty$. This paper is then devoted to investigating stability or instability of the null solution which is a unique homogeneous stationary solution. We shall also illustrate some numerical results to observe how changes the structure of stationary solutions as the roughening coefficient increases.

1 Introduction We are concerned with the initial-boundary value problem for a nonlinear parabolic equation of fourth order

$$
\begin{cases}\frac{\partial u}{\partial t}=-a \Delta^{2} u-\mu \nabla \cdot\left(\frac{\nabla u}{1+|\nabla u|^{2}}\right) & \text { in } \Omega \times(0, \infty) \tag{1.1}\\ u=\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

in a two-dimensional bounded domain Ω. Such a nonlinear parabolic equation has been presented by Johnson-Orme-Hunt-Graff-Sudijono-Sauder-Orr [10] in order to describe the large-scale features of a growing crystal surface under molecular beam epitaxy. Here, Ω denotes a substrate domain and the unknown function $u=u(x, t)$ denotes a displacement of surface height from the standard level at position $x \in \Omega$ and time t. For detailed physical background, see [5, 12, 13, 16].

As in the preceding papers [1, 2], we will formulate (1.1) as the Cauchy problem for an abstract parabolic equation of the form (2.1) with underlying space $L_{2}(\Omega)$. In [1], we constructed a dynamical system $\left(S(t), L_{2}(\Omega)\right)$ generated by (2.1), where $S(t)$ is a continuous nonlinear semigroup acting on $L_{2}(\Omega)$ determined by global solutions of (2.1). In addition, the dynamical system was shown to have a finite-dimensional attractor and to admit a Lyapunov function given by (2.8). In the subsequent paper [2], we succeeded in proving longtime convergence. For any $u_{0} \in L_{2}(\Omega), S(t) u_{0}$ was shown to converge as $t \rightarrow \infty$ to a stationary solution \bar{u} of (2.1).

This paper is then concerned with stationary solutions of (2.1). Among others, we are concerned with stability and instability of the null solution $\bar{u} \equiv 0$. Clearly, the null solution is a unique homogeneous stationary solution. For this purpose, we will appeal

[^0]to the linearized principle in infinite-dimensional spaces invented by Babin-Vishik [3] and Temam [15], see also [17, Section 6.6]. Indeed, we shall prove that, when $\mu<a d^{-2}$, where $d>0$ is a constant determined by (3.5), the null solution is globally stable and that, when $\mu>a d^{-2}$, the null solution is unstable. The constant d can be estimated by an optimal coefficient of the Poincare inequality. In the latter case, there must exist non-null stationary solutions (remember that every trajectory converges to some stationary solution).

In the papers $[6,7,8,9]$, we handled the same fourth order parabolic equation but under the Neumann like boundary conditions $\frac{\partial u}{\partial n}=\frac{\partial}{\partial n} \Delta u=0$. Among others in [8] we studied stability and instability of the homogeneous stationary solution using the fact that, under these Neumann like boundary conditions, the fourth order operator Δ^{2} can be reduced into the product $(-\Delta)^{2}$ of the negative Laplace operator $-\Delta$ equipped with the usual Neumann boundary conditions which is a positive definite self-adjoint operator of $L_{2}(\Omega)$. In the present case, however, such a favorable reduction is not available and we have to handle a very fourth order elliptic operator.

Throughout the paper, Ω is a rectangular or \mathcal{C}^{4}, bounded domain in \mathbb{R}^{2}. And $n(x)$ denotes the outer normal vector of the boundary at boundary point $x \in \partial \Omega$. As noticed by [2, Proposition 2.1], for $f \in L_{2}(\Omega)$, the elliptic problem $-\Delta^{2} u=f$ in Ω under the conditions $u=\frac{\partial u}{\partial n}=0$ on $\partial \Omega$ admits a unique solution u such that $u \in H^{4}(\Omega)$. For $1 \leq p \leq \infty, L_{p}(\Omega)$ is the space of complex valued L_{p} functions in Ω. For $s \geq 0, H^{s}(\Omega)$ is the complex Sobolev space in Ω with exponent s. For $s \geq 0, H_{0}^{s}(\Omega)$ denotes the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ (the space of all infinitely differentiable functions with compact support) in the topology of $H^{s}(\Omega)$. The coefficients $a>0$ and $\mu>0$ are given constants.

