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Abstract. We consider a one dimensional isentropic periodic flow of a compressible
viscous fluid driven by a self-gravitation of the fluid. We show the existence of an
unbounded solution of a system describing the flow. A sufficient condition for the
unboundedness is given in terms of the initial values of an energy form.

1 Introduction Let us consider a one dimensional isentropic flow of a compressible vis-
cous fluid in the Lagrangian mass coordinates:

(1.1)


∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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where KL(x, y) is the Green kernel of the operator −∂2x on the L-periodic functions with
average 0:

KL(x, y) =

∞∑
n=1

L

2π2n2
cos

2πn

L
(x− y),

or

(1.4) KL(x, y) = −|x− y|
2

+
(x− y)2

2L
+
L

12
, 0 ≤ x, y ≤ L,

v̄ the average of the specific volume:

v̄ =
1

L

∫ L

0

v(t, x)dx,

and G > 0 the gravitational constant. This is the representation in the Lagrangian mass
coordinates of a force field that takes into account only the part of Newton’s gravitation
corresponding to the disturbance in an infinite homogeneous fluid, and is often adopted in
the classical theory of gravitational instability for the fluid. See Weinberg [7], Chapter 15.
Notice that the field is consistent with static equilibria of the fluid.

Since the average v̄ as well as that of u is a constant of motion in view of (1.1), the
forcing term (1.3) is a bounded function of the variables t and x. This enables us to show
the boundedness of any smooth solutions to the isothermal system just in the same manner
as in [4]. As for the isentropic system, however, the situation proves to be quite different.
Indeed, on the assumption 1 < γ < 2 we show the existence of unbounded solutions in the
sense that

sup
t,x

v(t, x) = ∞.

To be precise we present an initial condition for unbounded solutions in terms of the form
for a state (v, u) given by

(1.5) E(v, u) =
∫ L

0

1

2
u(x)2dx+ E(v)

with

E(v) =
∫ L

0

a

(
v(x)− v̄

v̄γ
− v(x)1−γ − v̄1−γ

1− γ

)
dx(1.6)

− 2πG

v̄

∫ L

0

∫ L

0

KL(x, y)(v(x)− v̄)(v(y)− v̄)dxdy.

This form, called the energy form associated with the system (1.1)–(1.3), is decreasing and
bounded along the orbit of a solution to the system, which turns out to be the key to find
out the unboundedness condition.

The paper is organized as follows. In Section 2, after a brief comment on the class of
solutions concerned, we present two theorems. One refers to the structure of the whole
stationary solutions. The other constitutes the main part of the paper showing an initial
condition for unbounded solutions to the Cauchy problem. In Section 3 we study the
large time behavior of bounded solutions and show a reason why the stationary problem is
inevitably related to the unboundedness of solutions to the Cauchy problem. In Section 4
we study the structure of the whole stationary solutions with the comparison of the values of
energy form at the stationary solutions. From this together with the decreasing property of
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energy form we formulate an initial condition for unbounded solutions. Finally in Section 5,
focusing on the behavior of the energy form near the stationary solutions, we supplement
the condition for unboundedness to make it meaningful.

This paper completes the preceding one [6] with details of the unboundedness of solutions
to the isentropic system. By replacing (1.6) with

E(v) =
∫ L

0

a

(
v(x)− v̄

v̄
− log

v(x)

v̄

)
dx

− 2πG

v̄

∫ L

0

∫ L

0

KL(x, y)(v(x)− v̄)(v(y)− v̄)dxdy

some results of the present paper are, with natural modifications, valid also for the isother-
mal system. See [6].

2 Notation and main results For a nonnegative integer m and a positive number L let
Cm be the space of m times continuously differentiable periodic real-valued functions on R
with period L, and Hm the Sobolev space of locally square integrable L-periodic real-valued
functions on R equipped with scalar product

(h1, h2)Hm =
m∑
j=0

∫ L

0

∂jxh1(x)∂
j
xh2(x)dx

and norm ∥h∥Hm =
√
(h, h)Hm . We write H0 = L2 as usual. Let s be a nonnegative integer

and X a Banach space with norm ∥ · ∥. The space of s-times continuously differentiable
functions on [0,∞) with values in X is denoted by Cs([0,∞);X). Hs

loc(0,∞;X) denotes the
space of X-valued strongly measurable functions on [0,∞) whose distributional derivatives
up to order s are locally square integrable, i.e.,∫ T

0

∥∂kt u(t)∥2dt <∞ for any k = 0, . . . , s and T > 0.

Noting that the forcing term (1.3) is a bounded function of the variables t and x on the
time interval of existence for a solution, we are allowed to consider a unique global solution
for the Cauchy problem of (1.1)–(1.3) having initial value (v0, u0) ∈ H1 ×H1 with v0 > 0
arbitrarily given at t = 0, as for the initial-boundary value problem on a finite interval
supplemented by solid boundary condition with a general bounded forcing term. In what
follows the solution of the Cauchy problem is meant by a unique global solution having the
property {

v ∈ C1([0,∞);L2) ∩ C0([0,∞);H1), v(t, · ) > 0,

u ∈ H1
loc(0,∞;L2) ∩ L2

loc(0,∞;H2).

Without loss of generality we may assume that the average of u vanishes, taking (v, u− ū)
as new unknown functions, if necessary.

In order to present an initial condition for unbounded solutions we first refer to the
structure of the stationary solutions to (1.1)–(1.3). Noting that the average v̄ of v is
a constant of motion, we consider the stationary solutions on the following manifold in
H1 ×H1 parametrized by a positive number V :

MV = {(v, u) ∈ H1 ×H1; v > 0, v̄ = V, ū = 0}.
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Clearly, the trivial solution (V, 0) lies in MV . A non-trivial stationary solution, if exists,
has the least period L/j for some positive integer j. Let us now introduce a function Iγ on
the interval (0, (γ − 1)−1/2) expressed as

(2.1) Iγ(θ) = θ

∫ 1

0

1√
1− y

1

f+(F+
−1(θ2y))

dy + θ

∫ 1

0

1√
1− y

1

f−(F−
−1(θ2y))

dy,

where the functions f+(r), F+(r) on r ≥ 0, and f−(r), F−(r) on 0 ≤ r < 1 are given by

f+(r) = 1− (1 + r)−1/γ , F+(r) =

∫ r

0

f+(s) ds,

f−(r) = −{1− (1− r)−1/γ}, F−(r) =

∫ r

0

f−(s) ds.

As shown by Lemma 4 below in Section 4, Iγ is a monotone increasing function with
Iγ(θ) >

√
2γπ provided that 1 < γ < 2. Moreover, Iγ(θ) has a finite limit as θ →

(γ − 1)−1/2 − 0.

Theorem 1 Assume 1 < γ < 2. For V > 0 let kmin and kmax, respectively, be the smallest
and the largest integers j satisfying

(2.2)
( aγπ
GV γ

)1/2
<
L

j
<
Iγ((γ − 1)−1/2 − 0)√

2γπ

( aγπ
GV γ

)1/2
.

