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Abstract. This paper continues a study on the initial-boundary value problem for a
nonlinear parabolic equation of fourth order under the homogeneous Dirichlet bound-
ary conditions. The parabolic equation has been presented by Johnson-Orme-Hunt-
Graff-Sudijono-Sauder-Orr [10] in order to describe the large-scale features of a grow-
ing crystal surface under molecular beam epitaxy. In the previous papers [1, 2], we
constructed a dynamical system generated by the problem and showed that every tra-
jectory converges to some stationary solution as t → ∞. This paper is then devoted to
investigating stability or instability of the null solution which is a unique homogeneous
stationary solution. We shall also illustrate some numerical results to observe how
changes the structure of stationary solutions as the roughening coefficient increases.

1 Introduction We are concerned with the initial-boundary value problem for a nonlin-
ear parabolic equation of fourth order

(1.1)


∂u

∂t
= −a∆2u− µ∇ ·

(
∇u

1 + |∇u|2

)
in Ω × (0,∞),

u =
∂u

∂n
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x) in Ω,

in a two-dimensional bounded domain Ω. Such a nonlinear parabolic equation has been
presented by Johnson-Orme-Hunt-Graff-Sudijono-Sauder-Orr [10] in order to describe the
large-scale features of a growing crystal surface under molecular beam epitaxy. Here, Ω
denotes a substrate domain and the unknown function u = u(x, t) denotes a displacement
of surface height from the standard level at position x ∈ Ω and time t. For detailed physical
background, see [5, 12, 13, 16].

As in the preceding papers [1, 2], we will formulate (1.1) as the Cauchy problem for
an abstract parabolic equation of the form (2.1) with underlying space L2(Ω). In [1], we
constructed a dynamical system (S(t), L2(Ω)) generated by (2.1), where S(t) is a continuous
nonlinear semigroup acting on L2(Ω) determined by global solutions of (2.1). In addition,
the dynamical system was shown to have a finite-dimensional attractor and to admit a
Lyapunov function given by (2.8). In the subsequent paper [2], we succeeded in proving
longtime convergence. For any u0 ∈ L2(Ω), S(t)u0 was shown to converge as t → ∞ to a
stationary solution u of (2.1).

This paper is then concerned with stationary solutions of (2.1). Among others, we
are concerned with stability and instability of the null solution u ≡ 0. Clearly, the null
solution is a unique homogeneous stationary solution. For this purpose, we will appeal
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to the linearized principle in infinite-dimensional spaces invented by Babin-Vishik [3] and
Temam [15], see also [17, Section 6.6]. Indeed, we shall prove that, when µ < ad−2, where
d > 0 is a constant determined by (3.5), the null solution is globally stable and that, when
µ > ad−2, the null solution is unstable. The constant d can be estimated by an optimal
coefficient of the Poincare inequality. In the latter case, there must exist non-null stationary
solutions (remember that every trajectory converges to some stationary solution).

In the papers [6, 7, 8, 9], we handled the same fourth order parabolic equation but under
the Neumann like boundary conditions ∂u

∂n = ∂
∂n∆u = 0. Among others in [8] we studied

stability and instability of the homogeneous stationary solution using the fact that, under
these Neumann like boundary conditions, the fourth order operator ∆2 can be reduced into
the product (−∆)2 of the negative Laplace operator −∆ equipped with the usual Neumann
boundary conditions which is a positive definite self-adjoint operator of L2(Ω). In the
present case, however, such a favorable reduction is not available and we have to handle a
very fourth order elliptic operator.

Throughout the paper, Ω is a rectangular or C4, bounded domain in R2. And n(x)
denotes the outer normal vector of the boundary at boundary point x ∈ ∂Ω. As noticed by
[2, Proposition 2.1], for f ∈ L2(Ω), the elliptic problem −∆2u = f in Ω under the conditions
u = ∂u

∂n = 0 on ∂Ω admits a unique solution u such that u ∈ H4(Ω). For 1 ≤ p ≤ ∞, Lp(Ω)
is the space of complex valued Lp functions in Ω. For s ≥ 0, Hs(Ω) is the complex Sobolev
space in Ω with exponent s. For s ≥ 0, Hs

0(Ω) denotes the closure of C∞
0 (Ω) (the space of

all infinitely differentiable functions with compact support) in the topology of Hs(Ω). The
coefficients a > 0 and µ > 0 are given constants.