2 Reviews of known results In this section, let us review known results obtained in the previous papers [1, 2].
Abstract Formulation. As in [1, 2], we formulate (1.1) as the Cauchy problem for a semilinear abstract evolution equation

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u=f(u), \quad 0<t<\infty \tag{2.1}\\
u(0)=u_{0}
\end{array}\right.
$$

in the underlying space $X=L_{2}(\Omega)$. Here, A is an associated linear operator in the framework of a triplet $H_{0}^{2}(\Omega) \subset L_{2}(\Omega) \subset H^{-2}(\Omega)\left(=H_{0}^{2}(\Omega)^{\prime}\right)$ with a symmetric sesquilinear form defined by

$$
a(u, v)=a \int_{\Omega} \Delta u \cdot \Delta \bar{v} d x, \quad u, v \in H_{0}^{2}(\Omega)
$$

(cf. [4]). Then, A is a positive definite self-adjoint operator of X with domain $\mathcal{D}(A) \subset$ $H_{0}^{2}(\Omega)$. The operator A is considered as a realization of the fourth order operator $a \Delta^{2}$ in X under the conditions $u=\frac{\partial u}{\partial n}=0$ on $\partial \Omega$.

As seen by [2, Proposition 2.1], our assumption on Ω yields a characterization of $\mathcal{D}(A)$ in such a way that $\mathcal{D}(A)=H^{4}(\Omega) \cap H_{0}^{2}(\Omega)$ with norm equivalence. As the sesquilinear form is symmetric, $\mathcal{D}\left(A^{\frac{1}{2}}\right)$ coincides with the from domain, i.e., $\mathcal{D}\left(A^{\frac{1}{2}}\right)=H_{0}^{2}(\Omega)$ with norm equivalence. By interpolation, we can then verify that, for $\frac{1}{2} \leq \theta \leq 1$,

$$
\mathcal{D}\left(A^{\theta}\right) \subset H^{4 \theta}(\Omega) \cap H_{0}^{2}(\Omega)
$$

and for $0 \leq \theta<\frac{1}{2}$,

$$
\mathcal{D}\left(A^{\theta}\right) \subset H^{4 \theta}(\Omega)
$$

In addition, for any $0 \leq \theta \leq 1$, the inequality

$$
\begin{equation*}
\|u\|_{H^{4 \theta}} \leq C\left\|A^{\theta} u\right\|_{X}, \quad u \in \mathcal{D}\left(A^{\theta}\right) \tag{2.2}
\end{equation*}
$$

is satisfied, namely, the embedding described above is continuous.
Meanwhile, f is a nonlinear operator defined by

$$
\begin{align*}
f(u) & =-\mu \nabla \cdot\left(\frac{\nabla u}{1+|\nabla u|^{2}}\right) \tag{2.3}\\
& =-\mu\left[\frac{\Delta u}{1+|\nabla u|^{2}}-\frac{\nabla|\nabla u|^{2} \cdot \nabla u}{\left(1+|\nabla u|^{2}\right)^{2}}\right], \quad u \in \mathcal{D}\left(A^{\frac{7}{8}}\right) .
\end{align*}
$$

Note that, since $\mathcal{D}\left(A^{\frac{7}{8}}\right) \subset H^{\frac{7}{2}}(\Omega)$ due to (2.2) and $H^{\frac{7}{2}}(\Omega) \subset \mathcal{C}^{2}(\bar{\Omega}), u \in \mathcal{D}\left(A^{\frac{7}{8}}\right)$ certainly implies $f(u) \in L_{2}(\Omega)$. Furthermore, according to [2, (2.8)], it holds true that

$$
\begin{align*}
\|f(u)-f(v)\|_{X} \leq C[& \left\|A^{\frac{1}{2}}(u-v)\right\|_{X} \tag{2.4}\\
& \left.+\left(\left\|A^{\frac{7}{8}} u\right\|_{X}+\left\|A^{\frac{7}{8}} v\right\|_{X}\right)\left\|A^{\frac{1}{4}}(u-v)\right\|_{X}\right], \quad u, v \in \mathcal{D}\left(A^{\frac{7}{8}}\right) .
\end{align*}
$$