Then, for j = kmin, . . . , kmax there exists on MV a stationary solution of (1.1)–(1.3) with
least period L/j. The whole stationary solutions lying in MV except for the trivial one are
given by (ṽ(j)( · − α), 0), 0 ≤ α < L/j, j = kmin, . . . , kmax, where (ṽ(j), 0) is one of the
stationary solutions with least period L/j.

Remark 1 When V ≤
(
aγπ
GL2

)1/γ
, no integer satisfies the condition (2.2), and hence the

stationary problem admits on MV only the trivial solution. When
(
aγπ
GL2

)1/γ
< V <(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ
, (2.2) holds with j = 1, and hence kmin = 1, while when V ≥(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ
, kmin, if it makes sense, must be greater than or equal to 2.

Let us recall the energy form (1.5) with (1.6). By L-periodicity of v we have E(v( · −α)) =
E(v) for any α ∈ R. The following theorem gives an initial condition for unbounded solutions
to the isentropic system (1.1)–(1.3) with 1 < γ < 2.

Theorem 2 Assume 1 < γ < 2. Let V ≥
(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ
and ṽ(kmin) be as in

Theorem 1.
(i) The subset of H1 ×H1 given by

(2.3) AV =

{
(v, u) ∈MV

∣∣∣∣∣ E(v, u) <
{
E(ṽ(kmin)), if integers j with (2.2) exist,

0, otherwise

}

is nonempty.
(ii) Any solution of (1.1)–(1.3) with initial value from AV is unbounded, i.e.,

sup
t,x

v(t, x) = ∞.
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Remark 2 In view of the decreasing property of the energy form shown by Lemma 1 in the
following section the statement of Theorem 2 suggests that E(ṽ(kmin)) if it makes sense or
else E(V ) = 0 is minimal amongst the values of the energy form evaluated at the stationary

solutions on MV . This itself is true also for the case V <
(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ
as shown

by Proposition 1 in Section 4, however, in this case we fail to refer to the existence or
nonexistence of unbounded solutions for some technical reasons. See Remark 3 in the final
section.

3 Large time behavior of bounded solutions As a preliminary but vital step, we
devote this section to the study of the global behavior of a solution of (1.1)–(1.3) subject
to

(3.1) sup
t,x

v(t, x) <∞.

The results in the present section have already been given in [6] with rather detailed proofs,
however, we give them for the sake of completeness.

We first show that the energy form (1.5) with (1.6) is non-increasing along the orbits of
solutions. This is true for any γ > 1 regardless of the boundedness of solutions.

Lemma 1 For a solution (v, u) of (1.1)–(1.3) put

(3.2) E(t) = E(v(t, · ), u(t, · )), t ≥ 0.

Then we have

(3.3)
dE

dt
(t) = −µ

∫ L

0

∂xu(t, x)
2

v(t, x)
dx ≤ 0, inf

t
E(t) = E(∞) > −∞.

Proof: Taking the derivative of E and then using the symmetry of the integral kernel KL,
we obtain an expression for the derivative dE/dt as∫ L

0

{
u(t, x)∂tu(t, x) +

(
av̄−γ − av(t, x)−γ

)
∂tv(t, x)

−4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dy ∂tv(t, x)

}
dx.

After substituting ∂xu for ∂tv, by integration by parts we get

dE

dt
(t) =

∫ L

0

u(t, x)

{
∂tu(t, x) + ∂x

(
av(t, x)−γ

)
+

4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy

}
dx.

Using the second equation of (1.1), by integration by parts we obtain the desired equality
for dE/dt. The boundedness of E from below follows from

v − v̄

v̄γ
− v1−γ − v̄1−γ

1− γ
≥ 0,

the positivity of v and the boundedness of the kernel KL. �

Integrating the equality (3.3) over (0,∞), we obtain the following.
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Corollary of Lemma 1 We have

(3.4) µ

∫ ∞

0

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt = E(0)− E(∞) <∞.

The following lemma shows that if 1 < γ ≤ 2, the upper bound of v controls the H1

norm as well as the lower bound of v of a solution. Notice that the same result holds true
of the isothermal system without any assumptions on a priori bounds of a solution. See
Matsumura and Nishida [4].

Lemma 2 Assume 1 < γ ≤ 2. For a solution (v, u) of (1.1)–(1.3) with ū = 0, if it is
bounded in the sense of (3.1), then we have

(3.5) sup
t

∥v(t, · )∥H1 <∞, sup
t

∥u(t, · )∥H1 <∞, inf
t,x
v(t, x) > 0.

Proof: We consider the forcing term (1.3) as a bounded function of the variables t and x,
and make use of the equalities

d

dt

∫ L

0

{
1

2
u(t, x)2 + a

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)}
dx(3.6)

= −µ
∫ L

0

∂xu(t, x)
2

v(t, x)
dx+

∫ L

0

G(t, x)u(t, x)dx,

d

dt

∫ L

0

(
µ

2

∂xv(t, x)
2

v(t, x)2
− u(t, x)

∂xv(t, x)

v(t, x)

)
dx(3.7)

= −aγ
∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx+

∫ L

0

∂xu(t, x)
2

v(t, x)
dx−

∫ L

0

G(t, x)∂xv(t, x)
v(t, x)

dx.

Combining the equalities as (3.6)+(µ/2)×(3.7), we prove that the quantity∫ L

0

{
1

2
u(t, x)2 − µ

2
u(t, x)

∂xv(t, x)

v(t, x)
+
µ2

4

∂xv(t, x)
2

v(t, x)2
(3.8)

+a

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)}
dx

is bounded with respect to the variable t. For this purpose we need to estimate the

bounds of
∫ L

0
u(t, x)2dx,

∫ L

0
∂xv(t,x)

2

v(t,x)2 dx and
∫ L

0

(
v(t,x)−v̄

v̄γ − v(t,x)1−γ−v̄1−γ

1−γ

)
dx in terms of∫ L

0
∂xu(t,x)

2

v(t,x) dx and
∫ L

0
∂xv(t,x)

2

v(t,x)γ+2 dx. Since ū = 0, choosing such an xt ∈ [0, L) as u(t, xt) = 0

for every t ≥ 0, and then using Schwarz’ lemma, for x ∈ [0, L] we have

|u(t, x)| =
∣∣∣∣∫ x

xt

∂yu(t, y)dy

∣∣∣∣
≤
∫ L

0

v(t, y)1/2
|∂yu(t, y)|
v(t, y)1/2

dy

≤

(∫ L

0

v(t, y)dy

)1/2(∫ L

0

∂yu(t, y)
2

v(t, y)
dy

)1/2

,

from which we obtain

(3.9)

∫ L

0

u(t, x)2dx ≤ L2v̄

∫ L

0

∂xu(t, x)
2

v(t, x)
dx.
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As for the estimate of
∫ L

0
∂xv(t,x)

2

v(t,x)2 dx and
∫ L

0

(
v(t,x)−v̄

v̄γ − v(t,x)1−γ−v̄1−γ

1−γ

)
dx, we make use of

the assumption (3.1) noting that 1 < γ ≤ 2. It is clear that∫ L

0

∂xv(t, x)
2

v(t, x)2
dx ≤

(
sup
t,x

v(t, x)

)γ ∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx.

