JOINT TOPOLOGICAL DIVISORS AND NONREMOVABLE IDEALS IN A COMMUTATIVE REAL BANACH ALGEBRA

H. S. MEHTA, R. D. MEHTA AND A. N. ROGHELIA

Received August 6, 2015

Abstract.

The concept of joint topological zero divisors (JTZD) in a real Banach algebra was discussed in [4]. In this paper we study the concepts of cortex, Šilov boundary and non-removable ideals and relating them with ideals consisting of JTZD.

1 Introduction and Preliminaries The concepts of ideals consisting of JTZD, cortex and non removable ideals for a complex Banach algebra are studied in detail [5, 6, 7, 8]. Here we extend some of these results for a real Banach algebra. We have modified certain concepts and used the complexification technique to prove some results which was applied effectively in [3].

Throughout the paper, A denotes a real commutative Banach algebra with identity, Car(A) and $\mathfrak{M}(A)$ denote the space of all nonzero (real) homomorphisms from A to \mathbb{C} called the carrier space and the space of all maximal ideals of A respectively. We refer to [5] and [3] for the basic definitions.

Definition 1.1. Let A be a real Banach algebra with identity 1 and $cxA = \{(a, b) : a, b \in A\}$. Then with the following operations, cxA becomes a complex algebra with identity (1, 0).

$$\begin{array}{l} (a,b) + (c,d) = (a+c,b+d) \\ (\alpha+i\beta)(a,b) = (\alpha a - \beta b, \alpha b + \beta a) \\ (a,b)(c,d) = (ac-bd,ad+bc) \end{array} \right\} for all $a,b,c,d \in A \\ \alpha,\beta \in \mathbb{R} \end{array}$$$

It is called the *complixification* of A. Further, there exists a norm $\|\cdot\|_{cxA}$ on cxA [3], making cxA a Banach algebra and satisfying,

(i) $\max\left(\left\|a\right\|,\left\|b\right\|\right) \le \left\|\left(a,b\right)\right\|_{\operatorname{cx} A} \le 2 \max\left(\left\|a\right\|,\left\|b\right\|\right)$ for all $a,b \in A$.

(ii) $\|(a,0)\|_{cxA} = \|a\|$ for all $a \in A$.

²⁰¹⁰ Mathematics Subject Classification. 46J10, 46J20.

Key words and phrases. Joint TZD, Cortex, Non-removable ideals .

Note that $a \to (a, 0)$ embeds A into cxA isometrically. Now onwards we use ||(a, b)||instead of $||(a, b)||_{cxA}$.

We associate Car(cxA) and $\mathfrak{M}(cxA)$ with A. The following diagram (Figure 1) shows their interrelations.

Figure 1:

We list the properties of the maps shown in the diagram.

(i) $R: Car(cxA) \to Car(A)$ defined as $R(\psi) = \psi_{/A}$, is a one-to-one, onto, continuous and open mapping.

(ii) $cx^* : \mathfrak{M}(cxA) \to \mathfrak{M}(A)$ defined by $cx^*(M) = M \bigcap A$ is a two to one, onto continuous and open mapping. Also, $cx^*(\Gamma(cxA)) = \Gamma(A)$ where, $\Gamma(A)$ denote the Šilov boundary of A [3].

(iii) ker : $Car(A) \to \mathfrak{M}(A)$ defined by $\psi \mapsto \ker \psi$ is a two to one, onto, continuous mapping [3].

(iv) If A is a complex Banach algebra, then the map ker is a one to one mapping.

Further, we define, $\sigma : cxA \to cxA$ by $\sigma(f,g) = (f,-g)$. Then σ is a linear map which is also isometry.

We shall need the next proposition to prove the main result.

Proposition 1.2. If N is a closed ideal in A, then N_{cxA} is a closed ideal in cxA where, $N_{cxA} = \{(x, y) : x, y \in N\}$. Further if N is maximal, then N_{cxA} is contained in exactly two maximal ideals of cxA namely ker ψ and ker $(\bar{\psi} \circ \sigma)$, where $\psi = R^{-1}(\phi)$, $\bar{\psi}(x) = \bar{\psi}(x)$ and $N = \ker \phi$.