The general result on abstract semilinear evolution equations (cf. [17, Theorem 4.1]) readily provides local existence of solutions. For any $u_{0} \in \mathcal{D}\left(A^{\frac{1}{4}}\right)$, (2.1) possesses a unique local solution. As a matter of fact, we can formulate (1.1) even in a larger underlying space $H^{-2}(\Omega)$ of the form (2.1). As shown in [1], for any $u_{0} \in H^{-2}(\Omega)$, there exists a unique local solution. Combining these two existence results, we can claim that, for any $u_{0} \in L_{2}(\Omega)=X$, (2.1) possesses a unique local solution in the function space:

$$
\begin{equation*}
u \in \mathcal{C}\left(\left(0, T_{u_{0}}\right] ; \mathcal{D}(A)\right) \cap \mathcal{C}\left(\left[0, T_{u_{0}}\right] ; X\right) \cap \mathcal{C}^{1}\left(\left(0, T_{u_{0}}\right] ; X\right) \tag{2.5}
\end{equation*}
$$

$T_{u_{0}}>0$ being determined by the norm $\left\|u_{0}\right\|_{X}$ alone.
In the subsequent sections, we need to use differentiability of $f(u)$.
Proposition 2.1. $f: \mathcal{D}\left(A^{\frac{7}{8}}\right) \rightarrow X$ is Fréchet differentiable with derivative

$$
f^{\prime}(u) h=-\mu \nabla \cdot\left(\frac{\nabla h}{1+|\nabla u|^{2}}-\frac{2(\nabla u \cdot \nabla h) \nabla u}{\left(1+|\nabla u|^{2}\right)^{2}}\right), \quad u, h \in \mathcal{D}\left(A^{\frac{7}{8}}\right)
$$

Proof. Let $u, h \in \mathcal{D}\left(A^{\frac{7}{8}}\right)$. From (2.3) it follows that

$$
\begin{aligned}
f(u+h)-f(u)=-\mu \nabla \cdot\left[\left(\frac{1}{1+|\nabla(u+h)|^{2}}-\frac{1}{1+|\nabla u|^{2}}\right) \nabla(u+h)\right] \\
-\mu \nabla \cdot\left(\frac{\nabla(u+h)-\nabla u}{1+|\nabla u|^{2}}\right) \\
=-\mu \nabla \cdot\left[\frac{\left(-2 \nabla u \cdot \nabla h-|\nabla h|^{2}\right) \nabla(u+h)}{\left(1+|\nabla(u+h)|^{2}\right)\left(1+|\nabla u|^{2}\right)}\right]-\mu \nabla \cdot\left(\frac{\nabla h}{1+|\nabla u|^{2}}\right) .
\end{aligned}
$$

By the similar calculations as for (2.4),

$$
\left\|f(u+h)-f(u)-f^{\prime}(u) h\right\|_{X} \leq C\left\|A^{\frac{7}{8}} h\right\|_{X}^{2}\left(\left\|A^{\frac{7}{8}} u\right\|_{X}+\left\|A^{\frac{7}{8}} h\right\|_{X}\right) .
$$

This means that $f: \mathcal{D}\left(A^{\frac{7}{8}}\right) \rightarrow X$ is Fréchet differentiable at u.

Proposition 2.2. Let $u \in \mathcal{D}\left(A^{\frac{7}{8}}\right)$ varies in a ball $B^{\mathcal{D}\left(A^{\frac{1}{2}}\right)}(0 ; 1)$. Then, $f^{\prime}(u)$ satisfies the Lipschitz condition

$$
\begin{aligned}
& \left\|\left[f^{\prime}(u)-f^{\prime}(v)\right] h\right\|_{X} \leq C\left\|A^{\frac{1}{2}}(u-v)\right\|_{X}\left\|A^{\frac{7}{8}} h\right\|_{X} \\
& \quad u, v \in \mathcal{D}\left(A^{\frac{7}{8}}\right) \cap B^{\mathcal{D}\left(A^{\frac{1}{2}}\right)}(0 ; 1) ; h \in \mathcal{D}\left(A^{\frac{7}{8}}\right) .
\end{aligned}
$$

Proof. From the formula giving $f^{\prime}(u)$, we can estimate directly the difference $f^{\prime}(u)-f^{\prime}(v)$.

