
 

 

 

 

 

Abstract. We investigate real hypersurfaces with φ-invariant Ricci tensors in a non-
flat complex space form M̃n(c). In particular, we classify Hopf hypersurfaces having

weakly φ-invariant Ricci tensor in M̃n(c). In addition, we verify the non-existence

of Hopf hypersurfaces with strongly φ-invariant Ricci tensor in M̃n(c) and the non-

existence of ruled real hypersurfaces with weakly φ-invariant Ricci tensor in M̃n(c).

1 Introduction We denote by M̃n(c) (n = 2) an n-dimensional non-flat complex space

form. Namely, M̃n(c) is congruent to either a complex projective space of constant holo-
morphic sectional curvature c(> 0) or a complex hyperbolic space of constant holomorphic

sectional curvature c(< 0). Let M2n−1 be a real hypersurface in M̃n(c). It is well-known

that real hypersurfaces in M̃n(c) admitting almost contact metric structure (φ, ξ, η, g) in-

duced from Kähler structure J of M̃n(c) (see Section 2). From the viewpoint of contact

geometry, real hypersurfaces are interesting in M̃n(c). It is also well-known that there exist

no Einstein real hypersurfaces in M̃n(c). Thus, many geometers studied its weaker condi-
tions and conditions related to the Ricci tensor of M2n−1 (See [3], [5], [7], [10], [11], [14],
[15]).

In this paper, we focus on the structure tensor φ of M2n−1 and the Ricci tensor of
M2n−1. We define the notion of φ-invariant Ricci tensor of M2n−1 (for detail, see Section
5). This notion is divided into strongly φ-invariance of the Ricci tensor of M2n−1 or weakly
φ-invariance of the Ricci tensor of M2n−1. In particular, the latter is a weaker condition of
Einstein real hypersurfaces.

In the theory of real hypersurfaces in M̃n(c), Hopf hypersurfaces (namely, real hypersur-
faces such that the characteristic vector ξ is a principal curvature vector at its each point)
play an important role. We investigate Hopf hypersurfaces M2n−1 with φ-invariant Ricci
tensors of M2n−1 in M̃n(c). Note that there exist real hypersurfaces M2n−1 with weakly

φ-invariant Ricci tensor of M2n−1 in M̃n(c). In fact, the family of such real hypersur-

faces includes real hypersurfaces of type (A) in M̃n(c) (Theorem 1). It is known that real

hypersurfaces of type (A) in M̃n(c) have many nice geometric properties.
The purpose of this paper is to determine Hopf hypersurfaces M2n−1 having weakly

φ-invariant Ricci tensor of M2n−1 in M̃n(c). To do this, we shall prove that weakly φ-
invariance of the Ricci tensor of M2n−1 is equivalent to the commutativity of the structure
tensor φ of M2n−1 and the Ricci tensor Q of type (1, 1) of M2n−1 (that is, φQ = Qφ) on a

Hopf hypersurface M2n−1 in M̃n(c). In addition, we shall show the non-existence of Hopf

hypersurfaces M2n−1 with strongly φ-invariant Ricci tensor of M2n−1 in M̃n(c).
In general, weakly φ-invariance of the Ricci tensor is not equivalent to the commutativity

of the structure tensor φ and the Ricci tensor Q of type (1, 1) on a non-Hopf hypersurface in
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M̃n(c). It is natural to consider non-Hopf hypersurfaces M2n−1 having weakly φ-invariant

Ricci tensor of M2n−1 in M̃n(c). Ruled real hypersurfaces are typical non-Hopf hypersur-

faces in M̃n(c). So, we shall also show the non-existence of ruled real hypersurfaces M2n−1

with weakly φ-invariant Ricci tensor of M2n−1 in M̃n(c).