Proof. It is easy to verify that N_{cxA} is a closed ideal in cxA. Let $N \in \mathfrak{M}(A)$. Then, $N = \ker \phi$ for some $\phi \in Car(A)$. Note that $\ker \phi = \ker \overline{\phi}$ and if $R^{-1}(\phi) = \psi$, then $R^{-1}\left(\bar{\phi}\right) = \bar{\psi} \circ \sigma.$

Claim 1: $N_{cxA} = \ker \psi \bigcap \ker (\bar{\psi} \circ \sigma).$

Let $(x,y) \in N_{cxA}$ with $x, y \in N$. Then $\phi(x) = \phi(y) = 0 = \overline{\phi}(x) = \overline{\phi}(y)$, which implies $\psi(x,y) = \phi(x) + i\phi(y) = 0$ and $(\overline{\psi} \circ \sigma)(x,y) = \overline{\phi}(x) + i\overline{\phi}(y) = 0$. Hence, $(x,y) \in \ker \psi \bigcap \ker (\overline{\psi} \circ \sigma)$. Thus, $N_{cxA} \subset \ker \psi \bigcap \ker (\overline{\psi} \circ \sigma)$.

Conversely, if $(x, y) \in \ker \psi \bigcap \ker (\bar{\psi} \circ \sigma)$, then $0 = \psi (x, y) = \phi (x) + i\phi (y)$ and $0 = (\bar{\psi} \circ \sigma) (x, y) = \bar{\phi} (x) + i\bar{\phi} (y)$. So, $\phi (x) - i\phi (y) = 0$. Therefore, $\phi (x) = 0 = \phi (y)$. Hence, $x, y \in N$ and so, $(x, y) \in N_{cxA}$. Therefore, $\ker \psi \bigcap \ker (\bar{\psi} \circ \sigma) \subset N_{cxA}$. Hence, $N_{cxA} = \ker \psi \bigcap \ker (\bar{\psi} \circ \sigma)$.

Claim 2: N_{cxA} is contained in only two maximal ideals namely ker ψ and ker $(\bar{\psi} \circ \sigma)$.

Suppose $N_{cxA} \subset M'$, where $M' \in \mathfrak{M}(cxA)$, then $M' = \ker \psi'$ for some $\psi' \in Car(cxA)$. Let $\phi' = \psi'_{|A} = R(\psi')$. Then, we show that $\ker \phi = \ker \phi'$.

Let $x \in \ker \phi = N$. Then $(x, x) \in N_{cxA} \subset M'$. So, $\psi'(x, x) = 0$, i.e., $\phi'(x) + i\phi'(x) = 0$. Hence, $\phi'(x) = 0$. Thus, $x \in \ker \phi'$. Hence, $\ker \phi \subset \ker \phi'$. Therefore, $\ker \phi = \ker \phi'$ as both of them are maximal ideals in A. So, $\phi = \phi'$ or $\overline{\phi} = \phi'$. Hence, $\psi = \psi'$ or $\overline{\psi} \circ \sigma = \psi'$.

2 Joint topological zero divisor In this section, we have defined joint topological zero divisor for a real Banach algebra. Also, we have proved some results similar to that of complex Banach algebras [6].

Definition 2.1. Let A be a real commutative Banach algebra. A subset S of A is said to be consisting of *joint topological zero divisors* (JTZD) if for every finite subset $\{x_1, ..., x_n\}$ of S

$$d(x_1, ..., x_n) = \inf\left\{\sum_{i=1}^n \|x_i z\| : z \in A, \|z\| = 1\right\} = 0.$$

Equivalently, there exists a net (z_{α}) in A with $||z_{\alpha}|| = 1$ such that $\lim_{\alpha} xz_{\alpha} = 0$ for each $x \in S$ [4]. In particular, if S is an ideal, then it is called an ideal consisting of JTZD. Note that if $S = \{x\}$, then the above definition coincides with topological zero divisor.

Theorem 2.2. If A is a real commutative Banach algebra and $I \subset A$ is a nonzero ideal consisting of JTZD, then there exists a maximal ideal N in A consisting of JTZD and $I \subset N$.

