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Abstract. B. Bongiorno, Di Piazza and Preiss gave a minimal constructive inte-
gration process of Riemann type, called the C-integral, which contains the Lebesgue
integral and the Newton integral. D. Bongiorno gave a minimal constructive inte-
gration process of Riemann type, called the C̃-integral, which contains the Lebesgue
integral and the improper Newton integral. On the other hand, Nakanishi gave cri-
teria for the restricted Denjoy integrability. Motivated by the results of Nakanishi,
Kawasaki and Suzuki gave criteria for the C-integrability, and Kawasaki gave criteria
for the C̃-integrability. In this paper, motivated by the results above, we give new
integrals between the Lebesgue integral and the restricted Denjoy integral. Moreover
we give criteria for the integrability of one of them in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
McShane partition of an interval [a, b] ⊂ R is a collection {(Ik, xk) | k = 1, . . . , k0} of non-
overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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On the other hand, in [11, 14] Nakanishi gave criteria for the restricted Denjoy integra-
bility. Motivated by the results of Nakanishi, in [10] Kawasaki and Suzuki gave criteria for
the C-integrability, and in [9] Kawasaki gave criteria for the C̃-integrability.

In this paper, motivated by the results above, we give new integrals between the Lebesgue
integral and the restricted Denjoy integral. Moreover we give criteria for the integrability
of one of them in the style of Nakanishi.

2 Preliminaries We know that the Lebesgue integral and the restricted Denjoy integral
are equivalent to the McShane integral and the Henstock-Kurzweil integral, respectively.
The McShane integral and the Henstock-Kurzweil integral are Riemann type integrals and
these definitions are as follows.

Definition 2.1. A function f from an interval [a, b] into R is McShane integrable if there
exists a constant A such that for any positive number ε there exists a gauge δ such that∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0}. The constant A is the value of
the McShane integral of f and we denote by

A = (MS)
∫

[a,b]

f(x)dx = (L)
∫

[a,b]

f(x)dx.

We denote by (MS)([a, b]) the class of all McShane integrable functions from [a, b] into R.

Definition 2.2. A function f from an interval [a, b] into R is Henstock-Kurzweil integrable
if there exists a constant A such that for any positive number ε there exists a gauge δ such
that ∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} with xk ∈ Ik, that is, δ-fine
Perron partition. The constant A is the value of the Henstock-Kurzweil integral of f and
we denote by

A = (HK)
∫

[a,b]

f(x)dx = (D∗)
∫

[a,b]

f(x)dx.

We denote by (HK)([a, b]) the class of all Henstock-Kurzweil integrable functions from [a, b]
into R.

In [5] D. Bongiorno showed a criterion for the improper Lebesgue integral as follows.

Theorem 2.1. A function f from an interval [a, b] into R is improper Lebesgue integrable if
and only if there exist a constant A and a finite subset N ⊂ [a, b] such that for any positive
number ε there exists a gauge δ such that∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε
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for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever
xk ∈ N . Moreover

A = (L∗)
∫

[a,b]

f(x)dx.

The theorem above gives a Riemann type definition for the improper Lebesgue integral.
In [1], see also [2,3], B. Bongiorno gave the C-integral, which is also a Riemann type integral,
as follows.

Definition 2.3. A function f from an interval [a, b] into R is C-integrable if there exists a
constant A such that for any positive number ε there exists a gauge δ such that∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
∑k0

k=1 d(Ik, xk) < 1
ε ,

where d(I, x) = infy∈I |y − x|. The constant A is the value of the C-integral of f and we
denote by

A = (C)
∫

[a,b]

f(x)dx.

We denote by (C)([a, b]) the class of all C-integrable functions from [a, b] into R.

In [4] D. Bongiorno gave the C̃-integral, which is also a Riemann type integral, as follows.

Definition 2.4. A function f from an interval [a, b] into R is C̃-integrable if there exist
a constant A and a countable subset N ⊂ [a, b] such that for any positive number ε there
exists a gauge δ such that ∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

The constant A is the value of the C̃-integral of f and we denote by

A = (C̃)
∫

[a,b]

f(x)dx.

We denote by (C̃)([a, b]) the class of all C̃-integrable functions from [a, b] into R.

Throughout this paper, we say that a function defined on the class of all intervals in
[a, b] is an interval function on [a, b]. If an interval function F on [a, b] satisfies F (I1 ∪ I2) =
F (I1) + F (I2) for any intervals I1, I2 ⊂ [a, b] with I1

i ∩ I2
i = ∅, where Ii is the interior

of I, then it is said to be additive. In [11, 14] Nakanishi gave the following criteria for the
restricted Denjoy integrability. Firstly Nakanishi considered the following four criteria for
the pair of a function f from [a, b] into R and an additive interval function F on [a, b].
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(A) For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3)

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Fn 6= ∅.

(B) For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4)

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Mn 6= ∅.

(C) There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) for any n and for any positive number ε there exists a positive number η such
that ∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(3.1) Ik ∩ Fn 6= ∅ for any k;

(3.2)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D) There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;
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(4) for any n and for any positive number ε there exists a positive number η such
that ∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(4.1) Ik ∩ Mn 6= ∅ for any k;

(4.2)
∑k0

k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

Next Nakanishi gave the following theorem for the restricted Denjoy integrability.

Theorem 2.2. A function f from an interval [a, b] into R is restricted Denjoy integrable if
and only if there exists an additive interval function F on [a, b] such that the pair of f and
F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of
(A), (B), (C) and (D), then

F (I) = (D∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Motivated by the results of Nakanishi, in [10] Kawasaki and Suzuki gave similar criteria
and theorems for the C-integrability, and in [9] Kawasaki give similar criteria and theorems
for the C̃-integrability.