2 Preliminaries Let M2n−1 be a real hypersurface with a unit local vector field N
of a complex n-dimensional non-flat complex space form M̃n(c) of constant holomorphic

sectional curvature c. The Riemannian connections ∇̃ of M̃n(c) and ∇ of M2n−1 are related
by

∇̃XY = ∇XY + g(AX, Y )N ,(2.1)

∇̃XN = −AX(2.2)

for vector fields X and Y tangent to M2n−1, where g denotes the induced metric from the
standard Riemannian metric of M̃n(c) and A is the shape operator of M2n−1 in M̃n(c).
(2.1) is called Gauss’s formula, and (2.2) is called Weingarten’s formula. Eigenvalues and
eigenvectors of the shape operator A are called principal curvatures and principal vectors
of M2n−1 in M̃n(c), respectively.

It is known that M2n−1 admits an almost contact metric structure (φ, ξ, η, g) induced

from the Kähler structure J of M̃n(c). The characteristic vector field ξ of M2n−1 is defined
as ξ = −JN and this structure satisfies

φ2 = −I + η ⊗ ξ, η(X) = g(X, ξ), η(ξ) = 1, φξ = 0, η(φX) = 0,(2.3)

g(φX, Y ) = −g(X,φY ) and g(φX, φY ) = g(X ,Y )− η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M2n−1. We call φ and η
the structure tensor and the contact form of M2n−1, respectively.

Let R be the curvature tensor of M2n−1 in M̃n(c). We have the equation of Gauss given
by:

R(X,Y )Z =(c/4){g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY(2.4)

− 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

for all vectors X,Y and Z on M2n−1.
The Ricci tensor S of type (0, 2) and the Ricci tensor Q of type (1, 1) of an arbitrary

real hypersurface M2n−1 in M̃n(c) (n = 2) is expressed as:

S(X,Y ) = g(QX,Y ) = (c/4)((2n+ 1)g(X,Y )− 3η(X)η(Y ))(2.5)

+ (TraceA)g(AX,Y )− g(A2X,Y ).

3 Homogeneous Hopf hypersurfaces in M̃n(c) We usually call M2n−1 a Hopf hyper-
surface if the characteristic vector ξ is a principal curvature vector at each point of M2n−1.
It is known that every tube of sufficiently small constant radius around each Kähler subman-
ifold of M̃n(c) is a Hopf hypersurface. This fact tells us that the notion of Hopf hypersurface

is natural in the theory of real hypersurfaces in M̃n(c) (see [15]).
The following lemma clarifies a fundamental property which is a useful tool in the theory

of Hopf hypersurfaces in M̃n(c) (cf. [15]).

Lemma 1. For a Hopf hypersurface M2n−1 with the principal curvature δ corresponding
to the characteristic vector field ξ in M̃n(c), we have the following:
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(1) δ is locally constant on M2n−1;

(2) If X is a tangent vector of M2n−1 perpendicular to ξ with AX = λX, then (2λ −
δ)AφX = (δλ+ (c/2))φX.

In CPn(c) (n = 2), a Hopf hypersurface all of whose principal curvatures are constant is
locally congruent to a homogeneous real hypersurface (that is, real hypersurfaces which are

expressed as orbits of some subgroup of the isometry group I(M̃n(c)) of M̃n(c)). Moreover,
these real hypersurfaces are one of the following:

(A1) A geodesic sphere G(r) of radius r, where 0 < r < π/
√
c ;

(A2) A tube of radius r around a totally geodesic CP `(c) (1 5 ` 5 n − 2), where 0 < r <
π/

√
c ;

(B) A tube of radius r around a complex hyper quadric CQn−1, where 0 < r < π/(2
√
c );

(C) A tube of radius r around a CP 1(c) × CP (n−1)/2(c), where 0 < r < π/(2
√
c ) and

n(= 5) is odd;

(D) A tube of radius r around a complex Grassmann CG2,5, where 0 < r < π/(2
√
c ) and

n = 9;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where 0 < r <
π/(2

√
c ) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E). Summing
up real hypersurfaces of type (A1) and (A2), we call them real hypersurfaces of type (A).
The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5,
respectively. The principal curvatures of these real hypersurfaces in CPn(c) are given as
follows (cf. [15]):