To prove the above result we need the following lemmas.

Lemma 2.3. If I is an ideal in A consisting of JTZD, then

$$I_{cxA} = \{(x, y) : x, y \in I\}$$
 is an ideal in cxA consisting of JTZD.

Proof. As we have noted in Proposition 1.2, I_{cxA} is an ideal in cxA. To show that I_{cxA} consists of JTZD, let $(x, y) \in I_{cxA}$. Then $x, y \in I$. Since, I consists of JTZD, there exists a net (x_{α}) in A with $||x_{\alpha}|| = 1$ such that $||xx_{\alpha}|| < \frac{\varepsilon}{2}$ for $\alpha \ge \alpha_x$ and $||yx_{\alpha}|| < \frac{\varepsilon}{2}$ for $\alpha \ge \alpha_y$. Let $\alpha_{\varepsilon} \ge \alpha_x$ and $\alpha_{\varepsilon} \ge \alpha_y$. Then $||xx_{\alpha}|| < \frac{\varepsilon}{2}$ and $||yx_{\alpha}|| < \frac{\varepsilon}{2}$ for $\alpha \ge \alpha_{\varepsilon}$.

Consider $z_{\alpha} = (x_{\alpha}, 0)$. Then, (z_{α}) is a net in cxA. Also, $||z_{\alpha}|| = ||(x_{\alpha}, 0)|| = ||x_{\alpha}|| = 1$ and $||z_{\alpha}(x, y)|| = ||(x_{\alpha}x, x_{\alpha}y)|| \le 2 \max(||x_{\alpha}x||, ||x_{\alpha}y||) < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$. So, $\lim_{\alpha} z_{\alpha}(x, y) = 0$ for each $(x, y) \in I_{cxA}$. Hence, I_{cxA} consists of JTZD.

Lemma 2.4. If J is an ideal in cxA consisting of JTZD, then $J \cap A$ is an ideal in A consisting of JTZD.

Proof. Clearly, $I = J \bigcap A$ is an ideal in A. Let $x \in I$. Then, $(x, 0) \in J$. Therefore, there exists a net $(z_{\alpha})_{\alpha \in \Lambda}$ in cxA with $||z_{\alpha}|| = 1$ such that $||z_{\alpha}(x, 0)|| < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$.

Let $z_{\alpha} = (x_{\alpha}, y_{\alpha})$. Then $||(x_{\alpha}, y_{\alpha})(x, 0)|| < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$. Therefore, $||(x_{\alpha}x, y_{\alpha}x)|| < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$. So, max $(||x_{\alpha}x||, ||y_{\alpha}x||) \le ||(x_{\alpha}x, y_{\alpha}x)|| < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$. Hence, $||x_{\alpha}x|| < \varepsilon$ and $||y_{\alpha}x|| < \varepsilon$ for $\alpha \ge \alpha_{\varepsilon}$. So, $\lim_{\alpha} x_{\alpha}x = 0$ and $\lim_{\alpha} y_{\alpha}x = 0$.

Now, $\max(\|x_{\alpha}\|, \|y_{\alpha}\|) \leq \|z_{\alpha}\| = 1 \leq 2 \max(\|x_{\alpha}\|, \|y_{\alpha}\|)$ for each α . Therefore, $\frac{1}{2} \leq \max(\|x_{\alpha}\|, \|y_{\alpha}\|) \leq 1$ for each $\alpha \in \Lambda$.

Let

$$z_{\alpha'} = \begin{cases} \frac{x_{\alpha}}{\|x_{\alpha}\|}, & \text{if } \|x_{\alpha}\| \ge \frac{1}{2} \\ \frac{y_{\alpha}}{\|y_{\alpha}\|}, & \text{if } \|x_{\alpha}\| < \frac{1}{2} \end{cases}$$

It is clear that $\{z_{\alpha'}\}$ is a net of norm one and $\lim_{\alpha} z_{\alpha'} x = 0$. Hence, I consists of JTZD.

