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ABSTRACT. We know many results about colorability for single-valued maps. But
we know a few results about colorability for set-valued maps. In this paper we
generalize some results on colorability for single-valued maps to those for set-valued
maps. Especially, our main result is a generalization of E. K. van Douwen’s result,
which insists that every fixed-point free continuous closed map f : X — X with
sup{\f_l(x)| x € X} < oo on a finite-dimensional paracompact space X is col-
orable. In fact, we prove the following: Let X be a finite-dimensional paracompact
space and f : X — F,(X) a fixed-point free upper semi-continuous map, where F(X)
is the family of non-empty subsets of X with at most k elements. Suppose that
sup{|f ' (z)| : 2 € X} < oo and U{f(z) : & € F} is closed in X for any closed subset
F of X. Then f is colorable.

1 Introduction

All spaces under discussion are regular. We will discuss some set-valued versions of
results about colorability for single-valued maps.

We define some notions about colorability of single-valued maps as follows: Let X be a
subset of a space Y and f : X — Y a single-valued map. For a subset A of X, A is called a
color of fif AN f(A) =0 and a bright color of f if ar ﬂmy = (), where A" denotes the
closure of A in Y. Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f. Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f.

The following shows the essential meaning of colorability for single-valued maps:

Proposition 1.1. Let X be a closed subspace of a normal space Y and let f: X — Y be
a fized-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.

(2) The Stone-Cech extension Bf : BX — BY of f is fized-point free.

Also the following results for single-valued maps are known:

Proposition 1.2. Let X be a compact subspace of a space Y and let f : X — Y be a
fized-point free continuous map. Then f is colorable.

Theorem 1.3. ([5]) Let X be a closed subspace of a locally compact separable metrizable
space Y with dimY <n and let f : X — Y be a fixed-point free continuous map. Then, f
1s brightly colorable.
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Theorem 1.4. ([6]) Let X be a paracompact space with dim X < n and let f : X — X be
a fized-point free continuous closed map such that | = sup{|f‘1(:c)| ix € X} < oco. Then,
f is colorable with at most (I+ 1)(n+ 1)+ 1 colors.

Theorem 1.5. (/2]) Let X be a separable metrizable space with dim X < n and let f : X —
X be a fized-point free homeomorphism. Then, f is colorable with at most n 4+ 3 colors.

In this paper we generalize these results for single-valued maps to some results for set-
valued maps. To start our discussion we give a topology of the space consisting of closed
subsets (see [9] in detail).

For a space X we define the hyperspace 2% of X as the family of all non-empty closed
subsets of X and endow 2% with the Vietoris topology, which has

<U>:{A62X:ACUL{andAﬁU;é@foranyUEL{},

where U is a finite family of open subsets of X, as the basic open subsets of 2X. Also let
K(X) and Fy(X) for k € N denote the family of non-empty compact subsets of X and the
family of non-empty finite subsets of X with at most k elements, respectively.

Let X and Y be spaces and f : X — 2¥ a set-valued map. For A C X we write
f(A) = U{f(z) :x € A}. Alsofory € Y, BCY and B C 2¥ we write f~1(y) = {z €
X:yefo)), ffAB)={reX: f(x)NB#0} and f~1[B] ={x € X : f(z) € B}. Also
f: X — 2Y is upper semi-continuous if for x € X and an open set V of Y with f(z) C V,
FHHVY)(= {2’ € X : f(2') C V}) is open in X.

When X C Y we define some notions about colorability of set-valued maps as follows:
A map f: X — 2Y is called a fized-point free map if x ¢ f(x) for any 2 € X. For a
subset A of X, A is called a color of f if AN f(A) = 0 and called a bright color of f if

a° N my = (). Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f. Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f.

Any space X can be embedded to 2% by the inclusion ¢ : X — 2% defined by =+ {z}.
Hence all results for set-valued maps are also true for single-valued maps. The proofs are
modifications of proofs for single-valued versions in [5], [6] and [2].

Also let (A, B) be a pair of disjoint closed subsets of a space X. A subset S of X is
called a partition between A and B if there is a pair (U, V) of disjoint open subsets of X
such that ACU, BCV and X\S=UUV.