(A1) (A2) (B) (C), (D), (E)

λ1

√
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r − π

4

) √
c
2 cot

(√
c
2 r − π

4

)
λ2 — −

√
c
2 tan

(√
c
2 r

) √
c
2 cot

(√
c
2 r + π

4

) √
c
2 cot

(√
c
2 r + π

4

)
λ3 — — —

√
c
2 cot

(√
c
2 r

)
λ4 — — — −

√
c
2 tan

(√
c
2 r

)
δ

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

(A1) (A2) (B) (C) (D) (E)

m(λ1) 2n− 2 2n− 2`− 2 n− 1 2 4 6

m(λ2) — 2` n− 1 2 4 6

m(λ3) — — — n− 3 4 8

m(λ4) — — — n− 3 4 8

m(δ) 1 1 1 1 1 1

Remark 1. A geodesic sphere G(r) of radius r (0 < r < π/
√
c ) in CPn(c) is congru-

ent to a tube of radius (π/
√
c ) − r around totally geodesic CPn−1(c) of CPn(c). Indeed,

lim
r→π/

√
c
G(r) = CPn−1(c).
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In CHn(c) (n = 2), a Hopf hypersurface all of whose principal curvatures are constant
is locally congruent to one of the following:

(A0) A horosphere in CHn(c);

(A1,0) A geodesic sphere G(r) of radius r, where 0 < r < ∞;

(A1,1) A tube of radius r around a totally geodesic CHn−1(c), where 0 < r < ∞;

(A2) A tube of radius r around a totally geodesic CH`(c)(1 5 ` 5 n−2), where 0 < r < ∞;

(B) A tube of radius r around a totally real totally geodesic RHn(c/4), where 0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1,0), (A1,1), (A2) and (B). Here,
type (A1) means either type (A1,0) or type (A1,1). Summing up real hypersurfaces of types
(A0), (A1) and (A2), we call them hypersurfaces of type (A). A real hypersurface of type
(B) with radius r = (1/

√
|c| ) loge(2 +

√
3 ) has two distinct constant principal curvatures

λ1 = δ =
√

3|c| /2 and λ2 =
√
|c| /(2

√
3 ). Except for this real hypersurface, the numbers

of distinct principal curvatures of Hopf hypersurfaces with constant principal curvatures are
2, 2, 2, 3, 3, respectively. The principal curvatures of these real hypersurfaces in CHn(c) are
given as follows (cf. [15]):

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2 coth

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

)
λ2 — — —

√
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

)
δ

√
|c|

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| tanh(

√
|c| r)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

(A0) (A1,0) (A1,1) (A2) (B)

m(λ1) 2n− 2 2n− 2 2n− 2 2n− 2`− 2 n− 1

m(λ2) — — — 2` n− 1

m(δ) 1 1 1 1 1

Remark 2. The above Hopf hypersurfaces of type (A) and (B) in CHn(c) are homoge-
neous real hypersurfaces. However, there exist non-Hopf homogeneous real hypersurfaces in
CHn(c) (for detail, see [1]).

4 Ruled real hypersurfaces in M̃n(c) Next we give ruled real hypersurfaces in a non-

flat complex space form M̃n(c), which are typical examples of non-Hopf hypersurfaces. A
real hypersurface M2n−1 is called a ruled real hypersurface of a non-flat complex space form
M̃n(c) (n = 2) if the holomorphic distribution T 0M defined by T 0M(x) = {X ∈ TxM |
X⊥ξ} for x ∈ M2n−1 is integrable and each of its maximal integral manifolds is a totally

geodesic complex hypersurface Mn−1(c) of M̃n(c). A ruled real hypersurface is constructed

in the following way. Given an arbitrary regular real smooth curve γ in M̃n(c) which is
defined on an interval I we have at each point γ(t) (t ∈ I) a totally geodesic complex

hypersurface M
(t)
n−1(c) that is orthogonal to the plane spanned by {γ̇(t), Jγ̇(t)}. Then we

see that M2n−1 =
∪

t∈I M
(t)
n−1(c) is a ruled real hypersurface in M̃n(c). The following is a

well-known characterization of ruled real hypersurfaces in terms of the shape operator A.



