SEMI-G-STABLE IN DITOPOLOGICAL TEXTURE SPACES

HARIWAN ZIKRI IBRAHIM

Received September 18, 2014; revised December 14, 2015

ABSTRACT. In this paper, the author introduce and study new notions of continuity, compactness and stability in ditopological texture spaces based on the notions of semig-open and semi-g-closed sets and some of their characterizations are obtained.

1 Introduction Textures and ditopological texture spaces were first introduced by L. M. Brown as a point-based setting for the study fuzzy topology. The study of compactness and stability in ditopological texture spaces was started to begin in [6]. In this paper, we introduce and study the concepts of semi-g-bicontinuity, semi-g-bi-irresolute, semi-g-compactness and semi-g-stability in ditopological texture spaces.

2 Preliminaries The following are some basic definitions of textures we will need later on.

Texture space: [6] Let S be a set. Then $\varphi \subseteq P(S)$ is called a texturing of S, and S is said to be textured by φ if

1. (φ, \subseteq) is a complete lattice containing S and ϕ and for any index set I and $A_i \in \varphi$, $i \in I$, the meet $\bigwedge_{i \in I} A_i$ and the join $\bigvee_{i \in I} A_i$ in φ are related with the intersection and union in P(S) by the equalities

 $\bigwedge_{i \in I} A_i = \bigcap_{i \in I} A_i$ for all *I*, while $\bigvee_{i \in I} A_i = \bigcup_{i \in I} A_i$ for all finite *I*.

- 2. φ is completely distributive.
- 3. φ separates the points of S. That is, given $s_1 \neq s_2$ in S we have $L \in \varphi$ with $s_1 \in L$, $s_2 \notin L$, or $L \in \varphi$ with $s_2 \in L$, $s_1 \notin L$.

If S is textured by φ then (S, φ) is called a texture space, or simply a texture. **Complementation:** [6] A mapping $\sigma : \varphi \to \varphi$ satisfying $\sigma(\sigma(A)) = A$, $\forall A \in \varphi$ and $A \subseteq B \Rightarrow \sigma(B) \subseteq \sigma(A)$, $\forall A, B \in \varphi$ is called a complementation on (S, φ) and (S, φ, σ) is then said to be a complemented texture.

For a texture (S, φ) , most properties are conveniently dened in terms of the p-sets

$$P_s = \bigcap \{ A \in \varphi : s \in A \}$$

and the q-sets,

$$Q_s = \bigvee \{ A \in \varphi : s \notin A \}.$$

Ditopology: [6] A dichotomous topology on a texture (S, φ) , or ditopology for short, is a pair (τ, k) of subsets of φ , where the set of open sets τ satisfies

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05.

Key words and phrases. Texture, difunction, semi-g-bi-irresolute, semi-g-stability.

- 1. $S, \phi \in \tau$,
- 2. $G_1, G_2 \in \tau \Rightarrow G_1 \cap G_2 \in \tau$, and

3.
$$G_i \in \tau, i \in I \Rightarrow \bigvee_i G_i \in \tau,$$

and the set of closed sets k satisfies

- 1. $S, \phi \in k$,
- 2. $K_1, K_2 \in k \Rightarrow K_1 \cup K_2 \in k$, and
- 3. $K_i \in k, i \in I \Rightarrow \bigcap K_i \in k$.

Hence a ditopology is essentially a "topology" for which there is no a priori relation between the open and closed sets.

For $A \in \varphi$ we define the closure [A] and the interior A of A under (τ, k) by the equalities $[A] = \bigcap \{ K \in k : A \subseteq K \} \text{ and }]A[= \bigvee \{ G \in \tau : G \subseteq A \}$

We refer to τ as the topology and k as the cotopology of (τ, k) .

If (τ, k) is a ditopology on a complemented texture (S, φ, σ) , then we say that (τ, k) is complemented if the equality $k = \sigma(\tau)$ is satisfied. In this study, a complemented ditopological texture space is denoted by $(S, \varphi, \tau, k, \sigma)$. In this case we have $\sigma([A]) = \sigma(A)$ and $\sigma([A]) = [\sigma(A)]$.

