JOINT TOPOLOGICAL DIVISORS AND NONREMOVABLE IDEALS IN A COMMUTATIVE REAL BANACH ALGEBRA

H. S. MEHTA, R. D. MEHTA AND A. N. ROGHELIA

Received August 6, 2015

Abstract

. The concept of joint topological zero divisors (JTZD) in a real Banach algebra was discussed in [4]. In this paper we study the concepts of cortex, Šilov boundary and non-removable ideals and relating them with ideals consisting of JTZD.

1 Introduction and Preliminaries The concepts of ideals consisting of JTZD, cortex and non removable ideals for a complex Banach algebra are studied in detail $[5,6,7,8]$. Here we extend some of these results for a real Banach algebra. We have modified certain concepts and used the complexification technique to prove some results which was applied effectively in [3].

Throughout the paper, A denotes a real commutative Banach algebra with identity, $\operatorname{Car}(A)$ and $\mathfrak{M}(A)$ denote the space of all nonzero (real) homomorphisms from A to \mathbb{C} called the carrier space and the space of all maximal ideals of A respectively. We refer to [5] and [3] for the basic definitions.

Definition 1.1. Let A be a real Banach algebra with identity 1 and $c x A=\{(a, b): a, b \in A\}$. Then with the following operations, $c x A$ becomes a complex algebra with identity $(1,0)$.

$$
\left.\begin{array}{l}
(a, b)+(c, d)=(a+c, b+d) \\
(\alpha+i \beta)(a, b)=(\alpha a-\beta b, \alpha b+\beta a) \\
(a, b)(c, d)=(a c-b d, a d+b c)
\end{array}\right\} \quad \text { for all } a, b, c, d \in A
$$

It is called the complixification of A . Further, there exists a norm $\|\cdot\|_{c x A}$ on $c x A$ [3], making $c x A$ a Banach algebra and satisfying,
(i) $\max (\|a\|,\|b\|) \leq\|(a, b)\|_{\text {cx } A} \leq 2 \max (\|a\|,\|b\|)$ for all $a, b \in A$.
(ii) $\|(a, 0)\|_{\mathrm{cx} A}=\|a\|$ for all $a \in A$.

2010 Mathematics Subject Classification. 46J10, 46J20 .
Key words and phrases. Joint TZD, Cortex, Non-removable ideals .

Note that $a \rightarrow(a, 0)$ embeds A into $c x A$ isometrically. Now onwards we use $\|(a, b)\|$ instead of $\|(a, b)\|_{\mathrm{cx} A}$.

We associate $\operatorname{Car}(c x A)$ and $\mathfrak{M}(c x A)$ with A. The following diagram (Figure 1) shows their interrelations.

Figure 1:

We list the properties of the maps shown in the diagram.
(i) $R: \operatorname{Car}(c x A) \rightarrow \operatorname{Car}(A)$ defined as $R(\psi)=\psi_{/ A}$, is a one-to-one, onto, continuous and open mapping.
(ii) $c x^{*}: \mathfrak{M}(c x A) \rightarrow \mathfrak{M}(A)$ defined by $c x^{*}(M)=M \bigcap A$ is a two to one, onto continuous and open mapping. Also, $c x^{*}(\Gamma(c x A))=\Gamma(A)$ where, $\Gamma(A)$ denote the Šilov boundary of A [3].
(iii) ker : $\operatorname{Car}(A) \rightarrow \mathfrak{M}(A)$ defined by $\psi \mapsto \operatorname{ker} \psi$ is a two to one, onto, continuous mapping [3].
(iv) If A is a complex Banach algebra, then the map ker is a one to one mapping.

Further, we define, $\sigma: c x A \rightarrow c x A$ by $\sigma(f, g)=(f,-g)$. Then σ is a linear map which is also isometry.

We shall need the next proposition to prove the main result.

