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Abstract. In the present paper we introduce q-deformations of the Chebyshev hy-
pergroups of the first kind and of the second kind as models of q-deformations of
countable discrete hypergroups. Moreover we study q-deformations of character hy-
pergroups K(Ĝ) of certain compact groups G.

1 Introduction

The notion of compact quantum groups is introduced in [14] and [15] by S. L. Woronowicz.
Especially, he studied the structure of SUq(2) which is obtained by a q-deformation of SU(2)
in the category of Hopf algebras. Compact quantum groups play an important role not only
in mathematics but also in theoretical physics.

Deformations of groups and hypergroups are investigated in [16] by K. A. Ross and D.
Xu and our previous paper [6] in the category of hypergroups. Many new hypergroups are
produced by deforming groups and hypergroups. The notion of q-deformations of groups
and hypergroups is one of the way to understand hypergroup structures.

The structure of countable discrete hypergroups arising from orthogonal polynomials
has been studied by many authors (for example [7], [8] and [9]). But there is no notion of
q-deformations of countable discrete hypergroups in the category of hypergroups. In the
present paper, we consider q-deformations of countable discrete commutative hypergroups,
mainly of the Chebyshev hypergroups T of the first kind and Fd(U) of the second kind. In
the present paper the q-deformation Kq of a countable discrete hypergroup K is to deform
continuously structures of K by a parameter q (0 < q ≤ 1) and K1 = K in the category
of hypergroups. A notion of dimension functions of countable discrete hypergroups and of
fusion rule algebras plays an essential role in our discussions.

In section 3, we consider dimension functions of countable discrete hypergroups as well
as of fusion rule algebras. In section 4, we discuss q-deformations Tq of the Chebyshev
hypergroup T of the first kind. Moreover we consider q-deformations Kq(Ĝ) of a character
hypergroup K(Ĝ) of the compact group G = T oα Z2 as an application of q-deformations
of T . In section 5, we discuss q-deformations Uq of the Chebyshev hypergroup Fd(U)
of the second kind which is obtained by normalization of the fusion rule algebra U by
the dimension function d of U . Moreover we investigate q-deformations Kq(ŜU(2)) of a
character hypergroup K(ŜU(2)) of the compact Lie group SU(2).
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2 Preliminary

For a countable discrete set K = {X0, X1, X2, · · · , Xn, · · · } we denote the algebraic
complex linear space based on K by CK, namely

CK =

{
X =

∞∑
k=0

akXk : ak ∈ C, |supp(X)| < +∞

}
,

where |supp(X)| is the cardinal number of supp(X) and the support of X is

supp(X) := {k : ak 6= 0}.

A countable discrete hypergroup (K, CK, ◦, ∗) consists of the set K = {X0, X1, · · · , Xn, · · · }
together with a product (called convolution) ◦ and an involution ∗ in the complex linear
space CK satisfying the following conditions.

(1) For Xm, Xn ∈ K, the convolution Xm ◦ Xn belongs to CK and

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk,

where

S(m,n) := supp(Xm ◦ Xn), ak
mn ≥ 0 and

∑
k∈S(m,n)

ak
mn = 1.

(2) The space (CK, ◦, ∗) is an associative ∗-algebra with unit X0.

(3) The map Xn 7→ X∗
n is a bijection on K. Moreover for all Xm, Xn ∈ K, Xn = X∗

m if
and only if 0 ∈ supp(Xm ◦ Xn).

We denote the hypergroup (K, CK, ◦, ∗) by K. A hypergroup K is called commutative if
the convolution ◦ on CK is commutative and be called hermitian if X∗

n = Xn.

If the given countable discrete hypergroup K is commutative, its dual K̂ can be intro-
duced as the set of all bounded functions χ 6= 0 on CK satisfying

χ(Xm ◦ Xn) = χ(Xm)χ(Xn), χ(X∗
n) = χ(Xn)

for all Xi, Xj ∈ K. This set of characters K̂ of K becomes a compact space with respect to
the topology of uniform convergence on compact sets, but generally fails to be a hypergroup.
If K̂ is a hypergroup, then K is called a strong hypergroup or a hypergroup of strong type.