We denote by $O(S, \varphi, \tau, k)$, or when there can be no confusion by O(S), the set of open sets in φ . Likewise, $C(S, \varphi, \tau, k)$, C(S) will denote the set of closed sets.

Let (S_1, φ_1) and (S_2, φ_2) be textures. In the following definition we consider the product texture [3] $P(S_1) \otimes \varphi_2$, and denote by $\overline{P}_{(s,t)}, \overline{Q}_{(s,t)}$, respectively the p-sets and q-sets for the product texture $(S_1 \times S_2, P(S_1) \otimes \varphi_2)$.

Direlation: [5] Let (S_1, φ_1) and (S_2, φ_2) be textures. Then

- 1. $r \in P(S_1) \otimes \varphi_2$ is called a relation from (S_1, φ_1) to (S_2, φ_2) if it satisfies **R1** $r \not\subseteq \overline{Q}_{(s,t)}, P_{s'} \not\subseteq Q_s \Rightarrow r \not\subseteq \overline{Q}_{(s',t)}.$ **R2** $r \not\subseteq \overline{Q}_{(s,t)} \Rightarrow \exists s' \in S_1$ such that $P_s \not\subseteq Q_{s'}$ and $r \not\subseteq \overline{Q}_{(s',t)}$.
- 2. $R \in P(S_1) \otimes \varphi_2$ is called a corelation from (S_1, φ_1) to (S_2, φ_2) if it satisfies $\begin{array}{l} \mathbf{CR1} \ \overline{P}_{(s,t)} \not\subseteq R, \, P_s \not\subseteq Q_{s'} \Rightarrow \overline{P}_{(s',t)} \not\subseteq R. \\ \mathbf{CR2} \ \overline{P}_{(s,t)} \not\subseteq R \Rightarrow \exists s^{'} \in S_1 \text{ such that } P_{s'} \not\subseteq Q_s \text{ and } \overline{P}_{(s',t)} \not\subseteq R. \end{array}$
- 3. A pair (r, R), where r is a relation and R a corelation from (S_1, φ_1) to (S_2, φ_2) is called a direlation from (S_1, φ_1) to (S_2, φ_2) .

One of the most useful notions of (ditopological) texture spaces is that of difunction. A difunction is a special type of direlation.

Difunctions: [5] Let (f, F) be a direlation from (S_1, φ_1) to (S_2, φ_2) . Then (f, F) is called a difunction from (S_1, φ_1) to (S_2, φ_2) if it satisfies the following two conditions. **DF1** For $s, s' \in S_1$, $P_s \not\subseteq Q_{s'} \Rightarrow \exists t \in S_2$ such that $f \not\subseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s',t)} \not\subseteq F$. **DF2** For $t, t' \in S_2$ and $s \in S_1$, $f \not\subseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s,t')} \not\subseteq F \Rightarrow P_{t'} \not\subseteq Q_t$. **Image and Inverse Image:** [5] Let $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be a difunction.

1. For $A \in \varphi_1$, the image $f^{\rightarrow}A$ and the co-image $F^{\rightarrow}A$ are defined by

$$\begin{split} f^{\rightarrow}A &= \bigcap \{Q_t : \forall s, f \not\subseteq \overline{Q}_{(s,t)} \Rightarrow A \subseteq Q_s\}, \\ F^{\rightarrow}A &= \bigvee \{P_t : \forall s, \overline{P}_{(s,t)} \not\subseteq F \Rightarrow P_s \subseteq A\}. \end{split}$$

2. For $B \in \varphi_2$, the inverse image $f^{\leftarrow}B$ and the inverse co-image $F^{\leftarrow}B$ are defined by

$$\begin{split} f^{\leftarrow}B &= \bigvee \{ P_s : \forall t, f \not\subseteq \overline{Q}_{(s,t)} \Rightarrow P_t \subseteq B \}, \\ F^{\leftarrow}B &= \bigcap \{ Q_s : \forall t, \overline{P}_{(s,t)} \not\subseteq F \Rightarrow B \subseteq Q_t \} \end{split}$$

For a difunction, the inverse image and the inverse co-image are equal, but the image and co-image are usually not.