For every t ≥ 0 choosing xt ∈ [0, L) so that v(t, xt) = v̄ holds, by Schwarz’ lemma we have∣∣∣∣v(t, x)1−γ − v̄1−γ

1− γ

∣∣∣∣ = ∣∣∣∣∫ x

xt

∂yv(t, y)

v(t, y)γ
dy

∣∣∣∣
≤

(∫ L

0

v(t, y)2−γdy

)1/2(∫ L

0

∂yv(t, y)
2

v(t, y)γ+2
dy

)1/2

≤ L1/2

(
sup
t,y

v(t, y)

)(2−γ)/2
(∫ L

0

∂yv(t, y)
2

v(t, y)γ+2
dy

)1/2

for x ∈ [0, L], and hence,∫ L

0

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)
dx

=

∣∣∣∣∣
∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx

∣∣∣∣∣
≤ L3/2

(
sup
t,x

v(t, x)

)(2−γ)/2
(∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx

)1/2

.

We thus obtain a differential inequality for (3.8) showing its boundedness. Since the first
three terms of the integrand of (3.8) constitute a positive quadratic form in two variables
u and ∂xv/v, the boundedness of v as in (3.5) follows from that of (3.8) immediately. Once
the boundedness of v is obtained, that of u in H1 follows just in the same manner as in [4].
We thus conclude (3.5). �

Let (v, u) be a solution of (1.1)–(1.3) with initial value (v0, u0). If (3.5) holds, then
the orbit of the solution is a precompact set of C0 × C0 by the Ascoli-Arzelá theorem. In
particular, the ω-limit set of the orbit defined by

ω(v0, u0) =

∞∩
n=1

{(v(t, · ), u(t, · )); t ≥ n}
C0×C0

is nonempty. The following lemma shows that the large time behavior of a bounded solution
is under the control of the set of stationary solutions.

Lemma 3 Assume that 1 < γ ≤ 2. Let (v, u) be a bounded solution of (1.1)–(1.3) with
initial value (v0, u0) and ū = 0. Then, for (vω, uω) ∈ ω(v0, u0) we have vω ∈ C∞, vω > 0,
vω = v0, uω = 0, and

(3.10) ∂x
(
avω(x)

−γ
)
= −4πG

vω
∂x

∫ L

0

KL(x, y)(vω(y)− vω)dy,

that is, (vω, uω) is a static and stationary solution of (1.1)–(1.3) having the average in
common with the initial value.
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Proof: By Lemma 2 we have inft,x v(t, x) > 0, and hence vω > 0. It is clear that vω = v0.
We show that uω = 0. Choose an increasing sequence {tn;n = 1, 2, . . . , } of positive

numbers such that tn ≥ n and limn→∞(v(tn, · ), u(tn, · )) = (vω, uω) in C0 × C0. Since E
given by (3.2) is decreasing, we have

lim
t→∞

E(t) = lim
n→∞

E(tn) = E(vω, uω)

and

lim
n→∞

∫ tn+1

tn

E(t)dt = E(vω, uω).(3.11)

Representing
∫ tn+1

tn
E(t)dt as∫ tn+1

tn

(∫ L

0

1

2
u(t, x)2dx

)
dt+

∫ tn+1

tn

(E(v(t, · ))− E(v(tn, · ))) dt+ E(v(tn, · )),

we take the limit in (3.11) term by term. Since

(3.12) lim
n→∞

∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt = 0

by (3.4), it follows from (3.9) that

(3.13) lim
n→∞

∫ tn+1

tn

(∫ L

0

1

2
u(t, x)2dx

)
dt = 0.

We next take the limit of the second term using

(3.14) lim
n→∞

∫ tn+1

tn

(∫ L

0

|v(t, x)− v(tn, x)|dx

)
dt = 0.

This follows from estimating the integral with respect to the variable x in (3.14) with the use

of the equality v(t, x)− v(tn, x) =
∫ t

tn
∂xu(s, x)ds, t ∈ [tn, tn + 1], due to the first equation

of (1.1), as∫ L

0

|v(t, x)− v(tn, x)|dx

≤
∫ tn+1

tn

(∫ L

0

|∂xu(s, x)|dx

)
ds

≤

{∫ tn+1

tn

(∫ L

0

v(s, x)dx

)
ds

}1/2{∫ tn+1

tn

(∫ L

0

∂xu(s, x)
2

v(s, x)
dx

)
ds

}1/2

=
√
Lv̄

{∫ tn+1

tn

(∫ L

0

∂xu(s, x)
2

v(s, x)
dx

)
ds

}1/2

,

and then applying (3.12). From the expression

v(t, x)1−γ − v(tn, x)
1−γ = (1− γ)

∫ 1

0

{ξv(t, x) + (1− ξ)v(tn, x)}−γ
dξ (v(t, x)− v(tn, x))
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we have∫ tn+1

tn

(∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx−

∫ L

0

v(tn, x)
1−γ − v̄1−γ

1− γ
dx

)
dt

=

∫ 1

0

{∫ tn+1

tn

(∫ L

0

{ξv(t, x) + (1− ξ)v(tn, x)}−γ
(v(t, x)− v(tn, x))dx

)
dt

}
dξ.

Since {ξv(t, x) + (1− ξ)v(tn, x)}−γ ≤ (inft,x v(t, x))
−γ

, 0 ≤ ξ ≤ 1, we obtain

lim
n→∞

∫ tn+1

tn

(∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx−

∫ L

0

v(tn, x)
1−γ − v̄1−γ

1− γ
dx

)
dt = 0.

Similarly, it follows from

(v(t, x)− v̄)(v(t, y)− v̄)− (v(tn, x)− v̄)(v(tn, y)− v̄)

= (v(t, x)− v(tn, x))(v(t, y)− v̄) + (v(tn, x)− v̄)(v(t, y)− v(tn, y))

and the boundedness of the kernel KL that

lim
n→∞

∫ tn+1

tn

(∫ L

0

∫ L

0

KL(x, y)(v(t, x)− v̄)(v(t, y)− v̄)dxdy

−
∫ L

0

∫ L

0

KL(x, y)(v(tn, x)− v̄)(v(tn, y)− v̄)dxdy

)
dt = 0.

We thus obtain

lim
n→∞

∫ tn+1

tn

(E(v(t, · ))− E(v(tn, · ))) dt = 0,

and hence,

lim
n→∞

∫ tn+1

tn

E(t)dt = lim
n→∞

E(v(tn, · )) = E(vω).

Comparing this result with (3.11), we have
∫ L

0
uω(x)

2dx = 0, that is, uω = 0.
Finally we prove that vω is smooth and subject to (3.10). Let {tn;n = 1, 2, . . . , } be

as above. Take a test function ϕ ∈ H1, and a smooth function θ of the real variable

with support contained in the interval (0, 1), θ ≥ 0, and
∫ 1

0
θ(t)dt = 1. Multiply the

second equation of (1.1) by θ(t − tn)ϕ(x) and integrate the both sides of the result over
[tn, tn + 1]× [0, L]. Integration by parts yields

−
∫ tn+1

tn

θ′(t− tn)

(∫ L

0

ϕ(x)u(t, x)dx

)
dt

−
∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)av(t, x)
−γdx

)
dt

+ µ

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
∂xu(t, x)

v(t, x)
dx

)
dt

=

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dydx

)
dt.
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With the use of (3.14) we can handle the second term on the left-hand side and the term
on the right-hand side in the same manner as shown above:

lim
n→∞

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)av(t, x)
−γdx

)
dt

=

∫ L

0

∂xϕ(x)avω(x)
−γdx,

lim
n→∞

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dydx

)
dt

=

∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(vω(y)− v̄)dydx.