Proposition 1.2. If N is a closed ideal in A, then $N_{c x A}$ is a closed ideal in cxA where, $N_{c x A}=\{(x, y): x, y \in N\}$. Further if N is maximal, then $N_{c x A}$ is contained in exactly two maximal ideals of cxA namely $\operatorname{ker} \psi$ and $\operatorname{ker}(\bar{\psi} \circ \sigma)$, where $\psi=R^{-1}(\phi), \bar{\psi}(x)=\overline{\psi(x)}$ and $N=\operatorname{ker} \phi$.

Proof. It is easy to verify that $N_{c x A}$ is a closed ideal in $c x A$. Let $N \in \mathfrak{M}(A)$. Then, $N=\operatorname{ker} \phi$ for some $\phi \in \operatorname{Car}(A)$. Note that $\operatorname{ker} \phi=\operatorname{ker} \bar{\phi}$ and if $R^{-1}(\phi)=\psi$, then
$R^{-1}(\bar{\phi})=\bar{\psi} \circ \sigma$.
Claim 1: $N_{c x A}=\operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma)$.
Let $(x, y) \in N_{c x A}$ with $x, y \in N$. Then $\phi(x)=\phi(y)=0=\bar{\phi}(x)=\bar{\phi}(y)$, which implies $\psi(x, y)=\phi(x)+i \phi(y)=0$ and $(\bar{\psi} \circ \sigma)(x, y)=\bar{\phi}(x)+i \bar{\phi}(y)=0$. Hence, (x, y) $\in \operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma)$. Thus, $N_{c x A} \subset \operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma)$.

Conversely, if $(x, y) \in \operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma)$, then $0=\psi(x, y)=\phi(x)+i \phi(y)$ and $0=(\bar{\psi} \circ \sigma)(x, y)=\bar{\phi}(x)+i \bar{\phi}(y)$. So, $\phi(x)-i \phi(y)=0$. Therefore, $\phi(x)=0=\phi(y)$. Hence, $x, y \in N$ and so, $(x, y) \in N_{c x A}$. Therefore, $\operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma) \subset N_{c x A}$. Hence, $N_{c x A}=\operatorname{ker} \psi \bigcap \operatorname{ker}(\bar{\psi} \circ \sigma)$.

Claim 2: $N_{c x A}$ is contained in only two maximal ideals namely $\operatorname{ker} \psi$ and $\operatorname{ker}(\bar{\psi} \circ \sigma)$.
Suppose $N_{c x A} \subset M^{\prime}$, where $M^{\prime} \in \mathfrak{M}(c x A)$, then $M^{\prime}=\operatorname{ker} \psi^{\prime}$ for some $\psi^{\prime} \in \operatorname{Car}(c x A)$. Let $\phi^{\prime}=\psi_{\mid A}^{\prime}=R\left(\psi^{\prime}\right)$. Then, we show that $\operatorname{ker} \phi=\operatorname{ker} \phi^{\prime}$.

Let $x \in \operatorname{ker} \phi=N$. Then $(x, x) \in N_{c x A} \subset M^{\prime}$. So, $\psi^{\prime}(x, x)=0$, i.e., $\phi^{\prime}(x)+i \phi^{\prime}(x)=0$. Hence, $\phi^{\prime}(x)=0$. Thus, $x \in \operatorname{ker} \phi^{\prime}$. Hence, $\operatorname{ker} \phi \subset \operatorname{ker} \phi^{\prime}$. Therefore, $\operatorname{ker} \phi=\operatorname{ker} \phi^{\prime}$ as both of them are maximal ideals in A. So, $\phi=\phi^{\prime}$ or $\bar{\phi}=\phi^{\prime}$. Hence, $\psi=\psi^{\prime}$ or $\bar{\psi} \circ \sigma=\psi^{\prime}$.

2 Joint topological zero divisor In this section, we have defined joint topological zero divisor for a real Banach algebra. Also, we have proved some results similar to that of complex Banach algebras [6].