Hopf hypersurfaces admitting φ-invariant Ricci tensors 5

Lemma 2. For a real hypersurface M2n−1 in a non-flat complex space form M̃n(c)
(n = 2), the following conditions are mutually equivalent:

1. M2n−1 is a ruled real hypersurface;

2. The shape operator A of M2n−1 satisfies the following equalities on the open dense
subset M1 = {x ∈ M2n−1|ν(x) 6= 0} with a unit vector field U orthogonal to ξ : Aξ =
µξ + νU, AU = νξ, AX = 0 for an arbitrary tangent vector X orthogonal to ξ and
U , where µ, ν are differentiable functions on M1 by µ = g(Aξ, ξ) and ν = ‖Aξ − µξ‖;

3. The shape operator A of M2n−1 satisfies g(Av,w) = 0 for arbitrary tangent vectors
v, w ∈ TxM orthogonal to ξx at each point x ∈ M2n−1.

We treat a ruled real hypersurface locally, because generally this hypersurface has sin-
gularities. When we study ruled real hypersurfaces, we usually omit points where ξ is
principal and suppose that ν does not vanish everywhere, namely a ruled hypersurface
M2n−1 is usually supposed M1 = M2n−1.

5 φ-invariances of the Ricci tensor and main theorem First, we define the notion
of φ-invariance of the Ricci tensor S of M2n−1 in M̃n(c). The Ricci tensor S of M2n−1 is
called strongly φ-invariant if S satisfies

S(φX, φY ) = S(X,Y )

for all vectors X and Y on M2n−1. Also it is called weakly φ-invariant if S satisfies

S(φX, φY ) = S(X,Y )

for all vectors X and Y on M2n−1 orthogonal to the characteristic vector ξ on M2n−1.

Theorem 1. Let M2n−1 be a real hypersurface in a non-flat complex space form M̃n(c) (n =
2). Then the following holds:

1. Suppose that M2n−1 is a Hopf hypersurface in M̃n(c). Then M2n−1 has weakly φ-
invariant Ricci tensor S of M2n−1 if and only if M2n−1 satisfies φQ = Qφ. Moreover,
M2n−1 is locally congruent to one of the following:

(a) A real hypersurface of type (A) in M̃n(c);

(b) A tube of radius r around a complex hyperquadric CQn−1 in CPn(c), where
0 < r < π/(2

√
c ) and cot (

√
c r/2) =

√
n− 2 +

√
n− 1 ;

(c) A tube of radius r around a CP 1(c) × CP (n−1)/2(c) in CPn(c), where 0 < r <
π/(2

√
c ), n (= 5) is odd and cot (

√
c r/2) = (

√
n− 1 + 1)/

√
n− 2 ;

(d) A tube of radius r around a complex Grassmann CG2,5 in CPn(c), where 0 <
r < π/(2

√
c ), n = 9 and cot (

√
c r/2) = (

√
8 +

√
3 )/

√
5 ;

(e) A tube of radius r around a Hermitian symmetric space SO(10)/U(5) in CPn(c),
where 0 < r < π/(2

√
c ), n = 15 and cot (

√
c r/2) = (

√
14 +

√
5 )/3;

(f) A non-homogeneous real hypersurface which is a tube of radius r around an `-

dimensional non-totally geodesic Kähler submanifold Ñ without principal curva-
tures ±(

√
c /2)

√
(2`− 1)/(2n− 2`− 1) , where the rank of every shape operator

of Ñ in the ambient space CPn(c) is not greater than 2 and cot2(
√
c r/2) =

(2`− 1)/(2n− 2`− 1) with ` = 1, . . . , n− 1.
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2. There does not exist a Hopf hypersurface M2n−1 with strongly φ-invariant Ricci tensor
S of M2n−1.