3 Definitions of new integrals In this section firstly we define new integrals. By ob-
serving the definitions of the McShane, the improper Lebesgue in the sense of Theorem 2.1,
the Henstock-Kurzweil integrals, C-integral and C̃-integral, we become aware of the follow-
ing two integrals.

Definition 3.1. A function f from an interval [a, b] into R is C∗-integrable if there exist a
constant A and a finite subset N ⊂ [a, b] such that for any positive number ε there exists a
gauge δ such that ∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

5



6 T. KAWASAKI

The constant A is the value of the C∗-integral of f and we denote by

A = (C∗)
∫

[a,b]

f(x)dx.

We denote by (C∗)([a, b]) the class of all C∗-integrable functions from [a, b] into R.

Definition 3.2. A function f from an interval [a, b] into R is L̃-integrable if there exist
a constant A and a countable subset N ⊂ [a, b] such that for any positive number ε there
exists a gauge δ such that ∣∣∣∣∣

k0∑
k=1

f(xk)|Ik| − A

∣∣∣∣∣ < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever
xk ∈ N . The constant A is the value of the L̃-integral of f and we denote by

A = (L̃)
∫

[a,b]

f(x)dx.

We denote by (L̃)([a, b]) the class of all L̃-integrable functions from [a, b] into R.

By the definitions of these integrals we obtain the following relations.

(N) ⊂ (N∗) (D∗)⊂ ⊂

(C) ⊂ (C∗) ⊂ (C̃) =

⊂ ⊂
(MS) ⊂ ⊂ (HK)

=

(L) ⊂ (L∗) ⊂ (L̃)

The above relations of inclusion are proper. We give some examples to check these. To
show these, we provide the Saks-Henstock type lemmas. The following is the Saks-Henstock
type lemma for the C∗-integral.

Theorem 3.1. If f ∈ (C∗)([a, b]), then there exists a finite subset N ⊂ [a, b] such that for
any positive number ε there exists a gauge δ such that

k0∑
k=1

∣∣∣∣f(xk)|Ik| − (C∗)
∫

Ik

f(x)dx

∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Proof. Since f ∈ (C∗)([a, b]), there exists a finite subset N ⊂ [a, b] such that for any positive
number ε there exists a gauge δ such that∣∣∣∣∣

k1∑
k=1

f(xk)|Ik| − (C∗)
∫

[a,b]

f(x)dx

∣∣∣∣∣ <
ε

4
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for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k1} satisfying

k1∑
k=1

d(Ik, xk) <
2
ε

and xk ∈ Ik whenever xk ∈ N . Let {(Ik, xk) | k = 1, . . . , k0} be a δ-fine partial McShane
partition satisfying

k0∑
k=1

d(Ik, xk) <
1
ε

and xk ∈ Ik whenever xk ∈ N , and let {Ik | k = k0 + 1, . . . , k1} be the sequence of intervals
satisfying

k1∪
k=1

Ik = [a, b]

and Ii
k2

∩ Ii
k3

= ∅ if k2 6= k3. Since f is C∗-integrable on each Ik (k = k0 + 1, . . . , k1), there
exists a gauge δk such that∣∣∣∣∣∣

`(k)∑
`=1

(
f(xk,`)|Ik,`| − (C∗)

∫
Ik,`

f(x)dx

)∣∣∣∣∣∣ <
ε

4(k1 − k0)

for any δk-fine McShane partition {(Ik,`, xk,`) | ` = 1, . . . , `(k)} satisfying

`(k)∑
`=1

d(Ik,`, xk,`) <
1

ε(k1 − k0)

and xk,` ∈ Ik,` whenever xk,` ∈ N . Without loss of generality, it may be assumed that
δk ≤ δ for any k = k0 + 1, . . . , k1. Note that

k0∑
k=1

d(Ik, xk) +
k1∑

k=k0+1

`(k)∑
`=1

d(Ik,`, xk,`) <
1
ε

+
k1∑

k=k0+1

1
ε(k1 − k0)

=
2
ε
.

Therefore we obtain∣∣∣∣∣
k0∑

k=1

(
f(xk)|Ik| − (C∗)

∫
Ik

f(x)dx

)∣∣∣∣∣
≤

∣∣∣∣∣
k1∑

k=1

f(xk)|Ik| − (C∗)
∫

[a,b]

f(x)dx

∣∣∣∣∣
+

k1∑
k=k0+1

∣∣∣∣∣∣
`(k)∑
`=1

(
f(xk,`)|Ik,`| − (C∗)

∫
Ik,`

f(x)dx

)∣∣∣∣∣∣
<

ε

4
+

k1∑
k=k0+1

ε

4(k1 − k0)
=

ε

2
.

7
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Moreover we obtain

k0∑
k=1

∣∣∣∣f(xk)|Ik| − (C∗)
∫

Ik

f(x)dx

∣∣∣∣
=

∣∣∣∣∣∣∣
∑

f(xk)|Ik|−(C∗)
R

Ik
f(x)dx>0

(
f(xk)|Ik| − (C∗)

∫
Ik

f(x)dx

)∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

f(xk)|Ik|−(C∗)
R

Ik
f(x)dx<0

(
f(xk)|Ik| − (C∗)

∫
Ik

f(x)dx

)∣∣∣∣∣∣∣
<

ε

2
+

ε

2
= ε.

The following is the Saks-Henstock type lemma for the L̃-integral. The proof is similar
to Theorem 3.1.