Definition 2.1. Let A be a real commutative Banach algebra. A subset S of A is said to be consisting of joint topological zero divisors (JTZD) if for every finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of S

$$
d\left(x_{1}, \ldots, x_{n}\right)=\inf \left\{\sum_{i=1}^{n}\left\|x_{i} z\right\|: z \in A,\|z\|=1\right\}=0 .
$$

Equivalently, there exists a net $\left(z_{\alpha}\right)$ in A with $\left\|z_{\alpha}\right\|=1$ such that $\lim _{\alpha} x z_{\alpha}=0$ for each $x \in S$ [4]. In particular, if S is an ideal, then it is called an ideal consisting of JTZD. Note that if $S=\{x\}$, then the above definition coincides with topological zero divisor.

Theorem 2.2. If A is a real commutative Banach algebra and $I \subset A$ is a nonzero ideal consisting of JTZD, then there exists a maximal ideal N in A consisting of JTZD and $I \subset N$.

To prove the above result we need the following lemmas.

Lemma 2.3. If I is an ideal in A consisting of JTZD, then
$I_{c x A}=\{(x, y): x, y \in I\}$ is an ideal in $c x A$ consisting of JTZD.

Proof. As we have noted in Proposition 1.2, $I_{c x A}$ is an ideal in $c x A$. To show that $I_{c x A}$ consists of JTZD, let $(x, y) \in I_{c x A}$. Then $x, y \in I$. Since, I consists of JTZD, there exists a net $\left(x_{\alpha}\right)$ in A with $\left\|x_{\alpha}\right\|=1$ such that $\left\|x x_{\alpha}\right\|<\frac{\varepsilon}{2}$ for $\alpha \geq \alpha_{x}$ and $\left\|y x_{\alpha}\right\|<\frac{\varepsilon}{2}$ for $\alpha \geq \alpha_{y}$. Let $\alpha_{\varepsilon} \geq \alpha_{x}$ and $\alpha_{\varepsilon} \geq \alpha_{y}$. Then $\left\|x x_{\alpha}\right\|<\frac{\varepsilon}{2}$ and $\left\|y x_{\alpha}\right\|<\frac{\varepsilon}{2}$ for $\alpha \geq \alpha_{\varepsilon}$.

Consider $z_{\alpha}=\left(x_{\alpha}, 0\right)$. Then, $\left(z_{\alpha}\right)$ is a net in cxA. Also, $\left\|z_{\alpha}\right\|=\left\|\left(x_{\alpha}, 0\right)\right\|=\left\|x_{\alpha}\right\|=1$ and $\left\|z_{\alpha}(x, y)\right\|=\left\|\left(x_{\alpha} x, x_{\alpha} y\right)\right\| \leq 2 \max \left(\left\|x_{\alpha} x\right\|,\left\|x_{\alpha} y\right\|\right)<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$. So, $\lim _{\alpha} z_{\alpha}(x, y)=0$ for each $(x, y) \in I_{c x A}$. Hence, $I_{c x A}$ consists of JTZD.

Lemma 2.4. If J is an ideal in $c x A$ consisting of $J T Z D$, then $J \bigcap A$ is an ideal in A consisting of JTZD.

Proof. Clearly, $I=J \bigcap A$ is an ideal in A. Let $x \in I$. Then, $(x, 0) \in J$. Therefore, there exists a net $\left(z_{\alpha}\right)_{\alpha \in \Lambda}$ in $c x A$ with $\left\|z_{\alpha}\right\|=1$ such that $\left\|z_{\alpha}(x, 0)\right\|<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$.

Let $z_{\alpha}=\left(x_{\alpha}, y_{\alpha}\right)$. Then $\left\|\left(x_{\alpha}, y_{\alpha}\right)(x, 0)\right\|<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$. Therefore, $\left\|\left(x_{\alpha} x, y_{\alpha} x\right)\right\|<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$. So, $\max \left(\left\|x_{\alpha} x\right\|,\left\|y_{\alpha} x\right\|\right) \leq\left\|\left(x_{\alpha} x, y_{\alpha} x\right)\right\|<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$. Hence, $\left\|x_{\alpha} x\right\|<\varepsilon$ and $\left\|y_{\alpha} x\right\|<\varepsilon$ for $\alpha \geq \alpha_{\varepsilon}$. So, $\lim _{\alpha} x_{\alpha} x=0$ and $\lim _{\alpha} y_{\alpha} x=0$.