Let G be a compact group and Ĝ the set of all equivalence classes of irreducible repre-
sentations of G. Put

K(Ĝ) := {ch(π) : π ∈ Ĝ},

where
ch(π)(g) :=

1
dim π

tr(π(g)) (g ∈ G).

Then K(Ĝ) always becomes a discrete commutative hypergroup which is called the character
hypergroup of G. (Refer to [1] for details.)
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Let K = (K, CK, ◦, ∗) be a countable discrete hypergroup where K = {X0, X1, · · · , Xn,
· · · }. For q (0 < q ≤ 1), put Kq = {X0(q), X1(q), · · · , Xn(q), · · · } a new basis in CK. Then
the convolution Xm(q) and Xn(q) of CK is defined by

Xm(q) ◦ Xn(q) :=
∞∑

k=0

ak
mn(q)Xk(q)

where ak
mn(q) is continuous with respect to q. The involution ∗ of Kq is given by

Xn(q)∗ = Xm(q)∗ when X∗
n = Xm.

For the hypergroup Kq = (Kq, CK, ◦, ∗) satisfies the following conditions

Xn(1) = Xn and Xn(q) → Xn as q → 1,

we call Kq a q-deformation of K.

A fusion rule algebra (F, CF, ¦,−) consists of the set F = {Y0, Y1, · · · , Yn, · · · } together
with a product (called convolution) ¦ and an involution − in the complex linear space CF
based on F satisfying the following conditions.

(1) For Ym, Yn ∈ F , the convolution Ym ¦ Yn belongs to CF and

Ym ¦ Yn =
∑

k∈S(m,n)

ak
mnYk (ak ∈ Z+ = {0, 1, 2, · · · }),

Y −
n ¦ Yn = Y0 +

∑
k∈S(m,n)

k 6=0

ak
mnYk.

where S(m, n) := supp(Ym ¦ Yn).

(2) The space (CF, ¦,−) is an associative involutive algebra with unit Y0.

We denote the fusion rule algebra (F, CF, ¦,−) by F .

For the dual Ĝ of a compact group G, put

F(Ĝ) := {Ch(π) : π ∈ Ĝ},

where
Ch(π)(g) := tr(π(g)) (g ∈ G).

Then F(Ĝ) always becomes a fusion rule algebra.

3 A dimension function

In this section, we discuss a dimension function of a countable discrete hypergroup and
a fusion rule algebra.

For a countable discrete hypergroup K, the mapping d from K to R×
+ = {x ∈ R : x > 0}

is called a dimension function of K if d is a homomorphism in the sense that

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk ⇒ d(Xm)d(Xn) =

∑
k∈S(m,n)

ak
mnd(Xk).
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The dimension function d of K is uniquely extendable as a linear mapping from CK to C
and satisfies

d(Xm ◦ Xn) = d(Xm)d(Xn).

Proposition 3.1 Let K be a countable discrete hypergroup where K = {X0, X1, · · · , Xn, · · · }.
For the dimension function d of K, put

cn :=
1

d(Xn)
Xn and Kd := {c0, c1, · · · , cn, · · · }.

Then Kd is a hypergroup.

Proof By the axiom (1) of a countable discrete hypergroup, the structure equation of K
is written by

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk.

Hence, the structure equation of Kd is

cm ◦ cn =
1

d(Xm)d(Xn)
Xm ◦ Xn

=
1

d(Xm)d(Xn)

∑
k∈S(m,n)

ak
mnXk

=
∑

k∈S(m,n)

ak
mnd(Xk)

d(Xm)d(Xn)
ck.

Here we note that ∑
k∈S(m,n)

ak
mnd(Xk)

d(Xm)d(Xn)
= 1

by the fact
d(Xm)d(Xn) =

∑
k∈S(m,n)

ak
mnd(Xk).