Theorem 3.2. If f ∈ (L̃)([a, b]), then there exists a countable subset N ⊂ [a, b] such that
for any positive number ε there exists a gauge δ such that

k0∑
k=1

∣∣∣∣f(xk)|Ik| − (L̃)
∫

Ik

f(x)dx

∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik when-
ever xk ∈ N .

The Saks-Henstock type lemma for the improper Lebesgue integral also holds, see [5].

Theorem 3.3. If f ∈ (L∗)([a, b]), then there exists a finite subset N ⊂ [a, b] such that for
any positive number ε there exists a gauge δ such that

k0∑
k=1

∣∣∣∣f(xk)|Ik| − (L∗)
∫

Ik

f(x)dx

∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik when-
ever xk ∈ N .

We show that the above relations of inclusion are proper.

Theorem 3.4. There exists a function f such that f ∈ (C∗)([0, 1]) but f 6∈ (C)([0, 1]).

Proof. Let f1 be a function from [0, 1] into R defined by

f1(x) =

{
(1 − 2x)

(
sin 1

x(1−x) −
1

x(1−x) cos 1
x(1−x)

)
, if x ∈ (0, 1),

0, if x ∈ {0, 1},

and let F1 be a function defined by

F1(x) =
{

x(1 − x) sin 1
x(1−x) , if x ∈ (0, 1),

0, if x ∈ {0, 1}.
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Since f1 is continuous on (0, 1) and

lim
α↓0,β↑1

(L)
∫

[α,β]

f1(x)dx = lim
α↓0,β↑1

(F1(β) − F1(α)) = 0,

we obtain f1 ∈ (L∗)([0, 1]) and hence f1 ∈ (C∗)([0, 1]). However f1 6∈ (C)([0, 1]). Indeed,
assume that f1 ∈ (C)([0, 1]). Then by [2, Lemma 6] for any positive number ε with ε < 1
there exists a gauge δ such that

k0∑
k=1

|f1(xk)(bk − ak) − (F1(bk) − F1(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying

k0∑
k=1

d([ak, bk], xk) <
1
ε
.

For any natural number n let

an =
1 −

√
1 − 4

3
2 π+2nπ

2
,

bn =
1 −

√
1 − 4

π
2 +2nπ

2
.

Note that {[an, bn]} is mutually disjoint and

F1(an) = −an(1 − an) = − 1
3
2π + 2nπ

,

F1(bn) = bn(1 − bn) =
1

π
2 + 2nπ

.

Since the sequence {bn(1−bn)+an(1−an) | n ∈ N} is a strictly decreasing sequence tending
to 0 and

0 < bn(1 − bn) + an(1 − an),
∞∑

n=1

(bn(1 − bn) + an(1 − an)) = ∞,

we can take a strictly increasing finite sequence {n(k) | k = 1, . . . , k0} satisfying bn(1) < δ(0)
and

ε <

k0∑
k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k))) <
1
ε
.

Then {([an(k), bn(k)], 0) | k = 1, . . . , k0} is a δ-fine partial McShane partition and satisfies

k0∑
k=1

d([an(k), bn(k)], 0) =
k0∑

k=1

an(k) <

k0∑
k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k))) <
1
ε
.

9
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However

k0∑
k=1

|f1(0)(bn(k) − an(k)) − (F1(bn(k)) − F1(an(k)))|

=
k0∑

k=1

|F1(bn(k)) − F1(an(k))|

=
k0∑

k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k)))

> ε

and hence it is a contradiction.

Theorem 3.5. There exists a function f such that f ∈ (C̃)([0, 1]) but f 6∈ (C∗)([0, 1]).

Proof. Let f2 be a function from [0, 1] into R defined by

f2(x) =

{
n(n + 1)f1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

∣∣ n ∈ N
}
∪ {0},

and let F2 be a function defined by

F2(x) =

{
F1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

∣∣ n ∈ N
}
∪ {0},

where f1 and F1 are the functions in Theorem 3.4. Since F ′
2(x) = f2(x) for any x ∈(

1
n+1 , 1

n

)
, n ∈ N, we obtain f2 ∈ (N∗)([0, 1]) and hence f2 ∈ (C̃)([0, 1]). However f2 6∈

(C∗)([0, 1]). Indeed, assume that f2 ∈ (C∗)([0, 1]). Then by Theorem 3.1 there exists a
finite subset N ⊂ [0, 1] such that for any positive number ε with ε < 1 there exists a gauge
δ such that

k0∑
k=1

|f2(xk)(bk − ak) − (F2(bk) − F2(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d([ak, bk], xk) < 1
ε ;

(2) xk ∈ [ak, bk] whenever xk ∈ N .

Since N is finite, there exists a natural number p such that
[

1
p+1 , 1

p

]
∩ N = ∅. For any

natural number n let

an =
1

p + 1
+

1 −
√

1 − 4
3
2 π+2nπ

2p(p + 1)
,

bn =
1

p + 1
+

1 −
√

1 − 4
π
2 +2nπ

2p(p + 1)
.
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Note that {[an, bn]} is mutually disjoint and

F2(an) = −(p(p + 1)an − p)(p + 1 − p(p + 1)an)
= −p(p + 1)((p + 1)an − 1)(1 − pan)

= − 1
3
2π + 2nπ

,

F2(bn) = (p(p + 1)bn − p)(p + 1 − p(p + 1)bn)
= p(p + 1)((p + 1)bn − 1)(1 − pbn)

=
1

π
2 + 2nπ

.

Since the sequence {p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)) | n ∈ N}
is a strictly decreasing sequence tending to 0 and

0 < p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)),
∞∑

n=1

p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)) = ∞,

we can take a strictly increasing finite sequence {n(k) | k = 1, . . . , k0} satisfying bn(1) <
1

p+1 + δ
(

1
p+1

)
and

ε <

k0∑
k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k))) <
1
ε
.