Now, $\max \left(\left\|x_{\alpha}\right\|,\left\|y_{\alpha}\right\|\right) \leq\left\|z_{\alpha}\right\|=1 \leq 2 \max \left(\left\|x_{\alpha}\right\|,\left\|y_{\alpha}\right\|\right)$ for each α. Therefore, $\frac{1}{2} \leq \max \left(\left\|x_{\alpha}\right\|,\left\|y_{\alpha}\right\|\right) \leq 1$ for each $\alpha \in \Lambda$.

Let

$$
z_{\alpha^{\prime}}=\left\{\begin{array}{l}
\frac{x_{\alpha}}{\left\|x_{\alpha}\right\|}, \text { if }\left\|x_{\alpha}\right\| \geq \frac{1}{2} \\
\frac{y_{\alpha}}{\left\|y_{\alpha}\right\|}, \text { if }\left\|x_{\alpha}\right\|<\frac{1}{2}
\end{array}\right.
$$

It is clear that $\left\{z_{\alpha^{\prime}}\right\}$ is a net of norm one and $\lim _{\alpha} z_{\alpha^{\prime}} x=0$. Hence, I consists of JTZD.

Proof. (Theorem 2.2) Let I consist of JTZD. Then by Lemma 2.3, $I_{c x A}$ consists of JTZD. Hence, there exists a maximal ideal M in $c x A$ consisting of JTZD such that $I_{c x A} \subset M$ [6]. Let $N=M \bigcap A$. Then by Lemma 2.4, N is in A and it consists of JTZD, and $I \subset N$. This N is the required maximal ideal.

3 Cortex The concept of cortex for a complex Banach algebra has been studied in [5]. The cortex for a complex Banach algebra A is defined as a subset of $\operatorname{Car}(A)$. Here, we define the cortex slightly in a different manner.

Definition 3.1. Let A be a real commutative Banach algebra with identity. The set $\{M \in \mathfrak{M}(A): M$ consists of JTZD $\}$ is called the cortex of A and is denoted by $\operatorname{Cor}(A)$.

Note that for a complex Banach algebra $A, \operatorname{Cor}(A)$ can also be looked upon as a subset of $\operatorname{Car}(A)$ as $\operatorname{Car}(A) \cong \mathfrak{M}(A)$. Here we have considered cortex of a complex Banach algebra A as a subset of $\mathfrak{M}(A)$. The following result for a real Banach algebra A follows immediately from the result of $\S 2$.

Theorem 3.2. $c x^{*}(\operatorname{Cor}(c x A))=\operatorname{Cor}(A)$. Consequently $\operatorname{Cor}(A)$ is a nonempty compact subset of $\mathfrak{M}(A)$.

Corollary 3.3. $\Gamma(A) \subset \operatorname{Cor}(A)$.
Proof. $\Gamma(A)=c x^{*}(\Gamma(c x A))[3] \subset c x^{*}(\operatorname{Cor}(c x A))[5]=\operatorname{Cor}(A)$.

Lemma 3.4. Let $\psi \in \operatorname{Car}(c x A)$. Then $\operatorname{ker} \psi \in \operatorname{Cor}(c x A)$ if and only if $\operatorname{ker}(\bar{\psi} \circ \sigma) \in \operatorname{Cor}(c x A)$.