3. There does not exist a ruled real hypersurface M2n−1 with weakly φ-invariant Ricci
tensor S of M2n−1.

Proof. From (2.5), we know that strongly φ-invariance of the Ricci tensor S of M2n−1 is
equivalent to saying that

− c

2
(n− 1)η(X)η(Y ) + (TraceA)(g(AφX,φY )− g(AX,Y ))(5.1)

− g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X,Y on M2n−1. By this equation, we obtain that weakly φ-invariance of the
Ricci tensor S of M2n−1 is equivalent to saying that

(5.2) (TraceA)(g(AφX, φY )− g(AX,Y ))− g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X and Y orthogonal to ξ.
(1) First of all, we suppose that M2n−1 satisfies φQ = Qφ. Then, we get

S(φX, φY ) = g(QφX,φY ) = g(φQX,φY ) = −g(QX,φ2Y ) = g(QX,Y ) = S(X,Y )

for any vectors X,Y orthogonal to ξ.
Next, we suppose that M2n−1 has weakly φ-invariant Ricci tensor S of M2n−1. By (5.2),

we have

(5.3) (TraceA)g(−φAφX −AX,Y ) + g(φA2φX +A2X,Y ) = 0

for any vectors X,Y orthogonal to ξ. Interchanging a vector X(⊥ ξ) with a vector φX(⊥ ξ)
in Equation (5.3), we obtain

(TraceA)g((φA−Aφ)X,Y )− g((φA2 −A2φ)X,Y ) = 0

for any vectors X,Y orthogonal to ξ. This implies that

(5.4) g((φQ−Qφ)X,Y ) = 0

for any vectors X,Y orthogonal to ξ. On the other hand, using assumption that M2n−1 is a
Hopf hypersurface in M̃n(c), we obtain φQξ = 0 = Qφξ. This, combine with (5.4), implies
φQ = Qφ.

By the works of M. Kimura [8], [9] (the case of n = 3 in CPn(c)), U-H. Ki and Y. J.

Suh [6] (the case of n = 3 in CHn(c)) and J. T. Cho [4] (the case of M̃2(c)), we know the

classification of Hopf hypersurfaces with φQ = Qφ in M̃n(c). Hence, we get the classification

of Hopf hypersurfaces having weakly φ-invariant Ricci tensor in M̃n(c).

(2) We suppose that M2n−1 is a Hopf hypersurface with Aξ = δξ in M̃n(c). From (5.1),
we find that M2n−1 has strongly φ-invariant Ricci tensor S of M2n−1 if and only if M2n−1

satisfies the following two conditions:

(i) The Hopf hypersurface M2n−1 has weakly φ-invariant Ricci tensor S of M2n−1;

(ii) The Hopf hypersurface M2n−1 satisfies the following equation:

(5.5) δ2 − (TraceA)δ − c

2
(n− 1) = 0.
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Now we shall check Equation (5.5) one by one for real hypersurfaces of (1) in our Theorem.
Let M2n−1 be a real hypersurface of type (A1) in CPn(c). Let x = cot (

√
c r/2), 0 <

r < π/
√
c . Then we have δ = (

√
c /2)(x − (1/x)), δ2 = (c/4)(x2 − 2 + (1/x2)) and

TraceA = (
√
c /2)((2n − 1)x − (1/x)). These, together with Equation (5.5) we get n = 1,

which contradicts n = 2. Hence M2n−1 does not have strongly φ-invariant Ricci tensor S
of M2n−1.

Let M2n−1 be a real hypersurface of type (A2) in CPn(c). Let x = cot (
√
cr/2), 0 <

r < π/
√
c . Then we have δ = (

√
c /2)(x − (1/x)), δ2 = (c/4)(x2 − 2 + (1/x2)) and

TraceA = (
√
c /2)((2n− 2`− 1)x− (2`+1)(1/x)). These, together with Equation (5.5) we

get (n − ` − 1)x4 + ` = 0. However, this equation can not occur. Hence M2n−1 does not
have strongly φ-invariant Ricci tensor S of M2n−1.