Proof. (Theorem 2.2) Let I consist of JTZD. Then by Lemma 2.3, I_{cxA} consists of JTZD. Hence, there exists a maximal ideal M in cxA consisting of JTZD such that $I_{cxA} \subset M$ [6]. Let $N = M \bigcap A$. Then by Lemma 2.4, N is in A and it consists of JTZD, and $I \subset N$. This N is the required maximal ideal. **3** Cortex The concept of cortex for a complex Banach algebra has been studied in [5]. The cortex for a complex Banach algebra A is defined as a subset of Car(A). Here, we define the cortex slightly in a different manner.

Definition 3.1. Let A be a real commutative Banach algebra with identity. The set $\{M \in \mathfrak{M}(A) : M \text{ consists of JTZD}\}$ is called the *cortex* of A and is denoted by *Cor*(A).

Note that for a complex Banach algebra A, Cor(A) can also be looked upon as a subset of Car(A) as $Car(A) \cong \mathfrak{M}(A)$. Here we have considered cortex of a complex Banach algebra A as a subset of $\mathfrak{M}(A)$. The following result for a real Banach algebra A follows immediately from the result of §2.

Theorem 3.2. $cx^*(Cor(cxA)) = Cor(A)$. Consequently Cor(A) is a nonempty compact subset of $\mathfrak{M}(A)$.

Corollary 3.3. $\Gamma(A) \subset Cor(A)$.

Proof.
$$\Gamma(A) = cx^* (\Gamma(cxA))[3] \subset cx^* (Cor(cxA))[5] = Cor(A).$$

Lemma 3.4. Let $\psi \in Car(cxA)$. Then ker $\psi \in Cor(cxA)$ if and only if ker $(\bar{\psi} \circ \sigma) \in Cor(cxA)$.

Proof. Let $(f,g) \in cxA$. Then, $(f,g) \in \ker \psi \Leftrightarrow \psi(f,g) = 0 \Leftrightarrow \overline{\psi}(f,g) = 0$ $\Leftrightarrow (\overline{\psi} \circ \sigma) (f,-g) = 0 \Leftrightarrow (f,-g) \in \ker (\overline{\psi} \circ \sigma).$

Let ker $\psi \in Cor(cxA)$. To show that ker $(\bar{\psi} \circ \sigma) \in Cor(cxA)$, let $(f_i, g_i) \in \text{ker}(\bar{\psi} \circ \sigma)$ for i = 1, ..., n. Therefore, $(f_i, -g_i) \in \text{ker } \psi$ for i = 1, ..., n. But ker ψ consists of JTZD. Hence, for given $\varepsilon > 0$ there exists $(x, y) \in cxA$ with ||(x, y)|| = 1 such that

$$\sum_{k=1}^{n} \left\| \left(f_k, -g_k \right) (x, y) \right\| < \varepsilon.$$

Now, $\|(f_k, -g_k)(x, y)\| = \|(f_k, g_k)(x, -y)\|$ as $\sigma(f, g) = (f, -g)$ is an isometry. So, $\sum_{k=1}^{n} \|(f_k, g_k)(x, -y)\| < \varepsilon.$ Hence, $\ker(\bar{\psi} \circ \sigma) \in Cor(cxA).$

The converse follows from the fact $\overline{\overline{\psi} \circ \sigma} \circ \sigma = \psi$.

Remark 3.5. If we consider $F = \ker^{-1}(\Gamma(A))$ and $K = \ker^{-1}(Cor(A))$, then it is clear from the definition of $\Gamma(A)$ that $\ker|_F$ is also two to one onto $\Gamma(A)$. The following result shows that $\ker|_K$ is also two to one onto Cor(A). **Proposition 3.6.** $R(\ker^{-1}(Cor(cxA))) = \ker^{-1}(Cor(A))$

Proof. Let $\psi \in \ker^{-1}(Cor(cxA))$. Then $\ker \psi \in Cor(cxA)$. Now, $R(\psi) = \psi_{|A} = \phi$. To prove $\phi \in \ker^{-1}(Cor(A))$, we have to show that $\ker \phi \in Cor(A)$. Now, $\ker \phi = \ker \psi \bigcap A$. Therefore, by Lemma 2.4, $\ker \phi$ consists of JTZD. Hence, $\phi \in \ker^{-1}(Cor(A))$.