2 Reviews of known results In this section, let us review known results obtained in
the previous papers [1, 2].
Abstract Formulation. As in [1, 2], we formulate (1.1) as the Cauchy problem for a semilinear
abstract evolution equation

(2.1)


du

dt
+ Au = f(u), 0 < t < ∞,

u(0) = u0,

in the underlying space X = L2(Ω). Here, A is an associated linear operator in the frame-
work of a triplet H2

0 (Ω) ⊂ L2(Ω) ⊂ H−2(Ω) (= H2
0 (Ω)′) with a symmetric sesquilinear form

defined by

a(u, v) = a

∫
Ω

∆u ·∆v dx, u, v ∈ H2
0 (Ω),

(cf. [4]). Then, A is a positive definite self-adjoint operator of X with domain D(A) ⊂
H2

0 (Ω). The operator A is considered as a realization of the fourth order operator a∆2 in
X under the conditions u = ∂u

∂n = 0 on ∂Ω.
As seen by [2, Proposition 2.1], our assumption on Ω yields a characterization of D(A)

in such a way that D(A) = H4(Ω) ∩ H2
0 (Ω) with norm equivalence. As the sesquilinear

form is symmetric, D(A
1
2 ) coincides with the from domain, i.e., D(A

1
2 ) = H2

0 (Ω) with norm
equivalence. By interpolation, we can then verify that, for 1

2 ≤ θ ≤ 1,

D(Aθ) ⊂ H4θ(Ω) ∩H2
0 (Ω),

and for 0 ≤ θ < 1
2 ,

D(Aθ) ⊂ H4θ(Ω).
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In addition, for any 0 ≤ θ ≤ 1, the inequality

(2.2) ‖u‖H4θ ≤ C‖Aθu‖X , u ∈ D(Aθ),

is satisfied, namely, the embedding described above is continuous.
Meanwhile, f is a nonlinear operator defined by

f(u) = −µ∇ ·
(

∇u

1 + |∇u|2

)
(2.3)

= −µ

[
∆u

1 + |∇u|2
− ∇|∇u|2 · ∇u

(1 + |∇u|2)2

]
, u ∈ D(A

7
8 ).

Note that, since D(A
7
8 ) ⊂ H

7
2 (Ω) due to (2.2) and H

7
2 (Ω) ⊂ C2(Ω), u ∈ D(A

7
8 ) certainly

implies f(u) ∈ L2(Ω). Furthermore, according to [2, (2.8)], it holds true that

(2.4) ‖f(u) − f(v)‖X ≤ C
[
‖A 1

2 (u− v)‖X
+ (‖A 7

8u‖X + ‖A 7
8 v‖X)‖A 1

4 (u− v)‖X
]
, u, v ∈ D(A

7
8 ).

The general result on abstract semilinear evolution equations (cf. [17, Theorem 4.1]) readily

provides local existence of solutions. For any u0 ∈ D(A
1
4 ), (2.1) possesses a unique local

solution. As a matter of fact, we can formulate (1.1) even in a larger underlying space
H−2(Ω) of the form (2.1). As shown in [1], for any u0 ∈ H−2(Ω), there exists a unique local
solution. Combining these two existence results, we can claim that, for any u0 ∈ L2(Ω) = X,
(2.1) possesses a unique local solution in the function space:

(2.5) u ∈ C((0, Tu0 ];D(A)) ∩ C([0, Tu0 ];X) ∩ C1((0, Tu0 ];X),

Tu0 > 0 being determined by the norm ‖u0‖X alone.
In the subsequent sections, we need to use differentiability of f(u).

Proposition 2.1. f :D(A
7
8 ) → X is Fréchet differentiable with derivative

f ′(u)h = −µ∇ ·
(

∇h

1 + |∇u|2
− 2(∇u · ∇h)∇u

(1 + |∇u|2)2

)
, u, h ∈ D(A

7
8 ).

Proof. Let u, h ∈ D(A
7
8 ). From (2.3) it follows that

f(u + h) − f(u) = −µ∇ ·
[(

1

1 + |∇(u + h)|2
− 1

1 + |∇u|2

)
∇(u + h)

]
− µ∇ ·

(
∇(u + h) −∇u

1 + |∇u|2

)
= −µ∇ ·

[
(−2∇u · ∇h− |∇h|2)∇(u + h)

(1 + |∇(u + h)|2)(1 + |∇u|2)

]
− µ∇ ·

(
∇h

1 + |∇u|2

)
.

By the similar calculations as for (2.4),

‖f(u + h) − f(u) − f ′(u)h‖X ≤ C‖A 7
8h‖2X(‖A 7

8u‖X + ‖A 7
8h‖X).