Let M2n−1 be a real hypersurface of type (A0) in CHn(c). Then we have δ =
√
|c| , δ2 =

−c and TraceA =
√
|c| + (2n − 2)(

√
|c| /2). These, together with Equation (5.5) we get

n = 1, which contradicts n = 2. Hence M2n−1 does not have strongly φ-invariant Ricci
tensor S of M2n−1.

Let M2n−1 be a real hypersurface of type (A1,0) in CHn(c). Let x = coth (
√

|c|r/2),
0 < r < ∞. Then we have δ = (

√
|c| /2)(x + (1/x)), δ2 = −(c/4)(x2 + 2 + (1/x2)) and

TraceA = (
√

|c| /2)((2n− 1)x+ (1/x)). These, together with Equation (5.5) we get n = 1,
which contradicts n = 2. Hence M2n−1 does not have strongly φ-invariant Ricci tensor S
of M2n−1. Similarly, we can show that real hypersurfaces of type (A1,1) in CHn(c) do not
have strongly φ-invariant Ricci tensor.

Let M2n−1 be a real hypersurface of type (A2) in CHn(c). Let x = coth (
√
|c|r/2),

0 < r < ∞. Then we have δ = (
√
|c| /2)(x + (1/x)), δ2 = −(c/4)(x2 + 2 + (1/x2)) and

TraceA = (
√

|c| /2)((2n − 2` − 1)x + (2` + 1)(1/x)). These, together with Equation (5.5)
we get (n− `− 1)x4 + ` = 0. However, this equation can not occur. Hence M2n−1 does not
have strongly φ-invariant Ricci tensor S of M2n−1.

Let M2n−1 be a real hypersurface of the case of (b) in our Theorem. Then we have
δ =

√
c(n− 2) , δ2 = c(n−2) and TraceA = −

√
c /

√
n− 2 . These, together with Equation

(5.5) we get n = 1, which contradicts n = 3.
Let M2n−1 be a real hypersurface of the case of (c) in our Theorem. Then we have

δ =
√
c /

√
n− 2 , δ2 = c/(n−2) and TraceA = −

√
c(n− 2) . These, together with Equation

(5.5) we get n2 − 5n+ 4 = 0, so that n = 1, 4, which contradicts n = 5.
Let M2n−1 be a real hypersurface of the case of (d) in our Theorem. Then we have

δ =
√
3c /

√
5 , δ2 = 3c/5 and TraceA = −

√
5c /

√
3 . These, together with Equation (5.5)

we get n = 21/5, which contradicts n = 9.
Let M2n−1 be a real hypersurface of the case of (e) in our Theorem. Then we have

δ =
√
5c /3, δ2 = 5c/9 and TraceA = −3

√
5c /5. These, together with Equation (5.5) we

get n = 37/9, which contradicts n = 15.
Let M2n−1 be a real hypersurface of the case of (f) in our Theorem. Then M2n−1

has at most five distinct principal curvatures as follow:
√
c cot(

√
c r) with multiplicity 1,

(
√
c /2) cot(

√
c r/2) with multiplicity 2n − 2` − 2, −(

√
c /2) tan(

√
c r/2) with multiplicity

2` − 2, (
√
c /2) cot((

√
c r/2) − θ) with multiplicity 1 and (

√
c /2) cot((

√
c r/2) + θ) with

multiplicity 1, where (
√
c /2)cot θ is a principal curvature of the Kähler submanifold Ñ (see

[3], [9], [10], [12]). In this case, M2n−1 has either the case of δ = 0 or the case of δ 6= 0.
When δ = 0 (that is, the case of n = 2`), we have (c/2)(n−1) = 0, which is a contradiction.
When δ 6= 0, we have

(5.6) TraceA = δ +
c

2δ
(n− 1).