As for the third term on the left-hand side we have the following estimate by Schwarz’
lemma:∣∣∣∣∣

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
∂xu(t, x)

v(t, x)
dx

)
dt

∣∣∣∣∣
≤

{∫ tn+1

tn

θ(t− tn)
2

(∫ L

0

∂xϕ(x)
2

v(t, x)
dx

)
dt

}1/2{∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt

}1/2

≤

(
1

inft,x v(t, x)

∫ 1

0

θ(t)2dt

∫ L

0

∂xϕ(x)
2dx

)1/2{∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt

}1/2

,

which shows that the term tends to 0 as n→ ∞ in view of (3.12). Similarly, the first term
on the left-hand side tends to 0 as n→ ∞ from (3.13). Thus we obtain

−
∫ L

0

∂xϕ(x)avω(x)
−γdx =

∫ L

0

∂xϕ(x)
4πG

vω

∫ L

0

KL(x, y)(vω(y)− vω)dydx,

the equality (3.10) for vω in the distribution sense. Using the smoothing property of the
integral operator with kernel KL, by bootstrap argument we can derive the smoothness of
vω from vω ∈ C0. �

4 Structure of stationary solutions From the observation of the large time behavior
of bounded solutions to (1.1)–(1.3) we see that a solution is necessarily unbounded if it fails
to approach the set of stationary solutions. This together with Lemma 1, which claims
that the energy form is decreasing along the orbit of any solution, implies that, if there
exists a state on MV at which the energy form takes a value smaller than those of the
energy form evaluated at the stationary solutions on MV , then the orbit passing such a
state is apart from the set of the stationary solutions and must be unbounded. This gives
us the idea of providing, in terms of the energy form, an initial condition for unbounded
solutions in reference to the structure of stationary solutions. Based on this idea, we first
prove Theorem 1, and then examine at which stationary solution on MV the energy form
takes the minimal value.

Let us consider the stationary problem for (1.1)–(1.3):

(4.1)


∂xu(x) = 0,

∂x(av(x)
−γ) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(y)− v̄)dy.
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Our first task in the present section is to seek all the solutions of (4.1) lying inMV for every
V > 0. Clearly we have u = 0. By the change of unknown functions r(x) = (v(x)/V )−γ−1,
we transform the problem into an equivalent one of finding L-periodic solutions to the
following differential equation:

(4.2) ∂2xr(x) + λf(r(x)) = 0, r(x) > −1,

with

f(r) = 1− (1 + r)−1/γ , λ =
4πGV γ

a
.

An L-periodic solution r of (4.2) has a critical point x0, i.e., ∂xr(x0) = 0. Since both
r(x+x0) and r(−x+x0) satisfy (4.2) with coincidence of the Cauchy data at x = 0, by the
uniqueness of solutions to the Cauchy problem for (4.2) we have r(x + x0) = r(−x + x0),
and therefore both are even functions. Thus, r is given by an appropriate shift of an even
solution. In view of this fact, we seek even L-periodic solutions of (4.2).

To this end we make use of the relation between the period of a solution and the first
integral. The first integral of (4.2), usually called the energy of the orbit, is given by

I =
1

2
∂xr(x)

2 + λF (r(x))

with

F (r) =

∫ r

0

f(s)ds = r − γ

γ − 1

{
(1 + r)1−1/γ − 1

}
, r > −1.

F is monotone decreasing on (−1, 0] and monotone increasing on [0,∞), having the limit
at either end of the half line:

F (−1 + 0) =
1

γ − 1
, F (∞) = ∞.

We can therefore find a unique closed orbit with energy I if and only if

0 < I < λ

γ − 1
.

The period l of the orbit with energy I is given by

l = 2

∫ rmax

rmin

dr√
2(I − λF (r))

,

where rmin < 0 and rmax > 0 are the minimum and the maximum of the solution r,
respectively. Notice that

(4.3) F (rmin) = F (rmax) =
I
λ
.

Dividing the integral into two parts, one over (rmin, 0) and the other over (0, rmax), and
changing the variables by y = (λ/I)F (r), we get

(4.4) l =
√
2/λIγ

(√
I/λ

)
,

where Iγ is a function on (0, (γ − 1)−1/2) given by (2.1). The following lemma shows that
the period of an orbit is a monotone increasing function of its energy provided 1 < γ < 2.

EXISTENCE OF UNBOUNDED SOLUTIONS TO A ONE DIMENSIONAL
ISENTROPIC PERIODIC FLOW OF A COMPRESSIBLE VISCOUS FLUID

WITH SELF-GRAVITATION



12

Lemma 4 Assume 1 < γ < 2. Then, I ′γ(θ) > 0. Moreover we have

Iγ(+0) =
√

2γπ, Iγ((γ − 1)−1/2 − 0) <∞.

Proof: Put

(4.5) Iγ,±(θ) =

∫ 1

0

1√
1− y

θ

f±
(
F±

−1(θ2y)
)dy

and express Iγ(θ) as the sum of Iγ,+(θ) and Iγ,−(θ). Since

∂

∂θ

(
F±

−1(θ2y)
)
=

2θy

f±
(
F±

−1(θ2y)
) ,

we have

∂

∂θ

(
θ

f±
(
F±

−1(θ2y)
)) =

f±
(
F±

−1(θ2y)
)2 − 2θ2yf ′±

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3

=
f±
(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′±
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3 .

Noting that

lim
z→+0

f±(z)
2 − 2F±(z)f

′
±(z)

f±(z)3
= −1

3

f ′′±(0)

f ′±(0)
2
,

we apply differentiation under the integral sign to (4.5) to obtain

I ′γ,±(θ) =

∫ 1

0

1√
1− y

f±
(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′±
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3 dy

and

(4.6) lim
θ→+0

I ′γ,±(θ) = −1

3

f ′′±(0)

f ′±(0)
2

∫ 1

0

dy√
1− y

dy = −2

3

f ′′±(0)

f ′±(0)
2
.

Similarly, we have

∂

∂θ

(
f±
(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′±
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3

)

=
2θy g

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5

=
2
√
yF±

(
F±

−1(θ2y)
)1/2

g
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5

with
g(z) = 2F±(z)

(
3f ′±(z)

2 − f±(z)f
′′
±(z)

)
− 3f±(z)

2f ′±(z).