Then
{(

[an(k), bn(k)], 1
p+1

) ∣∣∣ k = 1, . . . , k0

}
is a δ-fine partial McShane partition and

k0∑
k=1

d

(
[an(k), bn(k)],

1
p + 1

)

=
k0∑

k=1

(
an(k) −

1
p + 1

)

<

k0∑
k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k)))

<
1
ε
.

However
k0∑

k=1

∣∣∣∣f2

(
1

p + 1

)
(bn(k) − an(k)) − (F2(bn(k)) − F2(an(k)))

∣∣∣∣
=

k0∑
k=1

|F2(bn(k)) − F2(an(k))|

=
k0∑

k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k)))

> ε

and hence it is a contradiction.

11



12 T. KAWASAKI

Theorem 3.6. There exists a function f such that f ∈ (L̃)([0, 1]) but f 6∈ (L∗)([0, 1]).

Proof. Let f3 be a function from [0, 1] into R defined by

f3(x) =

{
f1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

∣∣ n ∈ N
}
∪ {0},

and let F3 be a function defined by

F3(x) =

{
1

n(n+1)F1(n(n + 1)x − n), if x ∈
(

1
n+1 , 1

n

)
, n ∈ N,

0, if x ∈
{

1
n

∣∣ n ∈ N
}
∪ {0},

where f1 and F1 are the functions in Theorem 3.4. Then f3 ∈ (L̃)([0, 1]) but f3 6∈
(L∗)([0, 1]). Indeed, since f3 is improper Lebesgue integrable on each

[
1

n+1 , 1
n

]
and

(L∗)
∫
[ 1

n+1 , 1
n ]

f3(x)dx = 0,

by Theorem 2.1 there exists a finite subset Nn ⊂
[

1
n+1 , 1

n

]
such that for any positive number

ε there exists a gauge δn such that

∣∣∣∣∣
kn∑

k=1

f3(xn,k)|In,k|

∣∣∣∣∣ <
ε

2n+1

for any δn-fine McShane partition {(In,k, xn,k) | k = 1, . . . , kn} of
[

1
n+1 , 1

n

]
satisfying xn,k ∈

In,k whenever xn,k ∈ Nn. It is obvious that Nn =
{

1
n+1 , 1

n

}
. Let

Mn = max
{
|F3(x)|

∣∣∣∣ x ∈
[

1
n + 1

,
1
n

]}
.

It holds that Mn = 2
n(n+1)M1. Without loss of generality, it may be assumed that

(x − δn(x), x + δn(x)) ⊂
(

1
n+1 , 1

n

)
for any x ∈

(
1

n+1 , 1
n

)
. Let N =

{
1
n

∣∣ n ∈ N
}
∪ {0},

δ(x) = δn(x) for any x ∈
(

1
n+1 , 1

n

)
, δ

(
1
n

)
= min

{
δn

(
1
n

)
, δn−1

(
1
n

)}
for any n ∈ N

with n ≥ 2 and δ(0) < 1
p with Mp < ε

2 . Let {(Ik, xk) | k = 1, . . . , k0} be a δ-fine
McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever xk ∈ N . Let
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q = min
{

n
∣∣∣ I1 ∩

[
1

n+1 , 1
n

)
6= ∅

}
. Then

∣∣∣∣∣
k0∑

k=1

f3(xk)|Ik|

∣∣∣∣∣
=

∣∣∣∣∣∣∣f3(0)|I1| +
q∑

n=1

∑
Ik⊂[ 1

n+1 , 1
n ]

f3(xk)|Ik| +
q∑

n=2

∑
1
n∈Ik

f3

(
1
n

)
|Ik|

∣∣∣∣∣∣∣
≤ |f3(0)|I1||

+

∣∣∣∣∣∣∣
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ∣∣∣∣Ik ∩
[

1
q + 1

,
1
q

]∣∣∣∣
∣∣∣∣∣∣∣

+
q−1∑
n=2

∣∣∣∣∣∣
∑
1

n+1∈Ik

f3

(
1

n + 1

) ∣∣∣∣Ik ∩
[

1
n + 1

,
1
n

]∣∣∣∣
+

∑
Ik⊂[ 1

n+1 , 1
n ]

f3(xk)|Ik|

+
∑
1
n∈Ik

f3

(
1
n

) ∣∣∣∣Ik ∩
[

1
n + 1

,
1
n

]∣∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
∑
1
2∈Ik

f3

(
1
2

) ∣∣∣∣Ik ∩
[
1
2
, 1

]∣∣∣∣ +
∑

Ik⊂[ 1
2 ,1]

f3(xk)|Ik|

∣∣∣∣∣∣∣
≤ 0 +

∣∣∣∣∣∣∣
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ∣∣∣∣Ik ∩
[

1
q + 1

,
1
q

]∣∣∣∣
∣∣∣∣∣∣∣ +

q−1∑
n=2

ε

2n+1
+

ε

22
.

By Theorem 3.3 we obtain∣∣∣∣∣∣∣
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ∣∣∣∣Ik ∩
[

1
q + 1

,
1
q

]∣∣∣∣
∣∣∣∣∣∣∣

≤
∑

Ik⊂[ 1
q+1 , 1

q ]

∣∣∣∣f3(xk)|Ik| − (L∗)
∫

Ik

f3(x)dx

∣∣∣∣
+

∑
1
q ∈Ik

∣∣∣∣∣f3(xk)
∣∣∣∣Ik ∩

[
1

q + 1
,
1
q

]∣∣∣∣ − (L∗)
∫

Ik∩[ 1
q+1 , 1

q ]
f3(x)dx

∣∣∣∣∣
+

∣∣∣∣∣∣∣(L∗)
∫
 

S

Ik⊂[ 1
q+1 , 1

q ] Ik

!