It follows from (1) of Lemma 1 that the right side of Equation (5.6) is constant on M2n−1.
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On the other hand, the left side of Equation (5.6) is non-constant. Indeed, Trace A of
M2n−1 is expressed as:

TraceA = δ + (2n− 2`− 2)

√
c

2
cot

(√
c

2
r

)
− (2`− 2)

√
c

2
tan

(√
c

2
r

)
+

√
c

2
cot

(√
c

2
r − θ

)
+

√
c

2
cot

(√
c

2
r + θ

)
.

Note that (
√
c /2) cot((

√
c r/2)− θ) + (

√
c /2) cot((

√
c r/2)+ θ) is non-constant on M2n−1.

Thus, we have a contradiction. Hence, M2n−1 does not have strongly φ-invariant Ricci
tensor S of M2n−1.

Therefore, there exist no Hopf hypersurfaceM2n−1 with strongly φ-invariant Ricci tensor
S of M2n−1 in M̃n(c).

(3) We suppose that M2n−1 is a ruled real hypersurface with weakly φ-invariant Ricci

tensor S of M2n−1 in M̃n(c). It follows from (5.2) and (3) of Lemma 2 that we obtain

−g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X,Y orthogonal to ξ. Setting X = Y = U , by using Lemma 2 we have

0 = −g(A2φU, φU) + g(A2U,U) = ν2 6= 0,

which is a contradiction. Hence, M2n−1 does not have weakly φ-invariant Ricci tensor S of
M2n−1.

Remark 3. Note that the commutativity of the structure tensor φ and the Ricci tensor Q
of type (1, 1) always implies weakly φ-invariance of the Ricci tensor. However, in general,
we do not know whether the converse holds or not.

6 Concluding remarks

6.1 In general, there exist contact metric manifolds with strongly φ-invariant Ricci ten-
sor.

For example, R3 with coordinates (x1, x2, x3) and the contact form η = (1/2)(cosx3 dx1+
sinx3 dx2). The characteristic vector filed ξ is defined by ξ = 2(cosx3(∂/∂x1)+sinx3(∂/∂x2))
and the metric g is given by gij = (1/4)δij , where gij are components of g. Then R3 has a flat
contact metric structure (cf. [2]). Hence clearly this example admits strongly φ-invariant
Ricci tensor.

6.2 In [13], S. Maeda and H. Naitoh investigated real hypersurfaces with φ-invariant
shape operators in CPn(c). The shape operator A of a real hypersurface M2n−1 is called
strongly φ-invariant if A satisfies

g(AφX, φY ) = g(AX,Y )

for all vectors X and Y on M2n−1. Also, it is called weakly φ-invariant if A satisfies

g(AφX, φY ) = g(AX,Y )

for all vectors X and Y orthogonal to the characteristic vector ξ on M2n−1.
S. Maeda and H. Naitoh [13] obtained the following results:

Proposition 1. Let M2n−1 be a real hypersurface M2n−1 with strongly φ-invariant shape
operator A of M2n−1 in CPn(c). Then M2n−1 is locally congruent to a real hypersurface
of type (A) of radius π/(2

√
c ) in CPn(c).
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Proposition 2. Let M2n−1 be a real hypersurface M2n−1 with weakly φ-invariant shape
operator A of M2n−1 in CPn(c). Then the following holds:

1. If M2n−1 is a Hopf hypersurface in CPn(c), then M2n−1 is locally congruent to a real
hypersurface of type (A) in CPn(c).

2. If the holomorphic distribution T 0M = {X ∈ TM : X ⊥ ξ} is integrable, then M2n−1

is locally congruent to a ruled real hypersurface in CPn(c).

By using the discussion of [13], we know that there exists no real hypersurface M2n−1

in CHn(c) such that the shape operator A of M2n−1 is strongly φ-invariant. In addition,
for real hypersurfaces in CHn(c), Proposition 2 also holds.