This means that f :D(A
7
8 ) → X is Fréchet differentiable at u.
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Proposition 2.2. Let u ∈ D(A
7
8 ) varies in a ball BD(A

1
2 )(0; 1). Then, f ′(u) satisfies the

Lipschitz condition

‖[f ′(u) − f ′(v)]h‖X ≤ C‖A 1
2 (u− v)‖X‖A 7

8h‖X ,

u, v ∈ D(A
7
8 ) ∩BD(A

1
2 )(0; 1); h ∈ D(A

7
8 ).

Proof. From the formula giving f ′(u), we can estimate directly the difference f ′(u)− f ′(v).

Dynamical System. The [2, Proposition 3.1] provides a priori estimates for local solutions
obtained above in the space (2.5). Indeed, any local solution to (2.1) on interval [0, Tu]
satisfies the estimate

‖u(t)‖2X ≤ e−2δt‖u0‖2X + µδ−1, 0 ≤ t ≤ Tu,

with some fixed exponent δ > 0. Then, by the standard argument, we conclude that, for
any u0 ∈ X, (2.1) possesses a unique global solution u in the function space:

(2.6) u ∈ C((0,∞);D(A)) ∩ C([0,∞);X) ∩ C1((0,∞);X).

Furthermore, u also satisfies the same estimate

(2.7) ‖u(t)‖2X ≤ e−2δt‖u0‖2X + µδ−1, 0 ≤ t < ∞,

which shows dissipation of u. Set a nonlinear semigroup S(t), 0 ≤ t < ∞, on X by
S(t)u0 = u(t;u0), using the global solution u(t;u0) to (2.1) with initial data u0 ∈ X. Then,
we obtain a dynamical system (S(t), X) generated by (2.1). The dissipate estimates yield
existence of a finite-dimensional attractor M which attracts every trajectory S(t)u0 at an
exponential rate. Such an attractor is called the exponential attractor. In particular, we
know that every trajectory has a nonempty ω-limit set ω(u0).

As shown by [1, Section 5], our system (S(t), X) admits a Lyapunov function of the
from

(2.8) Φ(u) =
1

2

∫
Ω

[a|∆u|2 − µ log(1 + |∇u|2)]dx, u ∈ H2
0 (Ω).

That is, the value Φ(S(t)u0) is monotone decreasing as t → ∞ along any trajectory. Fur-
thermore, it is seen that, for u ∈ D(A), Φ′(u) = 0 and Au = f(u) (i.e., u is a stationary
solution) are equivalent. From this equivalence, we see that, if u ∈ ω(u0), then u must be
a stationary solution of (2.1). The set ω(u0) consists only of stationary solutions.

Convergence of Solutions. The objective of [2] was then to show that ω(u0) is a singleton
for every u0. We proved that Φ(u) satisfies the  Lojasiewicz-Simon inequality

‖Φ′(u)‖H−2 ≥ D|Φ(u) − Φ(u)|1−θ

in a neighborhood of u, where u ∈ ω(u0), with some exponent 0 < θ ≤ 1
2 . This inequality

readily implies that

(2.9) ‖S(t)u0 − u‖X ≤ C[Φ(S(t)u0) − Φ(u)]θ.

As Φ(S(t)u0) converges to Φ(u) as t → ∞, we observe that S(t)u0 converges to u in X with
some rate of convergence.
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3 Linearized Stability Let us now investigate stability and instability of the stationary
solutions of (2.1). For this purpose, we will employ the general methods for abstract
evolution equations, see [3, 15].

Let u ∈ D(A) be any stationary solution to (2.1), i.e., Au = f(u). By Propositions 2.1

and 2.2, f :D(A
7
8 ) → X is of class C1,1 in a neighborhood of u, and the derivative satisfies

a Lipschitz condition

‖[f ′(u) − f ′(v)]h‖X ≤ C‖A 1
2 (u− v)‖X‖A 7

8h‖X , u, v ∈ D(A
7
8 ) ∩ O(u); h ∈ D(Aη),

O(u) being a neighborhood of u in D(A
1
2 ). It is known that this condition in turn implies

Fréchet differentiability of the semigroup. Indeed, for 0 ≤ t ≤ t∗ where t∗ > 0 is arbitrarily
fixed time, S(t) :D(A

1
2 ) → D(A

1
2 ) is of class C1,1 in a neighborhood O′(u) of u in D(A

1
2 )

together with the estimate

(3.1) ‖S(t)′u− S(t)′v‖
L(D(A

1
2 ))

≤ C‖A 1
2 (u− v)‖X , u, v ∈ O′(u); 0 ≤ t ≤ t∗.

For the detailed proof, see the proof of [17, Subsection 6.6.3].
We here assume a spectral separation condition for σ(A− f ′(u)) of the form

σ(A− f ′(u)) ∩ {λ ∈ C; Reλ = 0} = ∅.