∪
„

S

1
q
∈Ik

Ik∩[ 1
q+1 , 1

q ]
« f3(x)dx

∣∣∣∣∣∣∣
<

ε

2q+1
+ Mq.

13



14 T. KAWASAKI

Therefore ∣∣∣∣∣
k0∑

k=1

f3(xk)|Ik|

∣∣∣∣∣ <
ε

2q+1
+ Mq +

q−1∑
n=2

ε

2n+1
+

ε

22

< Mp +
∞∑

n=1

ε

2n+1

< ε

and hence f3 ∈ (L̃)([0, 1]). However, since it can be shown similarly to Theorem 3.5 that
f3 6∈ (C∗)([0, 1]), we obtain f3 6∈ (L∗)([0, 1]).

Theorem 3.7. There exists a function f such that f ∈ (C∗)([0, 1]) but f 6∈ (L∗)([0, 1]).

Proof. Let C be the Cantor set in [0, 1], let {(αp, βp) | p ∈ N} be the sequence of all
connected components of [0, 1] \ C, let f4 be a function from [0, 1] into R defined by

f4(x) =


2(αp+βp−2x)

(βp−αp)2

(
(x−αp)(βp−x)

(βp−αp)2 sin (βp−αp)2

(x−αp)(βp−x) − cos (βp−αp)2

(x−αp)(βp−x)

)
,

if x ∈ (αp, βp), p ∈ N,
0,

if x ∈ C,

and let F4 be a function defined by

F4(x) =

{
(x−αp)2(βp−x)2

(βp−αp)4 sin (βp−αp)2

(x−αp)(βp−x) , if x ∈ (αp, βp), p ∈ N,

0, if x ∈ C.

Since F ′
4(x) = f4(x) for any x ∈ [0, 1], we obtain f4 ∈ (N)([0, 1]) and hence f4 ∈ (C∗)([0, 1]).

However f4 6∈ (L̃)([0, 1]) and hence f4 6∈ (L∗)([0, 1]). We show f4 6∈ (L̃)([0, 1]). Assume
that f4 ∈ (L̃)([0, 1]). Then by Theorem 3.2 there exists a countable subset N ⊂ [0, 1] such
that for any positive number ε there exists a gauge δ such that

k0∑
k=1

|f4(xk)(bk − ak) − (F4(bk) − F4(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying xk ∈
[ak, bk] whenever xk ∈ N . Since N is countable and C is perfect, there exist z ∈ C and
{(αp(q), βp(q)) | q ∈ N} ⊂ {(αp, βp) | p ∈ N} such that z 6∈ N and

(
αp(q),

αp(q)+βp(q)

2

)
⊂

[z, z + δ(z)) for any q. For any natural numbers q and n let

aq,n = αp(q) +
(βp(q) − αp(q))

(
1 −

√
1 − 4

3
2 π+2nπ

)
2

,

bq,n = αp(q) +
(βp(q) − αp(q))

(
1 −

√
1 − 4

π
2 +2nπ

)
2

.
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Note that {[aq,n, bq,n]} is mutually disjoint and

F4(aq,n) = −
(aq,n − αp(q))2(βp(q) − aq,n)2

(βp(q) − αp(q))4

= − 1(
3
2π + 2nπ

)2 ,

F4(bq,n) =
(bq,n − αp(q))2(βp(q) − bq,n)2

(βp(q) − αp(q))4

=
1(

π
2 + 2nπ

)2 .

Since {([aq,n, bq,n], z) | q, n ∈ N} is a δ-fine partial McShane partition and

∞∑
q=1

∞∑
n=1

|f4(z)(bq,n − aq,n) − (F4(bq,n) − F4(aq,n))| =
∞∑

q=1

∞∑
n=1

|F4(bq,n) − F4(aq,n)| = ∞,

there exists {([ak, bk], z) | k = 1, . . . , k0} ⊂ {([aq,n, bq,n], z) | q, n ∈ N} such that

k0∑
k=1

|f4(z)(bk − ak) − (F4(bk) − F4(ak))| > ε.

It is a contradiction.

Theorem 3.8. There exists a function f such that f ∈ (C̃)([0, 1]) but f 6∈ (L̃)([0, 1]).

Proof. We show in the proof of Theorem 3.7 that f4 ∈ (N)([0, 1]) and hence f4 ∈ (C̃)([0, 1])
but f4 6∈ (L̃)([0, 1]).

Theorem 3.9. There exists a function f such that f ∈ (C∗)([0, 1]) but f 6∈ (L̃)([0, 1]).

Proof. We show in the proof of Theorem 3.7 that f4 ∈ (N)([0, 1]) and hence f4 ∈ (C∗)([0, 1])
but f4 6∈ (L̃)([0, 1]).

Theorem 3.10. There exists a function f such that f ∈ (L̃)([0, 1]) but f 6∈ (C∗)([0, 1]).

Proof. We show in the proof of Theorem 3.6 that f3 ∈ (L̃)([0, 1]) but f3 6∈ (C∗)([0, 1]).

4 Properties of the C∗-integral In this section we give a criterion for the C∗-integrability.

Definition 4.1. Let F be an interval function on [a, b] and let N be a finite subset of [a, b].
Then F is said to be C∗-absolutely continuous on E ⊂ [a, b] with respect to N if for any
positive number ε there exist a gauge δ and a positive number η such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

15



16 T. KAWASAKI

(3) xk ∈ Ik whenever xk ∈ N ;

(4)
∑k0

k=1 |Ik| < η.