From our theorem, ruled real hypersurfaces do not have weakly φ-invariant Ricci tensor
in M̃n(c). However, ruled real hypersurfaces have weakly φ-invariant shape operator in

M̃n(c).

6.3 We shall consider the notion of φ-invariant curvature tensor R of M2n−1 in M̃n(c).
The curvature tensor R of a real hypersurface M2n−1 is called strongly φ-invariant if R
satisfies

R(φX, φY ) = R(X,Y )

for all vectors X and Y on M2n−1. Also, it is called weakly φ-invariant if R satisfies

R(φX, φY ) = R(X,Y )

for all vectors X and Y orthogonal to the characteristic vector ξ on M2n−1 .
From our theorem and S. Maeda and H. Naitoh’s work [13], real hypersurfaces of type (A)

in M̃n(c) have both weakly φ-invariant Ricci tensor and weakly φ-invariant shape operator.

Now we investigate whether there exists a real hypersurface of type (A) in M̃n(c) having
weakly φ-invariant curvature tensor R or not.

Proposition 3. There does not exist a real hypersurface M2n−1 of type (A) admitting

weakly φ-invariant curvature tensor R of M2n−1 in M̃n(c) (n = 3).

Proof. We suppose that a real hypersurface M2n−1 admitting weakly φ-invariant curvature
tensor R of M2n−1. By (2.4), we know that weakly φ-invariance of the curvature tensor R
of M2n−1 is equivalent to saying that

(6.1) g(AφY,Z)AφX − g(AφX,Z)AφY − g(AY,Z)AX + g(AX,Z)AY = 0

for ∀X,Y ⊥ ξ and ∀Z ∈ TM .
Let M2n−1 be a real hypersurface of type (A1) in CPn(c) (n = 3). We take a local field

of orthogonal frame {e1, e2, . . . , en−1, φe1, φe2, . . . φen−1, ξ} in M2n−1 such that

Aei = (
√
c /2) cot(

√
c r/2)ei, Aφei = (

√
c /2) cot(

√
c r/2)φei (1 5 i 5 n− 1).

We can put X = ei, Y = ej , Z = ej in Equation (6.1) satisfying ei 6= ej , φei 6= ej . Then
we have cot2(

√
c r/2) = 0, which is a contradiction. Hence M2n−1 does not have weakly

φ-invariant curvature tensor R of M2n−1. Similarly, real hypersurfaces M2n−1 of types (A0)
and (A1) in CHn(c) (n = 3) do not admit φ-invariant curvature tensor R of M2n−1.

Let M2n−1 be a real hypersurface of type (A2) in CPn(c) (n = 3). We take a local field
of orthogonal frame {e1, e2, . . . , e2n−2, ξ} in M2n−1 such that

Aei = (
√
c /2) cot(

√
c r/2)ei (1 5 i 5 2n− 2`− 2),

Aej = −(
√
c /2) tan(

√
c r/2)ej (2n− 2`− 1 5 j 5 2n− 2).
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We setX = ei, Y = ej , Z = ej (1 5 i 5 2n−2`−2, 2n−2`−1 5 j 5 2n−2) in Equation (6.1).
Note that φVλ1 = Vλ1 = {X ∈ TM : AX = λ1X}, φVλ2 = Vλ2 = {X ∈ TM : AX = λ2X}
and Vλ1

⊕ Vλ2
= T 0M = {X ∈ TM : X ⊥ ξ}, where λ1 = (

√
c /2) cot(

√
c r/2), λ2 =

−(
√
c /2) tan(

√
c r/2). Then we obtain cot(

√
c r/2) tan(

√
c r/2) = 0, which is a contradic-

tion. Hence M2n−1 does not have weakly φ-invariant curvature tensor R of M2n−1. Simi-
larly, real hypersurfaces M2n−1 of type (A2) in CHn(c) (n = 3) does not have φ-invariant
curvature tensor R of M2n−1.

Therefore real hypersurfaces of type (A) in M̃n(c) (n = 3) do not admit φ-invariant
curvature tensor.
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