Since

lim
z→+0

F±(z)
1/2g(z)

f±(z)5
= lim

z→+0

(
F±(z)

f±(z)2

)1/2 2F±(z)
(
3f ′±(z)

2 − f±(z)f
′′
±(z)

)
− 3f±(z)

2f ′±(z)

f±(z)4
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=
5f ′′±(0)

2 − 3f ′±(0)f
′′′
± (0)

12
√
2f ′±(0)

7/2
,

again by differentiation under the integral sign the second derivative of Iγ,± is given by

(4.7) I ′′γ,±(θ) =

∫ 1

0

1√
1− y

2θy g
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5 dy,

a continuous function on (0, (γ − 1)−1/2). Now we put ζ = (1± z)−1/γ and express g(z) as

g(z) =
ζ1+2γ

γ2
h(ζ)

with

h(ζ) =
γ(1 + γ)

1− γ
ζ2−γ +

2(1 + γ)(2− γ)

1− γ
ζ1−γ + (2− γ)ζ−γ +

2(γ − 2)

1− γ
ζ − 2(1 + γ)

1− γ
.

Since

h′(ζ) =
γ(1 + γ)(2− γ)

1− γ
ζ1−γ + 2(1 + γ)(2− γ)ζ−γ − γ(2− γ)ζ−1−γ +

2(γ − 2)

1− γ
,

and since

h′′(ζ) = γ(1 + γ)(2− γ)ζ−γ − 2γ(1 + γ)(2− γ)ζ−1−γ + γ(1 + γ)(2− γ)ζ−2−γ

= γ(1 + γ)(2− γ)ζ−2−γ(ζ − 1)2

≥ 0

for 1 < γ < 2, we have h(1) = h′(1) = 0 and therefore h(ζ) > 0, ζ ̸= 1. The integrand
in (4.7) is positive, and so is I ′′γ,±(θ) for θ ∈ (0, (γ − 1)−1/2). This implies that I ′γ =

I ′γ,+ + I ′γ,− as well as I ′γ,± is monotone increasing on (0, (γ − 1)−1/2). Using f ′±(0) = 1/γ
and f ′′±(0) = ∓(1+1/γ)/γ, from (4.6) we obtain limθ→+0 I

′
γ(θ) = 0, and hence I ′γ is positive

on (0, (γ − 1)−1/2), as desired.
Since

θ

f±
(
F±

−1(θ2y)
) =

1
√
y

(
F±
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)2
)1/2

,

and since the function z → F±(z)/f±(z)
2 is bounded on

(
0, F±

−1
(
(γ − 1)−1 − 0

))
, we can

take the limit of Iγ,±(θ) at either end of the interval (0, (γ− 1)−1/2) under the integral sign
in (4.5). Thus we obtain

lim
θ→+0

Iγ,±(θ) = lim
z→+0

(
F±(z)

f±(z)2

)1/2 ∫ 1

0

dy√
1− y

√
y
=

π

(2f ′±(0))
1/2

=
(γ
2

)1/2
π

and

lim
θ→(γ−1)−1/2−0

Iγ,±(θ) =

∫ 1

0

1√
1− y

√
y

(
F±
(
F±

−1(y/(γ − 1))
)

f±
(
F±

−1(y/(γ − 1))
)2
)1/2

dy <∞,

showing that Iγ(+0) =
√
2γπ and Iγ((γ − 1)−1/2 − 0) <∞. �
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By Lemma 4, from the formula (4.4) we obtain a necessary and sufficient condition for
the existence and uniqueness of l-periodic orbits for (4.2):

(4.8)
√

4γ/λπ < l <
√

2/λIγ((γ − 1)−1/2 − 0).

Recalling λ = 4πGV γ/a, we obtain the assertion of Theorem 1 immediately.

We proceed to another task of finding out the stationary solutions with minimal value
of the energy form. Assume that the stationary problem for (1.1)–(1.3) has a non-trivial
solution on MV . For j = kmin, . . . , kmax choose a stationary solution (ṽ(j), 0) ∈ MV with
least period L/j as in Theorem 1, and put

(4.9) SV = {(ṽ(j), 0); j = kmin, . . . , kmax} ∪ {(V, 0)}.

We compare the values E(ṽ(j)), j = kmin, . . . , kmax, and E(V ) = 0 with each other. To this
end we introduce the following function with respect to the periods of stationary solutions:

ε(l) =

∫ l

0

a

(
ṽl(x)− V

V γ
− ṽl(x)1−γ − V 1−γ

1− γ

)
dx

− 2πG

V

∫ l

0

∫ l

0

Kl(x, y)(ṽ
l(x)− V )(ṽl(y)− V )dxdy,

where (ṽl, 0) is the non-trivial solution of the stationary problem (4.1) parametrized by
L = l with ṽl having the average V , the least period l, and the maximum at x = 0. In view
of (4.8), ṽl as well as ε(l) is well defined for l with

(4.10)
( aγπ
GV γ

)1/2
< l <

Iγ((γ − 1)−1/2 − 0)√
2γπ

( aγπ
GV γ

)1/2
.

With this function the value E(ṽ(j)) is expressed as follows.

Lemma 5 For j = kmin, . . . , kmax we have

(4.11) E(ṽ(j)) = jε(L/j).

Proof: Put lj = L/j. Notice that E(ṽ(j)) = E(ṽlj ). In the expression

E(vlj ) =
∫ L

0

a

(
ṽlj (x)− V

V γ
− ṽlj (x)1−γ − V 1−γ

1− γ

)
dx

− 2πG

V

∫ L

0

∫ L

0

KL(x, y)(ṽ
lj (x)− V )(ṽlj (y)− V )dxdy

we divide every integral on the interval [0, L] into the integrals on the subintervals [mlj , (m+
1)lj ], m = 0, . . . , j−1, and rewrite every piece as an integral on [0, lj ] by change of variables.
By periodicity of ṽlj we obtain

E(ṽ(j)) = j

∫ lj

0

a

(
ṽlj (x)− V

V γ
− ṽlj (x)1−γ − V 1−γ

1− γ

)
dx(4.12)

− 2πG

V

∫ lj

0

∫ lj

0

j−1∑
m,n=0

KL(x+mlj , y + nlj)(ṽ
lj (x)− V )(ṽlj (y)− V )dxdy.
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Noting that 0 ≤ x+mlj , y+nlj ≤ L for 0 ≤ x, y ≤ lj and m,n = 0, . . . , j − 1, we calculate

the sum
∑j−1

m,n=0KL (x+mlj , y + nlj) with the use of the expression (1.4) of KL:

j−1∑
m,n=0

KL (x+mlj , y + nlj)

= −1

2

j−1∑
m,n=0

|x− y + (m− n)lj |+
1

2L

j−1∑
m,n=0

{x− y + (m− n)lj}2 +
L

12
j2

= −1

2

[∑
m=n

|x− y|+
∑
m>n

{x− y + (m− n)lj} −
∑
m<n

{x− y + (m− n)lj}

]

+
1

2L

j−1∑
m,n=0

{
(x− y)2 + 2(m− n)(x− y)lj + (m− n)2l2j

}
+
L

12
j2

= −1

2

(
j|x− y|+ 2

∑
m>n

(m− n)lj

)
+

1

2L

{
j2(x− y)2 + 2

∑
m>n

(m− n)2l2j

}
+
L

12
j2

= −j |x− y|
2

+ j
(x− y)2

2lj
+
∑
m>n

{
(m− n)2

j
− (m− n)

}
lj +

lj
12
j3.