Proof. Let $(f, g) \in c x A$. Then, $(f, g) \in \operatorname{ker} \psi \Leftrightarrow \psi(f, g)=0 \Leftrightarrow \bar{\psi}(f, g)=0$
$\Leftrightarrow(\bar{\psi} \circ \sigma)(f,-g)=0 \Leftrightarrow(f,-g) \in \operatorname{ker}(\bar{\psi} \circ \sigma)$.
Let $\operatorname{ker} \psi \in \operatorname{Cor}(c x A)$. To show that $\operatorname{ker}(\bar{\psi} \circ \sigma) \in \operatorname{Cor}(c x A)$, let $\left(f_{i}, g_{i}\right) \in \operatorname{ker}(\bar{\psi} \circ \sigma)$ for $i=1, \ldots, n$. Therefore, $\left(f_{i},-g_{i}\right) \in \operatorname{ker} \psi$ for $i=1, \ldots, n$. But ker ψ consists of JTZD. Hence, for given $\varepsilon>0$ there exists $(x, y) \in c x A$ with $\|(x, y)\|=1$ such that

$$
\sum_{k=1}^{n}\left\|\left(f_{k},-g_{k}\right)(x, y)\right\|<\varepsilon
$$

Now, $\left\|\left(f_{k},-g_{k}\right)(x, y)\right\|=\left\|\left(f_{k}, g_{k}\right)(x,-y)\right\|$ as $\sigma(f, g)=(f,-g)$ is an isometry. So, $\sum_{k=1}^{n}\left\|\left(f_{k}, g_{k}\right)(x,-y)\right\|<\varepsilon$. Hence, $\operatorname{ker}(\bar{\psi} \circ \sigma) \in \operatorname{Cor}(c x A)$.

The converse follows from the fact $\overline{\bar{\psi}} \circ \sigma \circ \sigma=\psi$.
Remark 3.5. If we consider $F=\operatorname{ker}^{-1}(\Gamma(A))$ and $K=\operatorname{ker}^{-1}(\operatorname{Cor}(A))$, then it is clear from the definition of $\Gamma(A)$ that $\left.\operatorname{ker}\right|_{F}$ is also two to one onto $\Gamma(A)$. The following result shows that $\left.\operatorname{ker}\right|_{K}$ is also two to one onto $\operatorname{Cor}(A)$.

Proposition 3.6. $R\left(\operatorname{ker}^{-1}(\operatorname{Cor}(\operatorname{cx} A))\right)=\operatorname{ker}^{-1}(\operatorname{Cor}(A))$

Proof. Let $\psi \in \operatorname{ker}^{-1}(\operatorname{Cor}(c x A))$. Then ker $\psi \in \operatorname{Cor}(\operatorname{cx} A)$. Now, $R(\psi)=\psi_{\mid A}=\phi$. To prove $\phi \in \operatorname{ker}^{-1}(\operatorname{Cor}(A))$, we have to show that $\operatorname{ker} \phi \in \operatorname{Cor}(A)$. Now, $\operatorname{ker} \phi=\operatorname{ker} \psi \bigcap A$. Therefore, by Lemma 2.4, $\operatorname{ker} \phi$ consists of JTZD. Hence, $\phi \in \operatorname{ker}^{-1}(\operatorname{Cor}(A))$.

Conversely, let $\phi \in \operatorname{ker}^{-1}(\operatorname{Cor}(A))$. Then $\operatorname{ker} \phi=N \in \operatorname{Cor}(A)$. Then, by Lemma 2.3, $N_{c x A}$ consists of JTZD. Hence, there exists a maximal ideal $M \in \operatorname{Cor}(c x A)$ such that $N_{c x A} \subset M$. But $N_{c x A}$ is contained in only two maximal ideals, $\operatorname{ker} \psi$ and $\operatorname{ker}(\bar{\psi} \circ \sigma)$. Therefore, either $\operatorname{ker} \psi$ or $\operatorname{ker}(\bar{\psi} \circ \sigma)$ consists of JTZD. So, by Lemma 3.4 in any case, $\operatorname{ker} \psi \in \operatorname{Cor}(c x A)$. Therefore, $R\left(\operatorname{ker}^{-1}(\operatorname{Cor}(c x A))\right)=\operatorname{ker}^{-1}(\operatorname{Cor}(A))$.

4 Extension and Non-removable ideals In this section, we characterize the cortex of a real Banach algebra. For this, we define the concepts of extensions and non-removable ideals for a real Banach algebra. Also, we have shown that the smallest complex extension for a real Banach algebra is its complexification.