We denote by ACC∗(E,N) the class of all C∗-absolutely continuous interval functions on
E with respect to N . Moreover F is said to be C∗-generalized absolutely continuous on
[a, b] if there exist a finite subset N and a sequence {Em} of measurable sets such that∪∞

m=1 Em = [a, b] and F ∈ ACC∗(Em, N) for any m. We denote by ACGC∗([a, b]) the
class of all C∗-generalized absolutely continuous interval functions on [a, b].

Lemma 4.1. If F ∈ ACGC∗([a, b]) and E ⊂ [a, b] with |E| = 0, then there exists a finite
subset N ⊂ [a, b] such that for any positive number ε there exists a gauge δ such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

Proof. Since F ∈ ACGC∗([a, b]), there exist a finite subset N ⊂ [a, b] and a sequence
{Em} of measurable sets such that

∪∞
m=1 Em = [a, b] and F ∈ ACC∗(Em, N) for any m.

Therefore for any positive number ε and for any natural number m there exist a gauge δm

and a positive number ηm such that

k0∑
k=1

|F (Ik)| <
ε

2m+1

for any δm-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ Em for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N ;

(4)
∑k0

k=1 |Ik| < ηm.

Since |E ∩ Em| = 0, there exists an open set Om ⊃ E ∩ Em such that |Om| < ηm. Define
δ∗m(x) = min{δm(x), d(Oc

m, x)}, where Oc
m is the complement of Om. Then we obtain

k0∑
k=1

|F (Ik)| <
ε

2m+1

for any δ∗m-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying (1), (2), (3)
and (4). Define δ(x) = δ∗m(x) for any x ∈ E ∩ Em (m ∈ N). Then we obtain

k0∑
k=1

|F (Ik)| =
∞∑

n=1

∑
xk∈Em

|F (Ik)| ≤
∞∑

m=1

ε

2m+1
=

ε

2
< ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying



SOME INTEGRALS BETWEEN THE LEBESGUE INTEGRA AND THE DENJOY INTEGRAL

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

Lemma 4.2. If F is differentiable at x ∈ [a, b], then for any positive number ε there exists
a positive number δ such that

|F (t) − F (s) − F ′(x)(t − s)| < ε(2d([s, t], x) + t − s)

for any interval [s, t] ⊂ (x − δ, x + δ) ∩ [a, b].

Proof. Since F is differentiable at x ∈ [a, b], there exists a positive number δ such that

|F (ξ) − F (x) − F ′(x)(ξ − x)|| < ε|ξ − x|

for any ξ ∈ (x − δ, x + δ) ∩ [a, b]. Therefore for any interval [s, t] ⊂ (x − δ, x + δ) ∩ [a, b] we
obtain

|F (t) − F (s) − F ′(x)(t − s)|
≤ |F (t) − F (x) − F ′(x)(t − x)| + |F (x) − F (s) − F ′(x)(x − s)|
< ε|t − x| + ε|s − x|
= ε(2d([s, t], x) + t − s).

Theorem 4.1. For any F ∈ ACGC∗([a, b]) there exists d
dxF ([a, x]) for almost every x ∈

[a, b], and there exists f ∈ (C∗)([a, b]) such that f(x) = d
dxF ([a, x]) for almost every x ∈

[a, b] and

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b].
Conversely the interval function F defined above for any f ∈ (C∗)([a, b]) satisfies F ∈

ACGC∗([a, b]).

Proof. Note that, if F ∈ ACGC∗([a, b]), then F ∈ ACGδ([a, b]), see [7, Definition 9.14].
By [7, Theorem 9.17] there exists d

dxF ([a, x]) for almost every x ∈ [a, b]. Let

E =
{

x

∣∣∣∣ d

dx
F ([a, x]) does not exist at x ∈ [a, b]

}
.

Then |E| = 0, and by Lemma 4.1 there exists a finite subset N ⊂ [a, b] such that for any
positive number ε with ε < 4

b−a there exists a gauge δ1 such that

k0∑
k=1

|F (Ik)| <
ε

4

for any δ1-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

17
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(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

If x 6∈ E, then by Lemma 4.2 there exists a positive number δ2(x) such that∣∣∣∣F (t) − F (s) − d

dx
F ([a, x])(t − s)

∣∣∣∣ <
ε2

8
(2d([s, t], x) + t − s)

for any interval [s, t] ⊂ (x − δ2(x), x + δ2(x)) ∩ [a, b]. Let

δ(x) =
{

δ1(x), if x ∈ E,
δ2(x), if x 6∈ E,

and let

f(x) =
{

0, if x ∈ E,
d
dxF ([a, x]), if x 6∈ E.

Then we obtain∣∣∣∣∣
k0∑

k=1

f(xk)|Ik| − F (I)

∣∣∣∣∣ ≤

∣∣∣∣∣ ∑
xk∈E

F (Ik)

∣∣∣∣∣ +

∣∣∣∣∣∣
∑

xk 6∈E

f(xk)|Ik| − F (Ik)

∣∣∣∣∣∣
≤

∑
xk∈E

|F (Ik)| +
∑

xk 6∈E

|f(xk)|Ik| − F (Ik)|

<
ε

4
+

∑
xk 6∈E

ε2

8
(2d(Ik, xk) + |Ik|)

<
ε

4
+

ε2

8
· 2 · 1

ε
+

ε2

8
(b − a)

<
ε

4
+

ε

4
+

ε

2
= ε

for any interval I ⊂ [a, b] and for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} of
I satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Conversely let f ∈ (C∗)([a, b]) and let