Here we have∑
m>n

{
(m− n)2

j
− (m− n)

}

=

j−1∑
m=1

m∑
k=1

(
k2

j
− k

)

=

j−1∑
m=1

(
2m3 + 3m2 +m

6j
− m2 +m

2

)
=

1

12

[{
j(j − 1)2 + (j − 1)(2j − 1) + (j − 1)

}
− {j(j − 1)(2j − 1) + 3j(j − 1)}

]
=

1

12
(−j3 + j),

and hence,

j−1∑
m,n=0

KL (x+mlj , y + nlj) = j

{
−|x− y|

2
+

(x− y)2

2lj
+
lj
12

}
= jKlj (x, y).

This together with (4.12) gives (4.11). �

Since

E(ṽ(j)) = L
ε(L/j)

L/j

by (4.11), the j-dependence of E(ṽ(j)) would be known from the behavior of the function
l 7→ ε(l)/l on the interval (4.10). We first show the differentiability of the function. Put
rl(x) = (ṽl(x)/V )−γ − 1. Notice that rl is a solution of (4.2) having the least period l and
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the minimum at x = 0. Let us denote the minimum by rlmin, negative for l with (4.10). By
(4.3) the energy of the orbit of rl is λF (rlmin). Therefore, from (4.4) we obtain

l =
√

2/λ Iγ

(√
F (rlmin)

)
.

By the monotonicity of Iγ due to Lemma 4,

(4.13) F
(
rlmin

)
=
(
Iγ

−1
(
l
√
λ/2

))2
holds. Since Iγ is continuously differentiable, so is the function l 7→ rlmin on (4.10). By
continuous dependence on initial data in the Cauchy problem for (4.2) the correspondence
l 7→ rl defines a continuously differentiable function on (4.10) with values in the space of
continuous functions on R, and so does the correspondence l 7→ ṽl. From this together
with the expression (1.4) of the kernel KL with L = l the differentiability of the function
l 7→ ε(l) on (4.10) easily follows.

The following lemma shows that the function under consideration is monotonic and
negative.

Lemma 6 We have (ε(l)/l)
′
< 0 and ε(l) < 0.

Proof: Put ṽl0 = ṽl(0). We take the derivative of ε(l) and rewrite the result using ṽl(l) = ṽl0,∫ l

0
∂lṽ

l(x)dx = V − ṽl0 from
∫ l

0
ṽl(x)dx = V l, and the symmetry of the Green kernel Kl(x, y).

After rearrangement of terms we obtain

ε′(l) = −a (ṽ
l
0)

1−γ − V 1−γ

1− γ

−
∫ l

0

aṽl(x)−γ∂lṽ
l(x)dx− 4πG

V

∫ l

0

∫ l

0

Kl(x, y)(ṽ
l(y)− V )dy ∂lṽ

l(x)dx

− 4πG

V

∫ l

0

Kl(l, y)(ṽ
l(y)− V )dy(ṽl0 − V )

− 2πG

V

∫ l

0

∫ l

0

∂lKl(x, y)(ṽ
l(x)− V )(ṽl(y)− V )dxdy.

Here we notice that ṽl is subject to the following equation equivalent to the second one of
(4.1) with L = l:

(4.14) −aṽl(x)−γ +
1

l

∫ l

0

aṽl(x)−γdx− 4πG

V

∫ l

0

Kl(x, y)(ṽ
l(y)− V )dy = 0.

Then the sum of the second and the third terms on the right-hand side is

−1

l

∫ l

0

aṽl(x)−γdx

∫ l

0

∂lṽ
l(x)dx =

1

l

∫ l

0

aṽl(x)−γdx (ṽl0 − V ).

Adding the forth term to this expression and using (4.14) with x = l, we see that the sum
of the above three terms turns out to be a(ṽl0−V )/(ṽl0)

γ . Since ṽl is axially symmetric with
respect to x = l/2, the last term on the right-hand side vanishes in view of

∂lKl(x, y) = − (x− y)2

2l2
+

1

12
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= − 1

2l2

{(
x− l

2

)2

+

(
y − l

2

)2

− 2

(
x− l

2

)(
y − l

2

)}
+

1

12
, 0 ≤ x, y ≤ l.

Summing up, we obtain

ε′(l) = a

{
− (ṽl0)

1−γ − V 1−γ

1− γ
+
ṽl0 − V

(ṽl0)
γ

}
.

From this expression the function l 7→ ε(l) is twice continuously differentiable and

ε′′(l) = −aγ ∂lṽ
l
0 (ṽ

l
0 − V )

(ṽl0)
γ+1

.

Since ṽl attains its maximum at x = 0, we have ṽl0 − V > 0. Moreover, from ṽl0 =

V
(
1 + rlmin

)−1/γ
with rlmin as above, we obtain

∂lṽ
l
0 = −V

γ
(1 + rlmin)

−1/γ−1∂lr
l
min.

Thus, the sign of ε′′(l) coincides with that of ∂lr
l
min. Taking the derivatives of the both

sides of (4.13), we obtain

f(rlmin)∂lr
l
min =

√
2λIγ

−1
(
l
√
λ/2

)
(Iγ

−1)′
(
l
√
λ/2

)
,

positive in view of Lemma 4. Since rlmin is negative, so are f
(
rlmin

)
and ∂lr

l
min. We thus

conclude that ε′′(l) < 0.

We next take the limit as l →
(

aγπ
GV γ

)1/2
+0 in (4.13). By Lemma 4 we have F (rlmin) →

(Iγ
−1(

√
2γπ + 0))2 = 0, and hence rlmin → 0. By continuous dependence on initial data

in the Cauchy problem for (4.2) we obtain the uniform convergence of both rl and ṽl as

l →
(

aγπ
GV γ

)1/2
+0, showing rl(x) → 0 and ṽl(x) → V on R. Thus, ε(l) as well as ε′(l) tends

to 0 as l →
(

aγπ
GV γ

)1/2
+ 0. From these in combination with (ε(l)/l)′ = (lε′(l)− ε(l))/l2 and

(lε′(l)− ε(l))′ = lε′′(l) < 0, we conclude that (ε(l)/l)′ < 0 and ε(l) < 0. �
As a consequence of Lemma 6 we obtain

Proposition 1 For j1, j2 = kmin, . . . , kmax with j1 < j2, we have

E(ṽ(j1)) < E(ṽ(j2)) < E(V ) = 0.

In particular, E(ṽ(kmin)) is minimal amongst the values of the energy form on SV .

5 Initial condition for unbounded solutions Proposition 1 claims that the subset
AV of H1 ×H1 given by (2.3) consists of the states on MV at which the energy form takes
values smaller than any values of the energy form evaluated at the stationary solutions
on MV . As proved earlier, the orbit of a solution to (1.1)–(1.3) passing through AV is
necessarily unbounded, i.e., supt,x v(t, x) = ∞. In this way we obtain an initial condition
for unbounded solutions as presented by Theorem 2. The problem to be settled is to find
a condition that ensures the non-emptiness of AV . The final section is devoted to a partial
answer to the problem, proving Theorem 2.