Then, since S(t)′u = e−tA, where A = A− F ′(u), we have in turn a spectral separation for
S(t)′u of the from

(3.2) σ(S(t)′u) ∩ {λ ∈ C; |λ| = 1} = ∅.

According to [17, Theorem 6.9], under (3.1) and (3.2), a smooth local unstable manifold

M+(u;O) can be constructed in a neighborhood O of u in D(A
1
2 ). When

(3.3) σ(A− F ′(u)) ⊂ {λ ∈ C; Reλ > 0},

we have σ(S(t)′u) ⊂ {λ ∈ C; |λ| < 1} and M+(u;O) reduces to a singleton {u}. Whence,
if (3.3) takes place, u is stable. In the meantime, when

(3.4) σ(A− f ′(u)) ∩ {λ ∈ C; Reλ < 0} 6= ∅,

we have σ(S(t)′u) ∩ {λ ∈ C; |λ| > 1} 6= ∅ and M+(u;O) is not trivial. Whence, if (3.4)
takes place, u is unstable.

Let us now apply these discussions to the null solution u ≡ 0. We see from Proposition
2.1 that A − f ′(0) = a∆2 + µ∆. So, it is necessary to investigate the spectrum of the
operator a∆2 + µ∆. To this end, we will introduce a normalization of A; indeed, when
a = 1, we denote A = A1; and, regarding a as a positive parameter, we denote in general
A = aA1. Of course, A1 is a realization of the operator ∆2 in L2(Ω) under the homogeneous
Dirichlet conditions on ∂Ω, and is a positive definite self-adjoint operator of X. As verified

above, we have D(A1) = H4(Ω) ∩H2
0 (Ω) with norm equivalence and D(A

1
2
1 ) = H2

0 (Ω) with
norm equivalence.

We here notice a fact that a mapping u 7→ ‖∇u‖X

‖∆u‖X
is continuous from H2

0 (Ω) − {0}
into R and has a maximum on the sphere ‖A1u‖X = 1 because of compact embedding

D(A1) ⊂ D(A
1
2
1 ). Put

(3.5) d ≡ max
‖A1u‖X=1

‖∇u‖X
‖∆u‖X

.
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In other words, the d is an optimal coefficient in the inequality

‖∇u‖X ≤ d‖∆u‖X u ∈ D(A1).

Stability of the null solution is then determined by dominance in magnitude of the two
coefficients a and µ to the other but with weight d−2 for a.

Theorem 3.1. If ad−2 > µ, then the null solution is stable. If ad−2 < µ, then the null
solution is unstable.

Proof. We notice that a∆2+µ∆ is a self-adjoint operator of X whose domain H4(Ω)∩H2
0 (Ω)

is compactly embedded in L2(Ω). Therefore, the spectrum set σ(a∆2 +µ∆) is contained in
the real axis and consists of point spectrum alone.

For any u ∈ D(A1) − {0}, we observe that

(a∆2u + µ∆u, u) = a‖∆u‖2X − µ‖∇u‖2X ≥ (ad−2 − µ)‖∇u‖2X > 0,

provided ad−2 > µ. Therefore, if µ is dominated as µ < ad−2, then σ(a∆2 + µ∆) ⊂ (0,∞)
and the null solution is stable. To the contrary, if µ is large enough so that µ > ad−2, i.e.,

d >
√

a
µ , then there exists an element u0 ∈ D(A1)−{0} such that ‖∇u0‖X >

√
a
µ‖∆u0‖X .

Therefore,
(a∆2u0 + µ∆u0, u0) = a‖∆u0‖2X − µ‖∇u0‖2X < 0.

This means that σ(a∆2 + µ∆) ∩ (−∞, 0) 6= ∅. Hence, the null solution is unstable.

As a matter of fact, when ad−2 > µ, every trajectory converges to 0, that is, the null
solution is globally stable.

Theorem 3.2. Let ad−2 > µ. For any u0 ∈ X, S(t)u0 converges to 0 as t → ∞ at an
exponential rate.

Proof. Multiply the equation of (1.1) by u and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

|u|2dx + a

∫
Ω

|∆u|2dx = µ

∫
Ω

|∇u|2

1 + |∇u|2
dx

≤ µ

∫
Ω

|∇u|2dx.

It then follows from (3.5) that

1

2

d

dt
‖u(t)‖2Xdx ≤ −(ad−2 − µ)‖∇u(t)‖2X ≤ −(ad−2 − µ)D−1‖u(t)‖2X ,

where D > 0 is a coefficient for the Poincare inequality given by (4.1) below. Hence,

‖u(t)‖X ≤ e−(ad−2−µ)D−1t‖u0‖X for t ≥ 0.