Dynamical System. The [2, Proposition 3.1] provides a priori estimates for local solutions obtained above in the space (2.5). Indeed, any local solution to (2.1) on interval $\left[0, T_{u}\right]$ satisfies the estimate

$$
\|u(t)\|_{X}^{2} \leq e^{-2 \delta t}\left\|u_{0}\right\|_{X}^{2}+\mu \delta^{-1}, \quad 0 \leq t \leq T_{u}
$$

with some fixed exponent $\delta>0$. Then, by the standard argument, we conclude that, for any $u_{0} \in X,(2.1)$ possesses a unique global solution u in the function space:

$$
\begin{equation*}
u \in \mathcal{C}((0, \infty) ; \mathcal{D}(A)) \cap \mathcal{C}([0, \infty) ; X) \cap \mathcal{C}^{1}((0, \infty) ; X) \tag{2.6}
\end{equation*}
$$

Furthermore, u also satisfies the same estimate

$$
\begin{equation*}
\|u(t)\|_{X}^{2} \leq e^{-2 \delta t}\left\|u_{0}\right\|_{X}^{2}+\mu \delta^{-1}, \quad 0 \leq t<\infty \tag{2.7}
\end{equation*}
$$

which shows dissipation of u. Set a nonlinear semigroup $S(t), 0 \leq t<\infty$, on X by $S(t) u_{0}=u\left(t ; u_{0}\right)$, using the global solution $u\left(t ; u_{0}\right)$ to (2.1) with initial data $u_{0} \in X$. Then, we obtain a dynamical system $(S(t), X)$ generated by (2.1). The dissipate estimates yield existence of a finite-dimensional attractor \mathcal{M} which attracts every trajectory $S(t) u_{0}$ at an exponential rate. Such an attractor is called the exponential attractor. In particular, we know that every trajectory has a nonempty ω-limit set $\omega\left(u_{0}\right)$.

As shown by [1, Section 5], our system $(S(t), X)$ admits a Lyapunov function of the from

$$
\begin{equation*}
\Phi(u)=\frac{1}{2} \int_{\Omega}\left[a|\Delta u|^{2}-\mu \log \left(1+|\nabla u|^{2}\right)\right] d x, \quad u \in H_{0}^{2}(\Omega) \tag{2.8}
\end{equation*}
$$

That is, the value $\Phi\left(S(t) u_{0}\right)$ is monotone decreasing as $t \rightarrow \infty$ along any trajectory. Furthermore, it is seen that, for $\bar{u} \in \mathcal{D}(A), \Phi^{\prime}(\bar{u})=0$ and $A \bar{u}=f(\bar{u})$ (i.e., \bar{u} is a stationary solution) are equivalent. From this equivalence, we see that, if $\bar{u} \in \omega\left(u_{0}\right)$, then \bar{u} must be a stationary solution of (2.1). The set $\omega\left(u_{0}\right)$ consists only of stationary solutions.

Convergence of Solutions. The objective of [2] was then to show that $\omega\left(u_{0}\right)$ is a singleton for every u_{0}. We proved that $\Phi(u)$ satisfies the Łojasiewicz-Simon inequality

$$
\left\|\Phi^{\prime}(u)\right\|_{H^{-2}} \geq D|\Phi(u)-\Phi(\bar{u})|^{1-\theta}
$$

in a neighborhood of \bar{u}, where $\bar{u} \in \omega\left(u_{0}\right)$, with some exponent $0<\theta \leq \frac{1}{2}$. This inequality readily implies that

$$
\begin{equation*}
\left\|S(t) u_{0}-\bar{u}\right\|_{X} \leq C\left[\Phi\left(S(t) u_{0}\right)-\Phi(\bar{u})\right]^{\theta} . \tag{2.9}
\end{equation*}
$$

As $\Phi\left(S(t) u_{0}\right)$ converges to $\Phi(\bar{u})$ as $t \rightarrow \infty$, we observe that $S(t) u_{0}$ converges to \bar{u} in X with some rate of convergence.

3 Linearized Stability Let us now investigate stability and instability of the stationary solutions of (2.1). For this purpose, we will employ the general methods for abstract evolution equations, see $[3,15]$.

Let $\bar{u} \in \mathcal{D}(A)$ be any stationary solution to (2.1), i.e., $A \bar{u}=f(\bar{u})$. By Propositions 2.1 and 2.2, $f: \mathcal{D}\left(A^{\frac{7}{8}}\right) \rightarrow X$ is of class $\mathcal{C}^{1,1}$ in a neighborhood of \bar{u}, and the derivative satisfies a Lipschitz condition

$$
\left\|\left[f^{\prime}(u)-f^{\prime}(v)\right] h\right\|_{X} \leq C\left\|A^{\frac{1}{2}}(u-v)\right\|_{X}\left\|A^{\frac{7}{8}} h\right\|_{X}, \quad u, v \in \mathcal{D}\left(A^{\frac{7}{8}}\right) \cap \mathcal{O}(\bar{u}) ; h \in \mathcal{D}\left(A^{\eta}\right)
$$