Our strategy is to find an element of AV in a small neighborhood of a stationary solution
giving the minimal value of the energy form on SV given by (4.9). In order to introduce the
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idea we begin by examining the behavior of the energy form near an arbitrary stationary
solution. Let (ṽ, 0) ∈ MV be a stationary solution of (1.1)–(1.3), and (v, u) ∈ MV a state
in a neighborhood of the stationary solution. We introduce the displacement from the
stationary solution as

ϕ(x) = v(x)− ṽ(x), ψ(x) = u(x).

Suppose the displacement is small enough in amplitude. Since

(ṽ(x) + ϕ(x))1−γ − ṽ(x)1−γ

1− γ
= ṽ(x)−γϕ(x)− 1

2
γṽ(x)−γ−1ϕ(x)2 +O(|ϕ(x)|3),

evaluating the form (1.6) at v = ṽ + ϕ, we obtain

E(ṽ + ϕ)

= E(ṽ) +
∫ L

0

(
−aṽ(x)−γ − 4πG

V

∫ L

0

KL(x, y)(ṽ(y)− V )dy

)
ϕ(x)dx

+
1

2

∫ L

0

a
γϕ(x)2

ṽ(x)γ+1
dx− 2πG

V

∫ L

0

∫ L

0

KL(x, y)ϕ(x)ϕ(y)dxdy +O(∥ϕ∥L∞)∥ϕ∥2L2

with ∥ϕ∥L∞ the supremum norm of ϕ. As in (4.14), ṽ satisfies the equation

(5.1) −aṽ(x)−γ +
1

L

∫ L

0

aṽ(x)−γdx− 4πG

V

∫ L

0

KL(x, y)(ṽ(y)− V )dy = 0.

Since the average of ϕ vanishes, this implies that

(5.2) E(ṽ + ϕ) = E(ṽ) + 1

2
Q[ϕ] +O(∥ϕ∥L∞)∥ϕ∥2L2 ,

where Q is the quadratic form on the Hilbert space H = {φ ∈ L2; φ̄ = 0} defined by

Q[φ] =

∫ L

0

a
γφ(x)2

ṽ(x)γ+1
dx− 4πG

V

∫ L

0

∫ L

0

KL(x, y)φ(x)φ(y)dxdy.

Now suppose the quadratic form Q admits a negative value, i.e., Q[φ0] < 0 for some φ0 ∈ H.
By approximation of functions we may assume that φ0 is smooth. Evaluating the energy
form (1.5) with (1.6) at (v, u) = (ṽ + εφ0, 0) for small |ε|, from (5.2) we obtain

E(ṽ + εφ0, 0) = E(ṽ) + 1

2
ε2Q[φ0] +O(|ε|3).

This shows that the energy form takes a value smaller than its value at the stationary
solution in any small neighborhood of that stationary solution.

In order to examine the sign of Q we make use of the expression

Q[φ] =
a

V γ+1
(Tφ, φ)L2 ,

where T is the self-adjoint operator on H given by

(5.3) (Tφ)(x) =
γφ(x)

(1 + w̃(x))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃(x))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy

with w̃ = ṽ/V −1 and λ = 4πGV γ/a. We are concerned with the spectrum σ(T ) of T since
the lower bound of σ(T ) gives inf∥φ∥L2=1(Tφ, φ)L2 .
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In case ṽ = V , that is, w̃ = 0 the spectrum of T is easily obtained from that of the Green
operator of −d2/dx2 on H. The spectrum consists of double eigenvalues γ− (λL2)/(4π2j2)
with two independent eigenvectors cos(2πj/L)x and sin(2πj/L)x, j = 1, 2, . . . , and the
accumulation point γ of them. Thus, we obtain

(5.4) inf σ(T ) = γ − λL2

4π2

immediately.
In considering the spectrum of T corresponding to a non-trivial stationary solution (ṽ, 0)

some preliminary observations are in order. Since (Tφ, φ)L2 ≤
∫ L

0
γφ(x)2

(1+w̃(x))γ+1 dx for φ ∈ H,

we have inf σ(T ) ≤ γ(1+max w̃)−γ−1. In the region below γ(1+max w̃)−γ−1 the spectrum
in fact consists of eigenvalues of T . This follows from rewriting an equation Tφ− Λφ = ψ
in H with parameter Λ < γ(1 + max w̃)−γ−1 as PΛφ− λKLφ = ψ with

(PΛφ)(x) =

{
γ

(1 + w̃(x))γ+1
− Λ

}
φ(x)− 1

L

∫ L

0

γφ(x)

(1 + w̃(x))γ+1
dx,

(KLφ)(x) =

∫ L

0

KL(x, y)φ(y)dy,

noting the positivity of PΛ and the compactness ofKL, and applying the the Riesz-Schauder
theory to the compact operator PΛ

−1KL on H. We next remark that (ṽ( · − α), 0) is also
a stationary solution of (1.1)–(1.3) for any α ∈ R, and hence

− 1

(1 + w̃(x− α))γ
+

1

L

∫ L

0

dx

(1 + w̃(x− α))γ
− λ

∫ L

0

KL(x, y)w̃(y − α)dy

holds by (5.1). Differentiating this relation with respect to α and evaluating the result at
α = 0, we obtain

γw̃′(x)

(1 + w̃(x))γ+1
− 1

L

∫ L

0

γw̃′(x)

(1 + w̃(x))γ+1
dx− λ

∫ L

0

KL(x, y)w̃
′(y)dy = 0,

that is, Tw̃′ = 0. This shows that T has a non-trivial null space with an eigenvector
w̃′ ̸= 0. Let us define a self-adjoint operator on H corresponding to the stationary solution
(ṽ( · − α), 0) by (5.3):

(Tαφ)(x) =
γφ(x)

(1 + w̃(x− α))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃(x− α))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy.

Our last remark here is that the point spectrum of Tα coincides with that of T for any
α ∈ R with the correspondence of associating eigenspaces given by the shift of functions
φ 7→ φ( · − α), for from the equation Tφ = Λφ we have

γφ(x− α)

(1 + w̃(x− α))γ+1
− 1

L

∫ L+α

α

γφ(x− α)

(1 + w̃(x− α))γ+1
dx

− λ

∫ L+α

α

KL(x− α, y − α)φ(y − α)dy = Λφ(x− α),

and hence Tαφ( · − α) = Λφ( · − α) in view of KL(x − α, y − α) = KL(x, y) and the L-
periodicity of w̃, φ and KL(x, · ). To sum up, we are allowed to study the lower bound of
T focusing on the nonpositive eigenvalues of T after a favorable shift of ṽ.
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With the above considerations in mind we prove the following.

Lemma 7 Let k be an integer satisfying (2.2), and ṽ(k) as in Theorem 1. Let T be the
self-adjoint operator on H that corresponds to the stationary solution (ṽ(k), 0) by (5.3). If
k ≥ 2, then the lower bound of T is a negative eigenvalue.

Proof: As shown just before the statement of the lemma, we may assume that ṽ(k) is even
and attains its maximum at x = 0. Such a stationary solution with least period L/k
is unique. Rewriting (2.2) with a parameter λ = 4πGV γ/a, we consider the stationary
solution as parametrized over the interval

(5.5) γ

(
2πk

L

)2

< λ < 2

(
Iγ
(
(γ − 1)−1/2 − 0

)
k

L

)2

,

and denote ṽ(k)/V − 1 by w̃λ. We first notice that λ 7→ w̃λ is a continuous function with
values in the space of continuously differentiable L-periodic functions on (5.5) with uniform
limit

lim
λ→γ(2πk/L)2+0

w̃λ(x) = 0.