It is clear that the coefficients of the convolution cm ◦ cn are non-negative. It is easy
to check other conditions of axiom of a countable discrete hypergroup. Hence, Kd is a
countable discrete hypergroup. 2

Remark If K is a finite hypergroup, the dimension function d of K is known to be unique
such that d(Xk) = 1 for all Xk ∈ K.

For a fusion rule algebra F , the dimension function d of F is defined in a similar way to
the above.

Proposition 3.2 Let F be a fusion rule algebra where F = {Y0, Y1, · · · , Yn, · · · }. For the
dimension function d of a fusion rule algebra F , put

bn :=
1

d(Yn)
Yn and Fd := {b0, b1, · · · , bn, · · · }.

Then Fd becomes a hypergroup.

Proof The desired assertion is obtained in a similar way to the proof of Proposition 3.1.
2
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4 Q-deformations of the Chebyshev hypergroup of the first kind

Let Tn(x) be the Chebyshev polynomial of the first kind of degree n, then Tn(x) (n =
0, 1, 2, · · · ) satisfy the following equation.

Tm(x)Tn(x) =
1
2
T|m−n|(x) +

1
2
Tm+n(x).

Then, for the set T = {T0, T1, · · · , Tn, · · · }, (T , CT , ◦, ∗) is a countable discrete hypergroup
by the product

Tm ◦ Tn := Tm(x)Tn(x).

The hypergroup T = (T , CT , ◦, ∗) is called the Chebyshev hypergroup of the first kind.

Next, we consider a mapping dq from T to R×
+. For Tn ∈ T the mapping dq defined by

dq(Tn) := Tn

(
q + q−1

2

)
=

qn + q−n

2
≥ 1.

Proposition 4.1 The mapping dq from T to R×
+ is a dimension function of T .

Proof Put x(q) := q+q−1

2 and dq(Tn) = Tn(x(q)). Then

dq(Tm)dq(Tn) = Tm(x(q))Tn(x(q))

=
1
2
T|m−n|(x(q)) +

1
2
Tm+n(x(q))

=
1
2
dq(T|m−n|) +

1
2
dq(Tm+n)

Hence, dq is a dimension function of T . 2

Next, put

Xn(q) :=
1

dq(Tn)
Tn and Tq := {X0(q), X1(q), · · · , Xn(q), · · · }.

Then the following theorem holds.

Theorem 4.2 Tq becomes a hypergroup which is a q-deformation of T . The structure
equation is

Xm(q) ◦ Xn(q) =
∑

k∈S(m,n)

ak
mn(q)Xk(q)

where S(m,n) = {|m − n|,m + n} and

ak
mn(q) =

qk + q−k

(qm + q−m)(qn + q−n)
.

Proof By Proposition 3.1, Tq is a hypergroup. The convolution Xm(q) and Xn(q) is

Xm(q) ◦ Xn(q) =
1

dq(Tm)dq(Tn)
Tm ◦ Tn =

∑
k∈S(m,n)

dq(Tk)
2dq(Tm)dq(Tn)

Xk(q)
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where S(m, n) = {|m − n|,m + n}. Then

ak
mn(q) =

dq(Tk)
2dq(Tm)dq(Tn)

=
qk + q−k

(qm + q−m)(qn + q−n)
.

Hence, we see that ak
mn(q) is continuous with respect to q. The involution ∗ of Tq is an

identity map by the fact that

Xn(q) =
1

dq(Tn)
Tn and T ∗

n = Tn.

When q = 1, it is clear that Xn(1) = Tn. Since dq(Tn) = qn+q−n

2 is continuous, Xn(q) → Tn

as q → 1. Hence, Tq is a q-deformation of T . 2

Let α be an action of Z2 = {e, g} (g2 = e) on the torus T = {z ∈ C : |z| = 1} defined by

αg(z) = z.