$\mathcal{O}(\bar{u})$ being a neighborhood of \bar{u} in $\mathcal{D}\left(A^{\frac{1}{2}}\right)$. It is known that this condition in turn implies Fréchet differentiability of the semigroup. Indeed, for $0 \leq t \leq t^{*}$ where $t^{*}>0$ is arbitrarily fixed time, $S(t): \mathcal{D}\left(A^{\frac{1}{2}}\right) \rightarrow \mathcal{D}\left(A^{\frac{1}{2}}\right)$ is of class $\mathcal{C}^{1,1}$ in a neighborhood $\mathcal{O}^{\prime}(\bar{u})$ of \bar{u} in $\mathcal{D}\left(A^{\frac{1}{2}}\right)$ together with the estimate

$$
\begin{equation*}
\left\|S(t)^{\prime} u-S(t)^{\prime} v\right\|_{\mathcal{L}\left(\mathcal{D}\left(A^{\frac{1}{2}}\right)\right)} \leq C\left\|A^{\frac{1}{2}}(u-v)\right\|_{X}, \quad u, v \in \mathcal{O}^{\prime}(\bar{u}) ; 0 \leq t \leq t^{*} \tag{3.1}
\end{equation*}
$$

For the detailed proof, see the proof of [17, Subsection 6.6.3].
We here assume a spectral separation condition for $\sigma\left(A-f^{\prime}(\bar{u})\right)$ of the form

$$
\sigma\left(A-f^{\prime}(\bar{u})\right) \cap\{\lambda \in \mathbb{C} ; \operatorname{Re} \lambda=0\}=\emptyset
$$

Then, since $S(t)^{\prime} \bar{u}=e^{-t \bar{A}}$, where $\bar{A}=A-F^{\prime}(\bar{u})$, we have in turn a spectral separation for $S(t)^{\prime} \bar{u}$ of the from

$$
\begin{equation*}
\sigma\left(S(t)^{\prime} \bar{u}\right) \cap\{\lambda \in \mathbb{C} ;|\lambda|=1\}=\emptyset \tag{3.2}
\end{equation*}
$$

According to [17, Theorem 6.9], under (3.1) and (3.2), a smooth local unstable manifold $\mathcal{M}_{+}(\bar{u} ; \mathcal{O})$ can be constructed in a neighborhood \mathcal{O} of \bar{u} in $\mathcal{D}\left(A^{\frac{1}{2}}\right)$. When

$$
\begin{equation*}
\sigma\left(A-F^{\prime}(\bar{u})\right) \subset\{\lambda \in \mathbb{C} ; \operatorname{Re} \lambda>0\} \tag{3.3}
\end{equation*}
$$

we have $\sigma\left(S(t)^{\prime} \bar{u}\right) \subset\{\lambda \in \mathbb{C} ;|\lambda|<1\}$ and $\mathcal{M}_{+}(\bar{u} ; \mathcal{O})$ reduces to a singleton $\{\bar{u}\}$. Whence, if (3.3) takes place, \bar{u} is stable. In the meantime, when

$$
\begin{equation*}
\sigma\left(A-f^{\prime}(\bar{u})\right) \cap\{\lambda \in \mathbb{C} ; \operatorname{Re} \lambda<0\} \neq \emptyset \tag{3.4}
\end{equation*}
$$

we have $\sigma\left(S(t)^{\prime} \bar{u}\right) \cap\{\lambda \in \mathbb{C} ;|\lambda|>1\} \neq \emptyset$ and $\mathcal{M}_{+}(\bar{u} ; \mathcal{O})$ is not trivial. Whence, if (3.4) takes place, \bar{u} is unstable.

Let us now apply these discussions to the null solution $\bar{u} \equiv 0$. We see from Proposition 2.1 that $A-f^{\prime}(0)=a \Delta^{2}+\mu \Delta$. So, it is necessary to investigate the spectrum of the operator $a \Delta^{2}+\mu \Delta$. To this end, we will introduce a normalization of A; indeed, when $a=1$, we denote $A=A_{1}$; and, regarding a as a positive parameter, we denote in general $A=a A_{1}$. Of course, A_{1} is a realization of the operator Δ^{2} in $L_{2}(\Omega)$ under the homogeneous Dirichlet conditions on $\partial \Omega$, and is a positive definite self-adjoint operator of X. As verified above, we have $\mathcal{D}\left(A_{1}\right)=H^{4}(\Omega) \cap H_{0}^{2}(\Omega)$ with norm equivalence and $\mathcal{D}\left(A_{1}^{\frac{1}{2}}\right)=H_{0}^{2}(\Omega)$ with norm equivalence.