Conversely, let $\phi \in \ker^{-1}(Cor(A))$. Then $\ker \phi = N \in Cor(A)$. Then, by Lemma 2.3, N_{cxA} consists of JTZD. Hence, there exists a maximal ideal $M \in Cor(cxA)$ such that $N_{cxA} \subset M$. But N_{cxA} is contained in only two maximal ideals, $\ker \psi$ and $\ker(\bar{\psi} \circ \sigma)$. Therefore, either $\ker \psi$ or $\ker(\bar{\psi} \circ \sigma)$ consists of JTZD. So, by Lemma 3.4 in any case, $\ker \psi \in Cor(cxA)$. Therefore, $R(\ker^{-1}(Cor(cxA))) = \ker^{-1}(Cor(A))$.

4 Extension and Non-removable ideals In this section, we characterize the cortex of a real Banach algebra. For this, we define the concepts of extensions and non-removable ideals for a real Banach algebra. Also, we have shown that the smallest complex extension for a real Banach algebra is its complexification.

Definition 4.1. Let A and B be Banach algebras. We say that B is an *extension* of A if there exists an isometrical into isomorphism $\rho : A \to B$. In this case, we write $A \subset B$.

Theorem 4.2. Let A be a real commutative Banach algebra.

(i) If B is a real extension of A, then cxB is an extension of cxA with an equivalent norm.
(ii) If B is a complex extension of A, then B is also an extension of cxA, i.e., cxA is the smallest complex extension of A.

Proof. (i) Let *B* be a real extension of *A*. Then there exists a real into isometrical isomorphism $\rho : A \to B$. Define $\rho' : cxA \to cxB$ by $\rho'(a,b) = (\rho(a), \rho(b))$. Then it is easy to check that ρ' is an algebra homomorphism. Further, $\|\rho'(a,b)\| = \|(\rho(a), \rho(b))\|$

 $\leq 2 \max \left(\|\rho(a)\|, \|\rho(b)\| \right) = 2 \max \left(\|a\|, \|b\| \right) \leq 2 \left(\|(a, b)\| \right) \text{ and } \|(a, b)\| \leq 2 \max \left(\|a\|, \|b\| \right)$ $= 2 \max \left(\|\rho(a)\|, \|\rho(b)\| \right) \leq 2 \left(\|(\rho(a), \rho(b))\| \right) = 2 \|\rho'(a, b)\|.$

Hence, $\frac{1}{2} \|(a,b)\| \leq \|\rho'(a,b)\| \leq 2(\|(a,b)\|)$. Therefore, there exists an algebra norm $\||\cdot|\|$ on cxB equivalent to the above norm on cxB such that $\||\rho'(a,b)|\| = \|(a,b)\|$ for every $(a,b) \in cxA$ [5]. Hence, cxB is an extension of cxA.

(ii) Let B be a complex extension of A. Then $cxB \cong B$. So, as in part (1), we get B is an extension of cxA.

Definition 4.3. An ideal I in a commutative Banach algebra A is called *non-removable*, if in every commutative Banach algebra $B \supset A$, there exists a proper ideal J of B such that $J \supset I$.

We shall need the following lemma.

Lemma 4.4. If I is non-removable in A, then I_{cxA} is non-removable in cxA.

Proof. Let I be a non-removable ideal in A. To show that I_{cxA} is non-removable in cxA, let B be an extension of cxA. Then B is also an extension of A. Therefore, there exists a proper ideal $J \subset B$ such that $I \subset J$. So, $I_{cxA} \subset J$. Hence, I_{cxA} is non-removable in cxA.

Theorem 4.5. An ideal in a real commutative Banach algebra is non-removable if and only if it consists of JTZD.

Proof. Let A be a real commutative Banach algebra and I be an ideal consisting of JTZD. Then there exists a net (z_{α}) in A with $||z_{\alpha}|| = 1$ and $\lim xz_{\alpha} = 0$ for every $x \in I$.