Definition 4.1. Let A and B be Banach algebras. We say that B is an extension of A if there exists an isometrical into isomorphism $\rho: A \rightarrow B$. In this case, we write $A \subset B$.

Theorem 4.2. Let A be a real commutative Banach algebra.
(i) If B is a real extension of A, then $c x B$ is an extension of $c x A$ with an equivalent norm. (ii) If B is a complex extension of A, then B is also an extension of $c x A$, i.e., cx A is the smallest complex extension of A.

Proof. (i) Let B be a real extension of A. Then there exists a real into isometrical isomorphism $\rho: A \rightarrow B$. Define $\rho^{\prime}: c x A \rightarrow c x B$ by $\rho^{\prime}(a, b)=(\rho(a), \rho(b))$. Then it is easy to check that ρ^{\prime} is an algebra homomorphism. Further, $\left\|\rho^{\prime}(a, b)\right\|=\|(\rho(a), \rho(b))\|$

$$
\begin{aligned}
& \leq 2 \max (\|\rho(a)\|,\|\rho(b)\|)=2 \max (\|a\|,\|b\|) \leq 2(\|(a, b)\|) \text { and }\|(a, b)\| \leq 2 \max (\|a\|,\|b\|) \\
& =2 \max (\|\rho(a)\|,\|\rho(b)\|) \leq 2(\|(\rho(a), \rho(b))\|)=2\left\|\rho^{\prime}(a, b)\right\|
\end{aligned}
$$

Hence, $\frac{1}{2}\|(a, b)\| \leq\left\|\rho^{\prime}(a, b)\right\| \leq 2(\|(a, b)\|)$. Therefore, there exists an algebra norm $\||\cdot|\|$ on $c x B$ equivalent to the above norm on $c x B$ such that $\left\|\left|\rho^{\prime}(a, b)\right|\right\|=\|(a, b)\|$ for every $(a, b) \in c x A[5]$. Hence, $c x B$ is an extension of $c x A$.
(ii) Let B be a complex extension of A. Then $c x B \cong B$. So, as in part (1), we get B is an extension of $c x A$.

Definition 4.3. An ideal I in a commutative Banach algebra A is called non-removable, if in every commutative Banach algebra $B \supset A$, there exists a proper ideal J of B such that $J \supset I$.

We shall need the following lemma.

Lemma 4.4. If I is non-removable in A, then $I_{c x A}$ is non-removable in $c x A$.

Proof. Let I be a non-removable ideal in A. To show that $I_{c x A}$ is non-removable in $c x A$, let B be an extension of $c x A$. Then B is also an extension of A. Therefore, there exists a proper ideal $J \subset B$ such that $I \subset J$. So, $I_{c x A} \subset J$. Hence, $I_{c x A}$ is non-removable in $c x A$.

Theorem 4.5. An ideal in a real commutative Banach algebra is non-removable if and only if it consists of JTZD.

Proof. Let A be a real commutative Banach algebra and I be an ideal consisting of JTZD. Then there exists a net $\left(z_{\alpha}\right)$ in A with $\left\|z_{\alpha}\right\|=1$ and $\lim _{\alpha} x z_{\alpha}=0$ for every $x \in I$.

Let $B \supset A$ be a commutative extension of A and let

$$
J=\left\{x_{1} b_{1}+\ldots+x_{n} b_{n}: x_{1}, \ldots, x_{n} \in I, b_{1}, \ldots, b_{n} \in B, n \in \mathbb{N}\right\}
$$

be the smallest ideal in B containing I. Suppose J is not proper. Then $1 \in J$. Therefore, there exists $x_{1}, \ldots, x_{n} \in I$ and $b_{1}, \ldots, b_{n} \in B$ such that $\sum_{k=1}^{n} x_{k} b_{k}=1$.

Then, $1=\left\|z_{\alpha}\right\|=\left\|\sum_{k=1}^{n} z_{\alpha} x_{k} b_{k}\right\| \leq \sum_{k=1}^{n}\left\|z_{\alpha} x_{k}\right\|\left\|b_{k}\right\| \rightarrow 0$ a contradiction. Hence, J is proper and so I is non-removable.