Bicontinuity: [4] The difunction $(f, F) : (S_1, \varphi_1, \tau_1, k_1) \to (S_2, \varphi_2, \tau_2, k_2)$ is called continuous if $B \in \tau_2 \Rightarrow F^{\leftarrow} B \in \tau_1$, cocontinuous if $B \in k_2 \Rightarrow f^{\leftarrow} B \in k_1$, and bicontinuous if it is both continuous and cocontinuous.

Surjective diffunction: [5] Let $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be a diffunction. Then (f, F)is called surjective if it satisfies the condition

SUR. For $t, t' \in S_2$, $P_t \not\subseteq Q_{t'} \Rightarrow \exists s \in S_1$ with $f \not\subseteq \overline{Q}_{(s,t')}$ and $\overline{P}_{(s,t)} \not\subseteq F$. If (f, F) is surjective then $F^{\rightarrow}(f^{\leftarrow}B) = B = f^{\rightarrow}(F^{\leftarrow}B)$ for all $B \in \varphi_2$ [[5], Corollary 2.33]

[5] Let (f, F) be a diffunction between the complemented textures $(S_1, \varphi_1, \sigma_1)$ and $(S_2, \varphi_2, \sigma_2)$. The complement (f, F)' = (F', f') of the diffunction (f, F) is a diffunction, where $f' = \bigcap \{\overline{Q}_{(s,t)} | \exists u, v \text{ with } f \not\subseteq \overline{Q}_{u,v}, \sigma_1(Q_s) \not\subseteq Q_u \text{ and } P_v \not\subseteq \sigma_2(P_t) \}$ and $F' = \bigvee \{\overline{P}_{(s,t)} | \exists u, v \text{ with } \overline{P}_{u,v} \not\subseteq F, P_u \not\subseteq \sigma_1(P_s) \text{ and } \sigma_2(Q_t) \not\subseteq Q_v \}$. If (f, F) = (f, F)' then the difunction (f, F) is called complemented.

[7] Let (S, φ, τ, k) be a ditopological texture space. A set $A \in \varphi$ is called semi-open (semi-closed) if $A \subseteq []A[]$ ($][A][\subseteq A$). We denote by $SO(S, \varphi, \tau, k)$, or when there can be no confusion by SO(S), the set of semi-open sets in φ . Likewise, $SC(S, \varphi, \tau, k)$, or SC(S)will denote the set of semi-closed sets. [2] Let (S, φ, τ, k) be a ditopological texture space. A subset A of a texture φ is said to be generalized closed (g-closed for short) if $A \subseteq G \in \tau$ then $[A] \subset G$. [2] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. A subset A of a texture φ is said to be generalized open (g-open for short) if $\sigma(A)$ is g-closed. We denote by $qc(S, \varphi, \tau, k)$, or when there can be no confusion by qc(S), the set of g-closed sets in φ . Likewise, $go(S, \varphi, \tau, k, \sigma)$, or go(S) will denote the set of g-open sets.

[1] Let (S, φ, τ, k) be a ditopological texture space. A subset A of a texture φ is said to be semi-g-closed if $A \subseteq G \in SO(S)$ then $[A] \subseteq G$.

We denote by $semigc(S, \varphi, \tau, k)$, or when there can be no confusion by semigc(S), the set of semi-g-closed sets in φ . [1] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. A subset A of a texture φ is called semi-g-open if $\sigma(A)$ is semi-g-closed.