To show this put rλ = (1 + w̃λ)
−γ − 1 and notice that rλ is a solution of (4.2) attaining its

minimum rλ,min, which is negative, at x = 0. Since the energy of the orbit of rλ is given

by λ
(
Iγ

−1
(
(L/k)

√
λ/2

))2
, we have F (rλ,min) =

(
Iγ

−1
(
(L/k)

√
λ/2

))2
. See (4.3) and

(4.4). This together with

lim
λ→γ(2πk/L)2+0

Iγ
−1
(
(L/k)

√
λ/2

)
= Iγ

−1
(√

2γπ + 0
)
= 0,

coming from Lemma 4, implies that rλ,min depends continuously on λ with rλ,min → 0

as λ → γ (2πk/L)
2
+ 0. The continuity of rλ with respect to λ as well as the uniform

convergence rλ(x) → 0 as λ → γ (2πk/L)
2
+ 0 follows from continuous dependence on

initial data in the Cauchy problem for (4.2). Thus, the map λ 7→ w̃λ enjoys the continuity
as desired. Now put

(Tλφ)(x) =
γφ(x)

(1 + w̃λ(x))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃λ(x))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy.

In view of KL(−x, y) = KL(x,−y) and the L-periodicity of w̃λ and KL(x, · ), Tλ maps
an odd function into an odd one. The restriction of Tλ onto the subspace H(o) = {φ ∈
H;φ(−x) = −φ(x)} of H is denoted by T

(o)
λ . As shown above, T

(o)
λ as well as Tλ has the

eigenvalue 0 with eigenvector w̃′
λ ∈ H(o). Moreover, the eigenvalue 0 is simple. This is

because the equation T
(o)
λ φ = 0 is equivalent to the second order linear differential equation

∂2x
{
γ(1 + w̃λ(x))

−γ−1φ(x)
}
+ λφ(x) = 0 and any odd solution of the differential equation

must be proportional to the solution w̃′
λ by the uniqueness of solutions to the Cauchy

problem. Noting that inf σ(Tλ) ≤ inf σ(T
(o)
λ ), we show that the lower bound of T

(o)
λ is

negative.

From the continuous dependence of w̃λ on λ we see that the correspondence λ 7→ T
(o)
λ is

continuous on the interval (5.5) up to the left end γ (2πk/L)
2
with respect to the operator

norm. The limit T
(o)

γ(2πk/L)2+0
is the restriction onto H(o) of the operator (5.3) with λ =

γ (2πk/L)
2
and w̃ = 0, and its lower bound is the eigenvalue γ(1 − k2) with eigenvector
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sin(2π/L)x, as shown by (5.4). Thus, the correspondence λ 7→ inf σ(T
(o)
λ ) gives a continuous

function on (5.5) with

lim
λ→γ(2πk/L)2+0

inf σ(T
(o)
λ ) = inf σ(T

(o)

γ(2πk/L)2+0
) = γ(1− k2),

which is negative by the assumption k ≥ 2. Put c(λ) = inf σ(T
(o)
λ ) and suppose the function

λ 7→ c(λ) admits a nonnegative value on (5.5). In view of the continuity of the function

and c(γ (2πk/L)
2
+ 0) < 0 as proved above, there does exist a zero of the function. The

smallest zero is denoted by λ∗. For γ (2πk/L)
2
< λ < λ∗, since c(λ) < 0, c(λ) is proved

to be an eigenvalue as the lower bound of Tλ is. Let φλ be an eigenvector associated
with c(λ) satisfying ∥φλ∥L2 = 1. By the boundedness of {φλ; γ (2πk/L)

2
< λ < λ∗} in

H(o) we can choose a sequence {λn;n = 1, 2, . . . } and an element φλ∗ of H(o) so that

γ (2πk/L)
2
< λn < λ∗, λn → λ∗ as n→ ∞, and the sequence {φλn ;n = 1, 2, . . . } converges

to φλ∗ weakly in H(o) as n → ∞. Noting that φλ(1 + w̃λ)
−γ−1 is an odd function, we

rewrite T
(o)
λ φλ = c(λ)φλ as

φλ(x) =
(1 + w̃λ(x))

γ+1

γ

(
λ

∫ L

0

KL(x, y)φλ(y)dy + c(λ)φλ(x)

)

and then take the limit along the sequence. Since, as λ → λ∗, w̃λ converges uniformly
to w̃λ∗ and c(λ) → c(λ∗) = 0, and since the integral operator with kernel KL is compact
on H(o), the sequence {φλn ;n = 1, 2, . . . , } converges strongly in L2 and also in H(o).

Therefore, ∥φλ∗∥L2 = 1 and T
(o)
λ∗
φλ∗ = 0 hold. This shows that φλ∗ is an eigenvector of

T
(o)
λ∗

associated with the eigenvalue 0. Since w̃′
λ and φλ are orthogonal to each other for

γ (2πk/L)
2
< λ < λ∗, so are w̃′

λ∗
and φλ∗ by passage to the limit along the sequence and the

continuity of w̃′
λ with respect to λ. In particular, w̃′

λ∗
and φλ∗ are independent, however,

this contradicts the simplicity of the eigenvalue 0.

Thus, the lower bound of T
(o)
λ must be negative over the interval (5.5), as desired. �

We are now in position to present a condition for AV to be nonempty. Given Propo-
sition 1 and Lemma 7, we think it reasonable to pick up the cases in which the minimal
value of the energy form on SV as in (4.9) is attained either at the stationary solution
(ṽ(kmin), 0) with kmin ≥ 2 or at the trivial solution (V, 0) with inf σ(T ) < 0. In view of
Remark 1 and (5.4), the condition that we propose turns out to be

V ≥
(
aIγ((γ − 1)−1/2 − 0)2

2πGL2

)1/γ

,

the assumption of Theorem 2. Now the proof of the theorem is completed.

Remark 3 In the proof of Lemma 7 we rely on the fact that the lower bound of the

operator T
(o)
λ is somewhere negative on the interval (5.5). Here we essentially make use of

the assumption k ≥ 2. In case k = 1, however, the situation is subtle, and in fact the lower
bound of T corresponding to the stationary solution (ṽ(1), 0) proves the eigenvalue 0, which
is isolated and simple. An outline of the reasoning is given by [6], where the spectrum of the
restriction of Tλ onto the space of even functions are considered with the use of Lemma 4
and the result of Crandall and Rabinowitz [2] on the perturbation of simple eigenvalues along
bifurcation curves of stationary solutions. The result shows, in some sense, the stability of
the set of stationary solutions having a profile in common, and in order to find an element
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of AV for
(
aγπ
GL2

)1/γ
< V <

(
aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ
we are forced to study the behavior of

the energy form beyond a small neighborhood of the set of stationary solutions, which is a

global and therefore difficult problem. The situation is quite similar in case V ≤
(
aγπ
GL2

)1/γ
since the trivial solution (V, 0) is the unique stationary solution on MV with stability in
some sense.
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