Let $B \supset A$ be a commutative extension of A and let

$$J = \{x_1b_1 + \dots + x_nb_n : x_1, \dots, x_n \in I, b_1, \dots, b_n \in B, n \in \mathbb{N}\}$$

be the smallest ideal in B containing I. Suppose J is not proper. Then $1 \in J$. Therefore, there exists $x_1, ..., x_n \in I$ and $b_1, ..., b_n \in B$ such that $\sum_{k=1}^n x_k b_k = 1$.

Then, $1 = ||z_{\alpha}|| = ||\sum_{k=1}^{n} z_{\alpha} x_k b_k|| \le \sum_{k=1}^{n} ||z_{\alpha} x_k|| ||b_k|| \to 0$ a contradiction. Hence, J is proper and so I is non-removable.

Conversely, let I be a non-removable ideal in A. Then I_{cxA} is non-removable ideal in cxA by the above Lemma. Therefore, I_{cxA} consists of JTZD [5]. Hence, $I = I_{cxA} \bigcap A$ also consists of JTZD by Lemma 2.4.

The next theorem gives characterization of Cor(A).

Theorem 4.6. Let A be a real commutative Banach algebra and $\phi \in Car(A)$. Then the following statements are equivalent:

(i) ker $\phi \in Cor(A)$.

(ii) For every commutative Banach algebra $B \supset A$, there exists a multiplicative linear functional $\psi \in Car(B)$ such that $\phi = \psi_{|A}$.

(iii) For every commutative Banach algebra $B \supset A$, there exists a multiplicative linear functional ψ such that ker $\psi \in Cor(B)$ and $\phi = \psi_{|A}$.

Proof. First we prove $(i) \Rightarrow (iii)$. Let ker $\phi \in Cor(A)$. Then, there exists a net (z_{α}) in A with $||z_{\alpha}|| = 1$ and $\lim_{\alpha} xz_{\alpha} = 0$ for every $x \in \ker \phi$. Let B be a commutative Banach algebra with $B \supset A$ and $I = \{y \in B : yz_{\alpha} \to 0\}$. Then $I \supset \ker \phi$ and I consists of JTZD in B, so by Theorem 2.2, there exists a maximal ideal J consists of JTZD in B such that $I \subset J$. Let $J = \ker \psi$. Then $\psi_{|A} = \phi$.

 $(iii) \Rightarrow (ii)$ is clear.

Finally, we prove $(ii) \Rightarrow (i)$ If $B \supset A$ and $\psi \in Car(B)$ extends ϕ , then ker $\phi \subset \ker \psi$. Hence, ker ϕ is a non-removable ideal in A. Hence, by Theorem 4.5, ker ϕ consists of JTZD. Therefore, ker $\phi \in Cor(A)$.

Acknowledgements: This research is supported by the SAP programme to the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar by UGC.

References

- [1] R. Arens, Extensions of Banach Algebras, Pacific J. Math., 10, (1960), 1-16.
- [2] S. H. Kulkarni and B.V. Limaye, Real function algebras, Monographs and Textbooks in Pure and Applied Mathematics, Dekker, New York, 1992.
- [3] B. V. Limaye, Boundaries for Real Banach algebras, Can. J.Math., 28, No. 1, (1976), 42-49
- [4] H. S. Mehta, R. D. Mehta and A. N. Roghelia, Joint topological zero divisors for a real Banach algebra, Mathematics Today, 30, (2014), 54-58.
- [5] V. Muller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhasuser Verlag, Basel–Boston–Berlin, 2007.
- [6] Z. Slodkowski, On ideals consisting of joint topological divisors of zero, Studia Math., 48, (1973), 83-88.
- [7] A. Wawrzynczyk, On ideals consisting of topological zero divisors, Studia Math., 142 (8), (2000), 245-251.
- [8] W. Zelazko, On a certain class of non-removable ideals in Banach Algebras, Studia Math., 44, (1972), 87-92.

Communicated by Anthony To-Ming Lau

Aakar N. Roghelia BVM Engineering College, Vallabh Vidyanagar, India,388120 E-mail address: aakarkhyati@gmail.com

H. S. Mehta Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, India, 388120 E-mail address: hs_mehta@spuvvn.edu

R. D. Mehta Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, India, 388120 E-mail address: vvnspu@yahoo.co.in