We denote by $semigo(S, \varphi, \tau, k, \sigma)$, or when there can be no confusion by semigo(S), the set of semi-g-open sets in φ . [1] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. For $A \in \varphi$, we define the semi-g-closure $[A]_{semi-q}$ and the semi-g-interior $]A[_{semi-q}]$ of A under (τ, k) by the equalities

 $[A]_{semi-g} = \bigcap \{ K \in semigc(S) : A \subseteq K \} \text{ and }]A[_{semi-g} = \bigcup \{ G \in semigo(S) : G \subseteq A \}.$

3 semi-g-bicontinuous, semi-g-bi-irresolute, semi-g-compact and semi-g-stable The diffunction $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is called:

- 1. semi-g-continuous (semi-g-irresolute), if $F^{\leftarrow}(G) \in semigo(S_1)$, for every $G \in O(S_2)$ $(G \in semigo(S_2)).$
- 2. semi-g-cocontinuous (semi-g-co-irresolute), if $f^{\leftarrow}(G) \in semigc(S_1)$, for every $G \in k_2$ $(G \in semigc(S_2)).$
- 3. semi-g-bicontinuous, if it is semi-g-continuous and semi-g-cocontinuous.
- 4. semi-g-bi-irresolute, if it is semi-g-irresolute and semi-g-co-irresolute.

Let $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a diffunction. Then:

- 1. Every continuous is semi-g-continuous.
- 2. Every cocontinuous is semi-g-cocontinuous.
- 3. Every semi-g-irresolute is semi-g-continuous.
- 4. Every semi-g-co-irresolute is semi-g-cocontinuous.

Clear. Let $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a difunction. Then:

- 1. The following are equivalent:
 - (a) (f, F) is semi-g-continuous.
 - (b) $]F \rightarrow A[S_2 \subseteq F \rightarrow]A[S_1 \atop semi-q, \forall A \in \varphi_1.$
 - (c) $f^{\leftarrow}]B[{}^{S_2}\subseteq]f^{\leftarrow}B[{}^{S_1}_{semi-a}, \forall B \in \varphi_2.$
- 2. The following are equivalent:
 - (a) (f, F) is semi-g-cocontinuous.
 - (b) $f^{\rightarrow}[A]^{S_1}_{semi-a} \subseteq [f^{\rightarrow}A]^{S_2}, \forall A \in \varphi_1.$
 - (c) $[F^{\leftarrow}B]_{semi-q}^{S_1} \subseteq F^{\leftarrow}[B]^{S_2}, \forall B \in \varphi_2.$

We prove (1), leaving the dual proof of (2) to the interested reader. (a) \Rightarrow (b). Let $A \in \varphi_1$. From [[5], Theorem 2.24 (2 a)] and the definition of interior,

$$f^{\leftarrow}]F^{\rightarrow}(A)[{}^{S_2}\subseteq f^{\leftarrow}(F^{\rightarrow}(A))\subseteq A.$$

Since inverse image and co-image under a difunction is equal, $f^{\leftarrow}]F^{\rightarrow}(A)[S_2 = F^{\leftarrow}]F^{\rightarrow}(A)[S_2$. Thus, $f^{\leftarrow}]F^{\rightarrow}(A)[S_2 \in semigo(S_1))$, by semi-g-continuity. Hence

$$f^{\leftarrow}]F^{\rightarrow}(A)[{}^{S_2}\subseteq]A[{}^{S_1}_{semi-g}$$

and applying [[5], Theorem 2.24 (2 b)] gives

$$]F^{\rightarrow}(A)[{}^{S_2}\subseteq F^{\rightarrow}(f^{\leftarrow}(]F^{\rightarrow}(A)[{}^{S_2})\subseteq F^{\rightarrow}]A[{}^{S_1}_{semi-g}]$$

which is the required inclusion.

 $(b) \Rightarrow (c)$. Take $B \in \varphi_2$. Applying inclusion (b) to $A = f^{\leftarrow}(B)$ and using [[5], Theorem 2.24 (2 b)] gives

$$]B[{}^{S_2}\subseteq]F^{\rightarrow}f^{\leftarrow}(B)[{}^{S_2}\subseteq F^{\rightarrow}]f^{\leftarrow}(B)[{}^{S_1}_{semi-g}.$$