We here notice a fact that a mapping $u \mapsto \frac{\|\nabla u\|_{X}}{\|\Delta u\|_{X}}$ is continuous from $H_{0}^{2}(\Omega)-\{0\}$ into \mathbb{R} and has a maximum on the sphere $\left\|A_{1} u\right\|_{X}=1$ because of compact embedding $\mathcal{D}\left(A_{1}\right) \subset \mathcal{D}\left(A_{1}^{\frac{1}{2}}\right)$. Put

$$
\begin{equation*}
d \equiv \max _{\left\|A_{1} u\right\|_{X}=1} \frac{\|\nabla u\|_{X}}{\|\Delta u\|_{X}} \tag{3.5}
\end{equation*}
$$

In other words, the d is an optimal coefficient in the inequality

$$
\|\nabla u\|_{X} \leq d\|\Delta u\|_{X} \quad u \in \mathcal{D}\left(A_{1}\right)
$$

Stability of the null solution is then determined by dominance in magnitude of the two coefficients a and μ to the other but with weight d^{-2} for a.

Theorem 3.1. If $a d^{-2}>\mu$, then the null solution is stable. If $a d^{-2}<\mu$, then the null solution is unstable.

Proof. We notice that $a \Delta^{2}+\mu \Delta$ is a self-adjoint operator of X whose domain $H^{4}(\Omega) \cap H_{0}^{2}(\Omega)$ is compactly embedded in $L_{2}(\Omega)$. Therefore, the spectrum set $\sigma\left(a \Delta^{2}+\mu \Delta\right)$ is contained in the real axis and consists of point spectrum alone.

For any $u \in \mathcal{D}\left(A_{1}\right)-\{0\}$, we observe that

$$
\left(a \Delta^{2} u+\mu \Delta u, u\right)=a\|\Delta u\|_{X}^{2}-\mu\|\nabla u\|_{X}^{2} \geq\left(a d^{-2}-\mu\right)\|\nabla u\|_{X}^{2}>0,
$$

provided $a d^{-2}>\mu$. Therefore, if μ is dominated as $\mu<a d^{-2}$, then $\sigma\left(a \Delta^{2}+\mu \Delta\right) \subset(0, \infty)$ and the null solution is stable. To the contrary, if μ is large enough so that $\mu>a d^{-2}$, i.e., $d>\sqrt{\frac{a}{\mu}}$, then there exists an element $u_{0} \in \mathcal{D}\left(A_{1}\right)-\{0\}$ such that $\left\|\nabla u_{0}\right\|_{X}>\sqrt{\frac{a}{\mu}}\left\|\Delta u_{0}\right\|_{X}$. Therefore,

$$
\left(a \Delta^{2} u_{0}+\mu \Delta u_{0}, u_{0}\right)=a\left\|\Delta u_{0}\right\|_{X}^{2}-\mu\left\|\nabla u_{0}\right\|_{X}^{2}<0 .
$$

This means that $\sigma\left(a \Delta^{2}+\mu \Delta\right) \cap(-\infty, 0) \neq \emptyset$. Hence, the null solution is unstable.
As a matter of fact, when $a d^{-2}>\mu$, every trajectory converges to 0 , that is, the null solution is globally stable.

Theorem 3.2. Let $a d^{-2}>\mu$. For any $u_{0} \in X, S(t) u_{0}$ converges to 0 as $t \rightarrow \infty$ at an exponential rate.

Proof. Multiply the equation of (1.1) by \bar{u} and integrate the product in Ω. Then,

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}|u|^{2} d x+a \int_{\Omega}|\Delta u|^{2} d x & =\mu \int_{\Omega} \frac{|\nabla u|^{2}}{1+|\nabla u|^{2}} d x \\
& \leq \mu \int_{\Omega}|\nabla u|^{2} d x
\end{aligned}
$$

It then follows from (3.5) that

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|_{X}^{2} d x \leq-\left(a d^{-2}-\mu\right)\|\nabla u(t)\|_{X}^{2} \leq-\left(a d^{-2}-\mu\right) D^{-1}\|u(t)\|_{X}^{2}
$$

where $D>0$ is a coefficient for the Poincare inequality given by (4.1) below. Hence, $\|u(t)\|_{X} \leq e^{-\left(a d^{-2}-\mu\right) D^{-1} t}\left\|u_{0}\right\|_{X}$ for $t \geq 0$.