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. For any natural number m let Em = {x | x ∈ [a, b], |f(x)| ≤ m}.
Then

∪∞
m=1 Em = [a, b]. We show that F ∈ ACC∗(Em, N), where N is an excepting finite

subset of [a, b] in the definition of the C∗-integral of f . Let ε be a positive number. By
Theorem 3.1 there exists a gauge δ such that

k0∑
k=1

|f(xk)|Ik| − F (Ik)| <
ε

2

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
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(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Let η = ε
2m . If xk ∈ Em for any k and

∑k0
k=1 |Ik| < η, then we obtain

k0∑
k=1

|F (Ik)| ≤
k0∑

k=1

|f(xk)||Ik| +
k0∑

k=1

|f(xk)|Ik| − F (Ik)|

< m

k0∑
k=1

|Ik| +
ε

2

< ε.

5 Criteria for the C∗-integrability We consider the following four criteria for the pair
of a function f from [a, b] into R and an additive interval function F on [a, b].

(A)C∗ For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) there exists a finite subset N ⊂ [a, b] independent of {εn} such that for any n
there exists a gauge δ such that∣∣∣∣∣

k1∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Fn 6= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(3.1) xk ∈ Fn for any k = k0 + 1, . . . , k1;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(3.3) xk ∈ Ik whenever xk ∈ N .

(B)C∗ For any decreasing sequence {εn} tending to 0 there exist increasing sequences
{Mn} of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a finite subset N ⊂ [a, b] independent of {εn} such that for any n
there exists a gauge δ such that∣∣∣∣∣

k1∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ < εn
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for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩Mn 6= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(4.1) xk ∈ Mn for any k = k0 + 1, . . . , k1;

(4.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(4.3) xk ∈ Ik whenever xk ∈ N .

(C)C∗ There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) there exists a finite subset N ⊂ [a, b] such that for any n and for any positive
number ε there exist a positive number η and a gauge δ such that∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(3.1) xk ∈ Fn for any k;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(3.3) xk ∈ Ik whenever xk ∈ N ;

(3.4)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D)C∗ There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a finite subset N ⊂ [a, b] such that for any n and for any positive
number ε there exist a positive number η and a gauge δ such that∣∣∣∣∣

k0∑
k=1

F (Ik)

∣∣∣∣∣ < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(4.1) xk ∈ Mn for any k;
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(4.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(4.3) xk ∈ Ik whenever xk ∈ N ;
(4.4)

∑k0
k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

It is clear that (A)C∗ implies (B)C∗ and (C)C∗ implies (D)C∗ . Now we give the following
theorems for the C∗-integral.

Theorem 5.1. Let f ∈ (C∗)([a, b]) and let F be an additive interval function on [a, b]
defined by

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. Then the pair of f and F satisfies (A)C∗ .

Proof. Since f ∈ (C∗)([a, b]), we obtain f ∈ (D∗)([a, b]). Let {εn} be a decreasing sequence
tending to 0. Since by Theorem 2.2 the pair of f and F satisfies (A), for

{
εn

2

}
there exists

an increasing sequence {Fn} of closed sets such that (1) and (2) hold. Moreover∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ <
εn

2

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik∩Fn 6= ∅.
By Theorem 3.1 there exists a finite subset N ⊂ [a, b] independent of {εn} such that for
any n there exists a gauge δ such that∣∣∣∣∣

k1∑
k=k0+1

(f(xk)|Ik| − F (Ik))

∣∣∣∣∣ <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.2) and (3.3). Since fχFn ∈ (L)([a, b]), where χFn means the characteristic function of
Fn, by the Saks-Henstock lemma for the McShane integral, for instance see [7, Lemma 10.6],
for any n there exists a gauge δ such that∣∣∣∣∣

k1∑
k=k0+1

(
f(xk)χFn(xk)|Ik| − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b]. Since
f = fχFn on Fn, for any n there exists a gauge δ such that∣∣∣∣∣

k1∑
k=k0+1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
=

∣∣∣∣∣
k1∑

k=k0+1

(F (Ik) − f(xk)|Ik|)

∣∣∣∣∣ +

∣∣∣∣∣
k1∑

k=k0+1

(
f(xk)χFn(xk)|Ik| − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
<

εn

4
+

εn

4
=

εn

2
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for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.1), (3.2) and (3.3). Therefore∣∣∣∣∣

k1∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
≤

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣ +

∣∣∣∣∣
k1∑

k=k0+1

(
F (Ik) − (L)

∫
Ik∩Fn

f(x)dx

)∣∣∣∣∣
<

εn

2
+

εn

2
= εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of non-overlapping
intervals in [a, b] which consists of a finite family {Ik | k = 1, . . . , k0} with Ik ∩ Fn 6= ∅ and
a δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} satisfying (3.1), (3.2) and
(3.3), that is, (3) holds.

Theorem 5.2. If the pair of a function f from an inteval [a, b] into R and an additive inter-
val function F on [a, b] satisfies (A)C∗ , then the pair of f and F satisfies (C)C∗ . Similarly,
if the pair of a function f from an inteval [a, b] into R and an additive interval function F
on [a, b] satisfies (B)C∗ , then the pair of f and F satisfies (D)C∗ .

Proof. Let {εn} be a decreasing sequence tending to 0. Then there exists an increasing
sequence {Fn} of closed sets such that (1) and (2) of (C)C∗ hold. We show (3) of (C)C∗ .
Let n be a natural number and let ε be a positive number. Since f ∈ (L)(Fn), there exists
a positive number ρ(n, ε) such that, if |E| < ρ(n, ε), then∣∣∣∣(L)

∫
E∩Fn

f(x)dx

∣∣∣∣ <
ε

2
.