Hence, we have $f^{\leftarrow}]B[{}^{S_2}\subseteq f^{\leftarrow}F^{\rightarrow}]f^{\leftarrow}(B)[{}^{S_1}_{semi-g}\subseteq]f^{\leftarrow}(B)[{}^{S_1}_{semi-g}$ by [[5], Theorem 2.24 (2 a)]. (c) \Rightarrow (a). Applying (c) for $B \in O(S_2)$ gives

$$f^{\leftarrow}(B) = f^{\leftarrow}]B[{}^{S_2}\subseteq]f^{\leftarrow}(B)[{}^{S_1}_{semi-g},$$

so $F^{\leftarrow}(B) = f^{\leftarrow}(B) =]f^{\leftarrow}(B) [_{semi-g}^{S_1} \in semigo(S_1)$. Hence, (f, F) is semi-g-continuous. Let $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a difunction. Then:

1. The following are equivalent:

- (a) (f, F) is semi-g-irresolute.
- (b) $]F^{\rightarrow}A[_{semi-q}^{S_2} \subseteq F^{\rightarrow}]A[_{semi-q}^{S_1}, \forall A \in \varphi_1.$ (c) $f^{\leftarrow}]B[_{semi-a}^{S_2}\subseteq]f^{\leftarrow}B[_{semi-a}^{S_1}, \forall B\in\varphi_2.$

2. The following are equivalent:

- (a) (f, F) is semi-g-co-irresolute.
- (b) $f^{\rightarrow}[A]_{semi-q}^{S_1} \subseteq [f^{\rightarrow}A]_{semi-q}^{S_2}, \forall A \in \varphi_1.$
- (c) $[F^{\leftarrow}B]_{semi-a}^{S_1} \subseteq F^{\leftarrow}[B]_{semi-a}^{S_2}, \forall B \in \varphi_2.$

We prove (1), leaving the dual proof of (2) to the interested reader. $(a) \Rightarrow (b)$. Take $A \in \varphi_1$. Then

$$f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{semi-g}\subseteq f^{\leftarrow}(F^{\rightarrow}A)\subseteq A$$

by [[5], Theorem 2.24 (2 a)]. Now $f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{semi-g} = F^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{semi-g} \in semigo(S_1)$ by semi-g-irresolute, so $f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{semi-g} \subseteq]A[^{S_1}_{semi-g}$ and applying [[5], Theorem 2.24 (2 b)] gives

$$]F^{\rightarrow}A[_{semi-g}^{S_2}\subseteq F^{\rightarrow}(f^{\leftarrow}]F^{\rightarrow}A[_{semi-g}^{S_2}\subseteq F^{\rightarrow}]A[_{semi-g}^{S_1}$$

which is the required inclusion.

 $(b) \Rightarrow (c)$. Take $B \in \varphi_2$. Applying inclusion (b) to $A = f^{\leftarrow} B$ and using [[5], Theorem 2.24 (2 b)] gives

$$]B[{}^{S_2}_{semi-g} \subseteq]F^{\rightarrow}(f^{\leftarrow}B)[{}^{S_2}_{semi-g} \subseteq F^{\rightarrow}]f^{\leftarrow}B[{}^{S_1}_{semi-g}$$

Hence, $f^{\leftarrow}]B[_{semi-g}^{S_2} \subseteq f^{\leftarrow}F^{\rightarrow}]f^{\leftarrow}B[_{semi-g}^{S_1} \subseteq]f^{\leftarrow}B[_{semi-g}^{S_2}$ by [[5], Theorem 2.24 (2 a)]. (c) \Rightarrow (a). Applying (c) for $B \in semigo(S_2)$ gives

$$f \leftarrow B = f \leftarrow B[{}^{S_2}_{semi-g} \subseteq f \leftarrow B[{}^{S_1}_{semi-g},$$

so $F \leftarrow B = f \leftarrow B =]f \leftarrow B[_{semi-g}^{S_1} \in semigo(S_1)$. Hence, (f, F) is semi-g-irresolute. Let $(S_j, \varphi_j, \tau_j, k_j, \sigma_j)$, for $j \in \{1, 2\}$, be complemented ditopology and $(f, F) : (S_1, \varphi_1) \rightarrow D(F)$.