4 Estimation of d from above. The weight constant d can be easily estimated from above from the Poincare inequality

$$
\begin{equation*}
\|u\|_{X} \leq D\|\nabla u\|_{X} \quad u \in H_{0}^{1}(\Omega) \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let d be the constant determined by (3.5) and let D be an optimal coefficient for the Poincare inequality (4.1). Then, it always holds true that $d \leq D$.

Proof. Indeed,

$$
\|\nabla u\|_{X}^{2}=(-\Delta u, u) \leq\|\Delta u\|_{X}\|u\|_{X} \leq D\|\Delta u\|_{X}\|\nabla u\|_{X}, \quad u \in H_{0}^{2}(\Omega)
$$

Therefore, $\|\nabla u\|_{X} \leq D\|\Delta u\|_{X}$ for $u \in H_{0}^{2}(\Omega)$. Of course, it holds that $\|\nabla u\|_{X} \leq D\|\Delta u\|_{X}$ for $u \in \mathcal{D}\left(A_{1}\right)$.

The coefficient D is usually estimated by the band width of Ω, see [4, Section 4.7].
The rest of this section is devoted to obtaining an optimal estimate of D in the specific case where

$$
\Omega=\left\{\left(x_{1}, x_{2}\right) ; 0<x_{1}<\ell_{1}, 0<x_{2}<\ell_{2}\right\} .
$$

Let Λ denote a realization of $-\Delta$ equipped with the boundary condition $u=0$ in $L_{2}(\Omega)$. Then, Λ is a positive definite self-adjoint operator of $L_{2}(\Omega)$ with domain $\mathcal{D}(\Lambda)=H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$. Furthermore, since its minimal eigenvalue is $\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}$ with eigenfunction $\sin \frac{\pi}{\ell_{1}} x_{1}$. $\sin \frac{\pi}{\ell_{2}} x_{2}$, we have $(\Lambda u, u) \geq\left(\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}\right)\|u\|_{X}^{2}$ for any $u \in \mathcal{D}(\Lambda)$. It then follows that

$$
\|\nabla u\|_{X}^{2}=(-\Delta u, u) \geq\left(\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}\right)\|u\|_{X}^{2}, \quad u \in \mathcal{D}(\Lambda)
$$

Since $\mathcal{D}(\Lambda)$ is dense in $\mathcal{D}\left(\Lambda^{\frac{1}{2}}\right)$ and since $\mathcal{D}\left(\Lambda^{\frac{1}{2}}\right)$ coincides with $H_{0}^{1}(\Omega)$, this inequality holds true for every $u \in H_{0}^{1}(\Omega)$. Hence, (4.1) takes place with $D=\left(\frac{\pi^{2}}{\ell_{1}^{2}}+\frac{\pi^{2}}{\ell_{2}^{2}}\right)^{-\frac{1}{2}}$ and, in fact, this is optimal.

Theorem 4.2. Let $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right)$. Then, an optimal coefficient D for the Poincare inequality (4.1) is given by $D=\frac{\ell_{1} \ell_{2}}{\pi \sqrt{\ell_{1}^{2}+\ell_{2}^{2}}}$. Consequently, the weight constant d is estimated by $d \leq \frac{\ell_{1} \ell_{2}}{\pi \sqrt{\ell_{1}^{2}+\ell_{2}^{2}}}$.
Corollary 1. Let $\Omega=\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right)$. If $\mu<\frac{\pi^{2}\left(\ell_{1}^{2}+\ell_{2}^{2}\right) a}{\ell_{1}^{2} \ell_{2}^{2}}$, then the null solution is globally stable.

5 Numerical Results Let us here illustrate some numerical examples which shows some agreements to Corollary 1. We consider (1.1) in one of the following rectangular domains

$$
\Omega=\left(0, \frac{1}{\ell}\right) \times(0, \ell), \quad \text { where } \ell \text { is } 1,2 \text { or } 4
$$

When $\ell=1, \Omega$ is square. Otherwise, Ω is strictly rectangular. The area of Ω is constantly equal to 1 . The coefficients a and μ are fixed as $a=1$ and $\mu=40$.