Then we have a compact group G = T oα Z2 in the form of a semi-direct product. We
consider q-deformations of the character hypergroup K(Ĝ) of G = T oα Z2. The dual of T̂
of T and Ẑ2 of Z2 are given by

T̂ = {χn : n ∈ Z}, where χn(z) = zn for z ∈ T,

Ẑ2 = {τ0, τ1}, where τ2
1 = τ0.

For χ ∈ T̂ and τ ∈ Ẑ2, the irreducible representations ρ0, ρ1 and πn (n = 1, 2, · · · ) of
G = T oα Z2 are written by

ρ0((z, h)) = τ0(h) = 1, ρ1((z, h)) = τ1(h),

πn = indG
T χn (n = 1, 2, · · · ).

Then the dual Ĝ of G is determined by Ĝ = {ρ0, ρ1, π1, π2, · · · , πn, · · · } by Mackey Machine.
For the irreducible representations πn (n = 1, 2, · · · ), put

Ch(πn)(g) := tr(πn(g)) (g ∈ G)

and
F(Ĝ) := {ρ0, ρ1, Ch(π1), Ch(π2), · · · , Ch(πn), · · · }.

Then F(Ĝ) becomes a fusion rule algebra with unit ρ0. The structure equations are

ρ2
1 = ρ0, ρ1Ch(πn) = Ch(πn),

Ch(πm)Ch(πn) = Ch(π|m−n|) + Ch(πm+n) (m 6= n),

Ch(πn)2 = ρ0 + ρ1 + Ch(π2n).

Moreover, put

ch(πn) :=
1

dimπn
Ch(πn) =

1
2
Ch(πn)

and
K(Ĝ) = {ρ0, ρ1, ch(π1), ch(π2), · · · , ch(πn), · · · }.
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Then K(Ĝ) becomes a hypergroup with unit ρ0 by Proposition 3.2. This hypergroup K(Ĝ)
is the character hypergroup of G. The hypergroup structure of K(Ĝ) is the hypergroup join
of Z2 by T which is written by

K(Ĝ) = Z2 ∨ T .

Hence, we obtain a q-deformation Kq(Ĝ) of the countable discrete hypergroup K(Ĝ) as
follows.

Theorem 4.3 The hypergroup Kq(Ĝ) = Z2 ∨ Tq is a q-deformation of K(Ĝ).

The hypergroups T and K(Ĝ) are strong hypergroup. Since T̂ = Kα(T) and K̂(Ĝ) =
K(G) where Kα(T) is the orbital hypergroup of the action α of Z2 on T and K(G) is the
conjugacy class hypergroup of G.

Conjecture When q 6= 1, the hypergroups Tq and Kq(Ĝ) are not strong.

5 Q-deformations of the Chebyshev hypergroup of the second kind

Let Un(x) be the Chebyshev polynomial of the second kind of degree n, then Un(x)
(n = 0, 1, 2, · · · ) satisfy the following equation.

Um(x)Un(x) = U|m−n|(x) + U|m−n|+2(x) + · · · + Um+n(x).

Hence, for the set U = {U0, U1, · · · , Un, · · · }, (U , CU , ¦,−) has the structure of a fusion rule
algebra by the product

Um ¦ Un := Um(x)Un(x).

The canonical dimension function d of U is given by

d(Un) = n + 1.

Put
cn :=

1
d(Un)

Un and Fd(U) := {c0, c1, · · · , cn, · · · }.

Then Fd(U) becomes a hypergroup by the product

cm ◦ cn :=
1

d(Um)
Um ¦ 1

d(Un)
Un.

This hypergroup is called the Chebyshev hypergroup of the second kind. The structure
equation is

cm ◦ cn =
|m − n| + 1

(m + 1)(n + 1)
c|m−n| +

|m − n| + 3
(m + 1)(n + 1)

c|m−n|+2 + · · ·

+
m + n + 1

(m + 1)(n + 1)
cm+n,

where c0 is the unit element and c∗n = cn.