 (S_2, φ_2) be complemented diffunction. If (f, F) is semi-g-continuous then (f, F) is semi-gcocontinuous. Since (f, F) is complemented, (F', f') = (f, F). From [[5], Lemma 2.20], $\sigma_1((f')^{\leftarrow}(B)) = f^{\leftarrow}(\sigma_2(B))$ and $\sigma_1((F')^{\leftarrow}(B)) = F^{\leftarrow}(\sigma_2(B))$ for all $B \in \varphi_2$. The proof is clear from these equalities.

Let $(S_j, \varphi_j, \tau_j, k_j, \sigma_j), j = 1, 2$, complemented ditopology and $(f, F) : (S_1, \varphi_1) \rightarrow$ (S_2, φ_2) be complemented diffunction. If (f, F) is semi-g-irresolute then (f, F) is semi-gco-irresolute. Clear. A complemented ditopological texture space $(S, \varphi, \tau, k, \sigma)$ is called semi-g-compact if every cover of S by semi-g-open has a finite subcover. Here we recall that $C = \{A_j : j \in J\}, A_j \in \varphi \text{ is a cover of } S \text{ if } \bigvee C = S.$

Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. Then:

1. Every semi-g-compact is compact.

2. Every g-compact is semi-g-compact.

Clear. If $(S, \varphi, \tau, k, \sigma)$ is semi-g-compact and $L = \{F_j : j \in J\}$ is a family of semi-g-closed sets with $\cap L = \phi$, then $\cap \{F_j : j \in J'\} = \phi$ for $J' \subseteq J$ finite. Suppose that $(S, \varphi, \tau, k, \sigma)$ is semi-g-compact and let $L = \{F_j : j \in J\}$ be a family of semi-g-closed sets with $\cap L = \phi$. Clearly $C = \{\sigma(F_j) : j \in J\}$ is a family of semi-g-open sets. Moreover,

$$\bigvee C = \bigvee \{ \sigma(F_i) : j \in J \} = \sigma(\cap \{F_i : j \in J\}) = \sigma(\phi) = S,$$

and so we have $J' \subseteq J$ finite with $\bigvee \{\sigma(F_j) : j \in J'\} = S$. Hence $\cap \{F_j : j \in J'\} = \phi$. Let $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be an semi-g-irresolute diffunction. If $A \in \varphi_1$ is semi-g-compact then $f^{\rightarrow}A \in \varphi_2$ is semi-g-compact. Take $f^{\rightarrow}A \subseteq \bigvee_{j \in J} G_j$, where $G_j \in semigo(S_2), j \in J$. Now by [[5], Theorem 2.24 (2 a) and Corollary 2.12 (2)] we have

$$A \subseteq F^{\leftarrow}(f^{\rightarrow}A) \subseteq F^{\leftarrow}(\bigvee_{j \in J} G_j) = \bigvee_{j \in J} F^{\leftarrow}G_j.$$

Also, $F^{\leftarrow}G_j \in semigo(S_1)$ because (f, F) is semi-g-irresolute. So by the semi-g-compactness of A there exists $J' \subseteq J$ finite such that $A \subseteq \bigcup_{i \in J'} F^{\leftarrow}G_i$. Hence

$$f^{\rightarrow}A \subseteq f^{\rightarrow}(\cup_{j \in J'} F^{\leftarrow}G_j) = \cup_{j \in J'} f^{\rightarrow}(F^{\leftarrow}G_j) \subseteq \cup_{j \in J'} G_j$$

by [[5], Corollary 2.12 (2) and Theorem 2.24 (2 b)]. This establishes that $f^{\rightarrow}A$ is semi-gcompact.

Let $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a surjective semi-g-irresolute difunction. Then, if $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ is semi-g-compact so is $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$. This follows by taking $A = S_1$ in Theorem 3 and noting that $f^{\rightarrow}S_1 = f^{\rightarrow}(F^{\leftarrow}S_2) = S_2$ by [[5], Proposition 2.28 (1 c) and Corollary 2.33 (1)].

A complemented ditopological texture space $(S, \varphi, \tau, k, \sigma)$ is called semi-g-stable if every semi-g-closed set $F \in \varphi \setminus \{S\}$ is semi-g-compact in S. Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. Then:

- 1. Every semi-g-stable is stable.
- 2. Every g-stable is semi-g-stable.