Take a natural number m(n, ε) such that εm(n,ε) < ε
2 and m(n, ε) ≥ n, and put η =

ρ(m(n, ε), ε). By (3) of (A)C∗ there exists a subset N ⊂ [a, b] independent of {εn} such
that for m(n, ε) there exists a gauge δm(n,ε). Let {(Ik, xk) | k = 1, . . . , k0} be a δm(n,ε)-fine
partial McShane partition in [a, b] satisfying (3.1), (3.2), (3.3) and (3.4) of (C)C∗ . Then we
obtain ∣∣∣∣∣

k0∑
k=1

(
F (Ik) − (L)

∫
Ik∩Fm(n,ε)

f(x)dx

)∣∣∣∣∣ < εm(n,ε) <
ε

2
.

Moreover, since
∑k0

k=1 |Ik| < η = ρ(m(n, ε), ε), we obtain∣∣∣∣∣
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

∣∣∣∣∣ <
ε

2
.

Therefore∣∣∣∣∣
k0∑

k=1

F (Ik)

∣∣∣∣∣ ≤

∣∣∣∣∣
k0∑

k=1

(
F (Ik) − (L)

∫
Ik∩Fm(n,ε)

f(x)dx

)∣∣∣∣∣ +

∣∣∣∣∣
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

∣∣∣∣∣
<

ε

2
+

ε

2
= ε.

Next we show (4) of (C)C∗ . Let I be a subinterval of [a, b]. In the case of I ∩ Fn = ∅ (4) of
(C)C̃ is clear. Consider the case of I ∩Fn 6= ∅. Let {Jp | p = 1, 2, . . .} be the sequence of all
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connected components of Ii \ Fn. Since I ∩ Fm 6= ∅ holds for any m ≥ n, by (3) of (A)C∗

we obtain ∣∣∣∣F (I) − (L)
∫

I∩Fm

f(x)dx

∣∣∣∣ < εm.

Since Jp ∩ Fm 6= ∅ holds for any p, by (3) of (A)C̃ we obtain∣∣∣∣∣
∞∑

p=1

(
F (Jp) − (L)

∫
Jp∩Fm

f(x)dx

)∣∣∣∣∣ ≤ εm

for any m ≥ n. On the other hand, we obtain

(L)
∫

I∩Fm

f(x)dx = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

for any m ≥ n. Therefore we obtain∣∣∣∣∣F (I) −

(
(L)

∫
I∩Fn

f(x)dx +
∞∑

p=1

F (Jp)

)∣∣∣∣∣
≤

∣∣∣∣F (I) − (L)
∫

I∩Fm

f(x)dx

∣∣∣∣
+

∣∣∣∣∣(L)
∫

I∩Fm

f(x)dx −

(
(L)

∫
I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

)∣∣∣∣∣
+

∣∣∣∣∣−
∞∑

p=1

F (Jp) +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

∣∣∣∣∣
< εm + 0 + εm = 2εm

for any m ≥ n and hence

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp).

Similarly, we can prove that, if the pair of f and F satisfies (B)C∗ , then the pair of f
and F satisfies (D)C∗ .

Theorem 5.3. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (D)C∗ , then f ∈ (C∗)([a, b]) and

F (I) = (C∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Proof. By (1) and (4) there exist a finite subset N ⊂ [a, b] and a increasing sequence {Mn}
of non-empty measurable sets such that

∪∞
n=1 Mn = [a, b] and for any n and for any positive

number ε there exist a positive number η and a gauge δ such that∣∣∣∣∣
k0∑

k=1

F (Ik)

∣∣∣∣∣ <
ε

2

3
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for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b] satisfying (4.1),
(4.2), (4.3) and (4.4). Therefore we obtain

k0∑
k=1

|F (Ik)| =

∣∣∣∣∣∣
∑

F (xk)>0

F (Ik)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

F (xk)<0

F (Ik)

∣∣∣∣∣∣
<

ε

2
+

ε

2
= ε

and hence F ∈ ACGC∗([a, b]). By Theorem 4.1 there exists d
dxF ([a, x]) for almost every

x ∈ [a, b], and there exists g ∈ (C∗)([a, b]) such that

F (I) = (C∗)
∫

I

g(x)dx

for any interval I ⊂ [a, b]. We show that g = f almost everywhere. To show this, we
consider a function

gn(x) =
{

f(x), if x ∈ Fn,
g(x), if x 6∈ Fn.

By [16, Theorem (5.1)] gn ∈ (D∗)(I) for any interval I ⊂ [a, b] and by (3)

(D∗)
∫

I

gn(x)dx = (D∗)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(D∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(C∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where {Jp | p = 1, 2, . . .} is the sequence of all connected components of Ii \ Fn. By
comparing the equation above with (5), we obtain

F (I) = (D∗)
∫

I

gn(x)dx.

Therefore we obtain d
dxF ([a, x]) = gn(x) = f(x) for almost every x ∈ Fn. By (2) we obtain

g(x) = d
dxF ([a, x]) = f(x) for almost every x ∈ [a, b].

By Theorems 5.1, 5.2 and 5.3 we obtain the following criteria for the C∗-integrability.

Theorem 5.4. A function f from an interval [a, b] into R is C∗-integrable if and only if
there exists an additive interval function F on [a, b] such that the pair of f and F satisfies
one of (A)C∗ , (B)C∗ , (C)C∗ and (D)C∗ . Moreover, if the pair of f and F satisfies one of
(A)C∗ , (B)C∗ , (C)C∗ and (D)C∗ , then

F (I) = (C∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].
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