Set first $\Omega=(0,1) \times(0,1)$. We also set the initial function as

$$
u_{0}\left(x_{1}, x_{2}\right)=0.1\left[\sin \left(3.14 x_{1}\right) \times \sin \left(3.14 x_{2}\right)\right], \quad\left(x_{1}, x_{2}\right) \in \Omega
$$

see Figure 1 (a). This is a small perturbation of the null solution. The solution then converges to some non-null stationary solution as $t \rightarrow \infty$. Its profile is given by Figure 1 (b). This means that the null stationary solution is unstable.

Set secondly $\Omega=\left(0, \frac{1}{2}\right) \times(0,2)$. We accordingly replace the initial function with

$$
u_{0}\left(x_{1}, x_{2}\right)=0.1\left[\sin \left(2 \cdot 3.14 x_{1}\right) \times \sin \left(3.14 x_{2}\right)\right], \quad\left(x_{1}, x_{2}\right) \in \Omega
$$

Fig. 1: Case where $\Omega=(0,1) \times(0,1)$
see Figure 2 (a). The solution again converges to some non-null stationary solution as $t \rightarrow \infty$ whose profile is given by Figure 2 (b). This means that the null stationary solution is still unstable.

Finally, set $\Omega=\left(0, \frac{1}{4}\right) \times(0,4)$, and replace the initial function with

$$
u_{0}\left(x_{1}, x_{2}\right)=0.1\left[\sin \left(4 \cdot 3.14 x_{1}\right) \times \sin \left(3.14 x_{2}\right)\right], \quad\left(x_{1}, x_{2}\right) \in \Omega
$$

see Figure 3 (a). As seen by Figure 3 (b), the solution now converges to the null solution. The domain Ω is slender enough to reduce the weight constant d in such a way that $d \leq$ $\frac{\ell_{1} \ell_{2}}{\pi \sqrt{\ell_{1}^{2}+\ell_{2}^{2}}}$ (by Theorem 4.2) and to globally stabilize the null solution as ensured by Corollary 1 .

References

[1] S. Azizi and A. Yagi, Dynamical system for epitaxial growth model under Dirichlet conditions, to appear.
[2] S. Azizi, G. Mola, and A. Yagi, Longtime convergence for epitaxial growth model under Dirichlet conditions, to appear.
[3] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[4] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Springer-Verlag, Berlin, 1988.
[5] G. Ehrlich and F. G. Hudda, Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44(1966), 1039-1049.
[6] H. Fujimura and A. Yagi, Dynamical system for BCF model describing crystal surface growth, Vestnik Chelyabinsk Univ. Ser. 3 Mat. Mekh. Inform. 10(2008), 75-88.
[7] H. Fujimura and A. Yagi, Asymptotic behavior of solutions for BCF model describing crystal surface growth, Int. Math. Forum 3(2008), 1803-1812.
[8] H. Fujimura and A. Yagi, Homogeneous stationary solution for BCF model describing crystal surface growth, Sci. Math. Jpn. 69(2009), 295-302.
[9] M. Graselli, G. Mola, and A. Yagi, On the longtime behavior of solutions to a model for epitaxial growth, Osaka J. Math. 48(2011), 987-1004.

Fig. 2: Case where $\Omega=\left(0, \frac{1}{2}\right) \times(0,2)$
[10] M. D. Johnson, C. Orme, A. W. Hunt,D. Graff,J. Sudijono, L. M. Sauder, and B. G. Orr, Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett. 72(1994), 116-119.
[11] S. G. Krein, Linear Differential Equations in Banach Space, AMS, 1971.
[12] W. W. Mullins, Theory of thermal grooving, J. Applied Phys. 28(1957), 333-339.
[13] R. L. Schwoebel and E. J. Shipsey, Step motion on crystal surfaces, J. Appl. Phys. 37(1966), 3682-3686.
[14] H. Tanabe, Equations of Evolution, Iwanami Shoten, 1975 (in Japanese); English translation: Pitman, 1979.
H. Tanabe, Evolution Equations, Pitman, 1979.
[15] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, Berlin, 1997.
[16] M. Uwaha, Study on Mechanism of Crystal Growth, Kyoritsu Publisher, 2002 (in Japanese).
[17] A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, 2010.
Communicated by Atsushi Yagi
Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

Fig. 3: Case where $\Omega=\left(0, \frac{1}{4}\right) \times(0,4)$

[^0]: ${ }^{1}$ This work is supported by Grant-in-Aid for Scientific Research (No. 26400166) of the Japan Society for the Promotion of Science.

 2000 Mathematics Subject Classification. (2010) 35K55, 37L15, 74E15.
 Key words and phrases. Epitaxial Growth, Stationary Solutions, Stability and Instability.