Clear. Let $(S, \varphi, \tau, k, \sigma)$ be semi-g-stable. If G is an semi-g-open set with $G \neq \phi$ and $D = \{F_j : j \in J\}$ is a family of semi-g-closed sets with $\bigcap_{j \in J} F_j \subseteq G$ then $\bigcap_{j \in J'} F_j \subseteq G$ for a finite subsets J' of J. Let $(S, \varphi, \tau, k, \sigma)$ be semi-g-stable, let G be an semi-g-open set with $G \neq \phi$ and $D = \{F_j : j \in J\}$ be a family of semi-g-closed sets with $\bigcap_{j \in J} F_j \subseteq G$. Set $K = \sigma(G)$. Then K is semi-g-closed and satisfies $K \neq S$. Hence K is semi-g-compact. Let $C = \{\sigma(F) | F \in D\}$. Since $\cap D \subseteq G$ we have $K \subseteq \bigvee C$, that is C is an semi-g-open cover of K. Hence there exists $F_1, F_2, \ldots, F_n \in D$ so that

$$K \subseteq \sigma(F_1) \cup \sigma(F_2) \cup \ldots \cup \sigma(F_n) = \sigma(F_1 \cap F_2 \cap \ldots \cap F_n).$$

This gives $F_1 \cap F_2 \cap \ldots \cap F_n \subseteq \sigma(K) = G$, so $\cap_{j \in J'} F_j \subseteq G$ for a finite subsets $J' = \{1, 2, \ldots, n\}$ of J. Let $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$, $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be two complemented ditopological texture spaces with $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ is semi-g-stable, and $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \rightarrow$ $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be an semi-g-bi-irresolute surjective difunction. Then $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is semi-g-stable. Take $K \in semigc(S_2)$ with $K \neq S_2$. Since (f, F) is semi-g-co-irresolute, so $f^{\leftarrow} K \in semigc(S_1)$. Let us prove that $f^{\leftarrow} K \neq S_1$. Assume the contrary. Since $f^{\leftarrow} S_2 = S_1$, by [[5], Lemma 2.28 (1 c)] we have $f^{\leftarrow} S_2 \subseteq f^{\leftarrow} K$, whence $S_2 \subseteq K$ by [[5], Corollary 2.33 (1 ii)] as (f, F) is surjective. This is a contradiction, so $f^{\leftarrow} K \neq S_1$. Hence $f^{\leftarrow}(K)$ is semi-gcompact in $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ by semi-g-stability. As (f, F) is semi-g-irresolute, $f^{\rightarrow}(f^{\leftarrow} K)$ is semi-g-compact for the ditopology (τ_2, k_2) by Theorem 3, and by [[5], Corollary 2.33 (1)] this set is equal to K. This establishes that $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is semi-g-stable.

References

- H. Z. Ibrahim, Strong Forms of Generalized closed sets in ditopological texture spaces, Journal of Advanced Studies in Topology, 6 (2) (2015), 61-68.
- [2] H. I. Mustafa, F. M. Sleim, Generalized closed sets in ditopological texture spaces with application in rough set theory, *Journal of Advances in Mathematics*, 4 (2) (2013), 394-407.
- [3] L. M. Brown and R. Ert rk, Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets Syst., 110 (2) (2000), 227-236.
- [4] L. M. Brown, R. Ert rk and S. Dost, Ditopological texture spaces and fuzzy topology, II. Topological Considerations, *Fuzzy Sets Syst.*, 147 (2) (2004), 201-231.
- [5] L. M. Brown, R. Ert rk and S. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, *Fuzzy Sets and Systems*, 147 (2) (2004), 171-199.
- [6] L. M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy Sets and Systems, 98 (1998) 217-224.
- [7] S. Dost, Semi-open and sem-closed sets in ditopological texture spaces, J. Adv. Math. Stud., 5 (1) (2012), 97-110.

Communicated by Kohzo Yamada

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq hariwan_math@yahoo.com