Next, we consider a mapping dq from U to R×
+. For Un ∈ U , the mapping dq defined by

dq(Un) := Un

(
q + q−1

2

)
=

qn+1 − q−(n+1)

q − q−1
= qn + qn−2 + · · · + q−n (0 < q ≤ 1).
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Proposition 5.1 The mapping dq from U to R×
+ is a dimension function of U .

Proof The proof is obtained in a similar way to Proposition 4.1. 2

Put
Xn(q) :=

1
dq(Un)

Un and Uq := {X0(q), X1(q), · · · , Xn(q), · · · }.

Then the following theorem holds.

Theorem 5.2 Uq becomes a hypergroup which is a q-deformation of Fd(U). The structure
equation is

Xm(q) ◦ Xn(q) =
∑

k∈S(m,n)

ak
mn(q)Xk(q)

where S(m, n) = {|m − n|, |m − n| + 2, · · · ,m + n} and

ak
mn(q) =

(q − q−1)(qk+1 − q−(k+1))
(qm+1 − q−(m+1))(qn+1 − q−(n+1))

.

Proof By Proposition 3.1, Uq is a hypergroup. The convolution Xm(q) and Xn(q) is

Xm(q) ◦ Xn(q) =
1

dq(Um)dq(Un)
Um ¦ Un =

∑
k∈S(m,n)

dq(Uk)
dq(Um)dq(Un)

Xk(q)

where S(m, n) = {|m − n|, |m − n| + 2, · · · ,m + n}. Then,

ak
mn(q) =

dq(Uk)
dq(Um)dq(Un)

=
(q − q−1)(qk+1 − q−(k+1))

(qm+1 − q−(m+1))(qn+1 − q−(n+1))
.

The coefficients ak
mn(q) can also write

ak
mn(q) =

(qk + qk−2 + · · · + q−k)
(qm + qm−2 + · · · + q−m)(qn + qn−2 + · · · + q−n)

.

Hence, we see that ak
mn(q) is continuous with respect to q. The involution of Uq is an

identity map by the fact that

Xn(q) =
1

dq(Un)
Un and U∗

n = Un.

When q = 1, it is clear that Xn(1) = 1
n+1Un. Since dq(Un) = qn + qn−2 + · · · + q−n is

continuous, Xn(q) → 1
n+1Un as q → 1. Hence, Uq is a q-deformation of Fd(U). 2

Next, we consider the relation with the dual ŜU(2) = {π0, π1, · · · , πn, · · · }, where

dim πn = n + 1 and πm ⊗ πn
∼= π|m−n| ⊕ π|m−n|+2 ⊕ · · · ⊕ πm+n.

The character ρn of πn ∈ ŜU(2) is given by

ρn(g) = tr(πn(g)) (g ∈ SU(2)).

Then,
ρmρn = ρ|m−n| + ρ|m−n|+2 + · · · + ρm+n
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as a function on SU(2). Put F(ŜU(2)) = {ρ0, ρ1, · · · , ρn, · · · }. Then F(ŜU(2)) becomes a
fusion rule algebra and isomorphic to U .

For the representative element g = gθ =
(

cos θ − sin θ
sin θ cos θ

)
∈ SU(2) in the conjugacy

class of SU(2),

ρn(gθ) =
sin(n + 1)θ

sin θ
= Un(cos θ).

Put
χn =

1
dq(Un)

ρn (0 < q ≤ 1)

and
Kq(ŜU(2)) = {χ0, χ1, · · · , χn, · · · }.

Then, Kq(ŜU(2)) is a hypergroup which is isomorphic to Uq.

Remark The hypergroups Fd(U) and K(ŜU(2)) are strong hypergroups.

Conjecture The q-deformations Uq of Fd(U) and Kq(ŜU(2)) of K(ŜU(2)) are not strong
when q 6= 1.

Conjecture The character hypergroup K(ŜUq(2)) of the quantum group SUq(2) is well
defined and

Kq(ŜU(2)) ∼= K(ŜUq(2)).
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