Conversly, let I be a non-removable ideal in A. Then $I_{c x A}$ is non-removable ideal in $c x A$ by the above Lemma. Therefore, $I_{c x A}$ consists of JTZD [5]. Hence, $I=I_{c x A} \bigcap A$ also consists of JTZD by Lemma 2.4.

The next theorem gives characterization of $\operatorname{Cor}(A)$.

Theorem 4.6. Let A be a real commutative Banach algebra and $\phi \in \operatorname{Car}(A)$. Then the following statements are equivalent:
(i) $\operatorname{ker} \phi \in \operatorname{Cor}(A)$.
(ii) For every commutative Banach algebra $B \supset A$, there exists a multiplicative linear functional $\psi \in \operatorname{Car}(B)$ such that $\phi=\psi_{\mid A}$.
(iii) For every commutative Banach algebra $B \supset A$, there exists a multiplicative linear functional ψ such that $\operatorname{ker} \psi \in \operatorname{Cor}(B)$ and $\phi=\psi_{\mid A}$.

Proof. First we prove $(i) \Rightarrow(i i i)$. Let $\operatorname{ker} \phi \in \operatorname{Cor}(A)$. Then, there exists a net $\left(z_{\alpha}\right)$ in A with $\left\|z_{\alpha}\right\|=1$ and $\lim _{\alpha} x z_{\alpha}=0$ for every $x \in \operatorname{ker} \phi$. Let B be a commutative Banach algebra with $B \supset A$ and $I=\left\{y \in B: y z_{\alpha} \rightarrow 0\right\}$. Then $I \supset$ ker ϕ and I consists of JTZD in B, so by Theorem 2.2, there exists a maximal ideal J consists of JTZD in B such that $I \subset J$. Let $J=\operatorname{ker} \psi$. Then $\psi_{\mid A}=\phi$.
$(i i i) \Rightarrow(i i)$ is clear.
Finally, we prove $(i i) \Rightarrow(i)$ If $B \supset A$ and $\psi \in \operatorname{Car}(B)$ extends ϕ, then $\operatorname{ker} \phi \subset \operatorname{ker} \psi$. Hence, $\operatorname{ker} \phi$ is a non-removable ideal in A. Hence, by Theorem 4.5, $\operatorname{ker} \phi$ consists of JTZD. Therefore, $\operatorname{ker} \phi \in \operatorname{Cor}(A)$.

Acknowledgements:This research is supported by the SAP programme to the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar by UGC.

References

[1] R. Arens, Extensions of Banach Algebras, Pacific J. Math., 10, (1960), 1-16.
[2] S. H. Kulkarni and B.V. Limaye, Real function algebras, Monographs and Textbooks in Pure and Applied Mathematics, Dekker, New York, 1992.
[3] B. V. Limaye, Boundaries for Real Banach algebras, Can. J.Math., 28, No. 1, (1976), 42-49
[4] H. S. Mehta, R. D. Mehta and A. N. Roghelia, Joint topological zero divisors for a real Banach algebra, Mathematics Today, 30, (2014), 54-58.
[5] V. Muller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhasuser Verlag, Basel-Boston-Berlin, 2007.
[6] Z. Slodkowski, On ideals consisting of joint topological divisors of zero, Studia Math., 48, (1973), 83-88.
[7] A. Wawrzynczyk, On ideals consisting of topological zero divisors, Studia Math., 142 (8), (2000), 245-251.
[8] W. Zelazko, On a certain class of non-removable ideals in Banach Algebras, Studia Math., 44, (1972), 87-92.

Aakar N. Roghelia
BVM Engineering College, Vallabh Vidyanagar, India,388120
E-mail address: aakarkhyati@gmail.com
H. S. Mehta

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, India 388120
E-mail address: hs_mehta@spuvvn.edu
R. D. Mehta

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, India, 388120
E-mail address: vvnspu@yahoo.co.in