4 Estimation of d from above. The weight constant d can be easily estimated from
above from the Poincare inequality

(4.1) ‖u‖X ≤ D‖∇u‖X u ∈ H1
0 (Ω).

Theorem 4.1. Let d be the constant determined by (3.5) and let D be an optimal coefficient
for the Poincare inequality (4.1). Then, it always holds true that d ≤ D.
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Proof. Indeed,

‖∇u‖2X = (−∆u, u) ≤ ‖∆u‖X‖u‖X ≤ D‖∆u‖X‖∇u‖X , u ∈ H2
0 (Ω).

Therefore, ‖∇u‖X ≤ D‖∆u‖X for u ∈ H2
0 (Ω). Of course, it holds that ‖∇u‖X ≤ D‖∆u‖X

for u ∈ D(A1).

The coefficient D is usually estimated by the band width of Ω, see [4, Section 4.7].
The rest of this section is devoted to obtaining an optimal estimate of D in the specific

case where

Ω = {(x1, x2); 0 < x1 < `1, 0 < x2 < `2}.

Let Λ denote a realization of −∆ equipped with the boundary condition u = 0 in L2(Ω).
Then, Λ is a positive definite self-adjoint operator of L2(Ω) with domain D(Λ) = H2(Ω) ∩
H1

0 (Ω). Furthermore, since its minimal eigenvalue is π2

`21
+ π2

`22
with eigenfunction sin π

`1
x1 ·

sin π
`2
x2, we have (Λu, u) ≥

(
π2

`21
+ π2

`22

)
‖u‖2X for any u ∈ D(Λ). It then follows that

‖∇u‖2X = (−∆u, u) ≥
(

π2

`21
+ π2

`22

)
‖u‖2X , u ∈ D(Λ).

Since D(Λ) is dense in D(Λ
1
2 ) and since D(Λ

1
2 ) coincides with H1

0 (Ω), this inequality holds

true for every u ∈ H1
0 (Ω). Hence, (4.1) takes place with D =

(
π2

`21
+ π2

`22

)− 1
2

and, in fact,

this is optimal.

Theorem 4.2. Let Ω = (0, `1) × (0, `2). Then, an optimal coefficient D for the Poincare
inequality (4.1) is given by D = `1`2

π
√

`21+`22
. Consequently, the weight constant d is estimated

by d ≤ `1`2
π
√

`21+`22
.

Corollary 1. Let Ω = (0, `1) × (0, `2). If µ <
π2(`21+`22)a

`21`
2
2

, then the null solution is globally

stable.

5 Numerical Results Let us here illustrate some numerical examples which shows some
agreements to Corollary 1. We consider (1.1) in one of the following rectangular domains

Ω =
(
0, 1

`

)
× (0, `), where ` is 1, 2 or 4.

When ` = 1, Ω is square. Otherwise, Ω is strictly rectangular. The area of Ω is constantly
equal to 1. The coefficients a and µ are fixed as a = 1 and µ = 40.

Set first Ω = (0, 1) × (0, 1). We also set the initial function as

u0(x1, x2) = 0.1[sin(3.14x1) × sin(3.14x2)], (x1, x2) ∈ Ω,

see Figure 1 (a). This is a small perturbation of the null solution. The solution then
converges to some non-null stationary solution as t → ∞. Its profile is given by Figure 1
(b). This means that the null stationary solution is unstable.

Set secondly Ω =
(
0, 1

2

)
× (0, 2). We accordingly replace the initial function with

u0(x1, x2) = 0.1[sin(2 · 3.14x1) × sin(3.14x2)], (x1, x2) ∈ Ω,
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(a) t=0 (b) t=120

Fig. 1: Case where Ω = (0, 1) × (0, 1)

see Figure 2 (a). The solution again converges to some non-null stationary solution as
t → ∞ whose profile is given by Figure 2 (b). This means that the null stationary solution
is still unstable.

Finally, set Ω =
(
0, 1

4

)
× (0, 4), and replace the initial function with

u0(x1, x2) = 0.1[sin(4 · 3.14x1) × sin(3.14x2)], (x1, x2) ∈ Ω,

see Figure 3 (a). As seen by Figure 3 (b), the solution now converges to the null solution.
The domain Ω is slender enough to reduce the weight constant d in such a way that d ≤

`1`2
π
√

`21+`22
(by Theorem 4.2) and to globally stabilize the null solution as ensured by Corollary

1.
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(a) t=0 (b) t=240

Fig. 3: Case where Ω = (0, 1
4 ) × (0, 4)