2 Results
First, we present a generalization of Proposition 1.2.

Proposition 2.1. Let X be a compact subspace of a space Y and let f : X — 2¥ be a
fized-point free and upper semi-continuous map. Then, f is colorable.

Proof. By compactness of X it is sufficient to show that for each = € X there is an open
neighborhood of z in X such that its closure is a color of f. Take € X. Then x ¢ f(x)
since f is fixed-point free. By regularity of Y there are two open neighborhoods U and V'
of z and f(z) in Y, respectively, such that U NV = (). Since f is upper semi-continuous,
FH{{V})] is open in X. By regularity of X there is an open neighborhood W of x in X
such that W C U N f~[({V'})]. This is as required. O
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Next, we consider a generalization of Theorem 1.3.

Theorem 2.2. ([4]) Let X be a closed subspace of R™ and let f : X — Fr(R™) be a
fized-point free continuous map. Then, f is brightly colorable.

Applying Theorem 2.2, we obtain a generalization of Theorem 1.3 as follows.

Theorem 2.3. Let X be a closed subset of a locally compact separable metrizable space Y
with dimY < n and let f: X — Fi(Y) be a fized-point free continuous map. Then, f is
brightly colorable.

Proof. We may assume that Y is closed in R?"*! since any n-dimensional locally compact
separable metrizable space can be embedded in R2"*! as a closed subset. Therefore, this
proof is completed by Theorem 2.2. O

Remark. For Theorem 2.2 we know that for n,k € N there is a minimal integer K (n, k)
such that every fixed point free continuous map f : X — Fi(R"™) is colorable with at most
K(n, k) colors (see [4]). So we can see that K(2n + 1, k) plays the same part for Theorem
2.3. But it is not clear about the exact values.

To show our main result we define the order and give a lemma.
Let X be a space and U a family of subsets of X and n € {0,1,2,...}. We define the
order of U, which is denoted by ord U, as follows:

ordU < n if sup{|{U€M:z€U}|:z€X}§n.

Remark. In many books ord U < n is defined by HU eEU x € U}| <n+1forany z € X.
But in this paper we use the above definition to see inequalities about the order easily.

Lemma 2.4. ([6]) Let X be a normal space. Let {G; : i =1,...,k} be a family of closed
subsets of X with ord{G; : i =1,....,k} <dimX + 1 and {W, : i =1,...,k} an open cover
of X such that G; C W; fori=1,...,k. Then, there is an open cover {V; : i =1,....k} of
X such that ord{V; :i =1,...k} <dimX +1 and G; CV; and V; C W; fori=1,....k.

The following theorem is a generalization of Theorem 1.4.

Theorem 2.5. Let X be a paracompact space with dim X < n and let f : X — Fp(X) be a
fized-point free upper semi-continuous map. Suppose that | = sup{|f’1(x)| S X} < 00
and f(F) is closed in X for any closed subset F' of X. Then, f is colorable with at most
(k+1D)(n+1)+1 colors.

Proof. First, fix x € X. Since f is fixed-point free, there are two open neighborhoods U,
and V, of r and f(x) in X, respectively, such that U, NV, = 0. f~'[({V:})] is an open
neighborhood of x in X since f is upper semi-continuous. Put W, = U, N f~[{V,})].
Then W, N f(W,) = 0.

Put W = {W, : x € X}. Then W covers X. So by paracompactness of X there is a
locally finite closed refinement A of W. List A as {A¢ : £ < k} for some ordinal number «.
Observe that A¢ U f(A¢) = 0 for each £ < k.
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Next, put p = (k+1)(n+1)+1 and for each £ < x we will construct inductively a closed
cover {Bg;:i=1,...,p} of A¢ in a way such that if

Cpi=|J Bey fori=1,...p

&<n
then for all n < k we have
(1) CpinNf(Cpi)=0 fori=1,..,p,
(2,) ord{C aii=1, ...,p} <n+1.

We note that C, ; is closed in X for each n < x and i =1, ..., p since A is locally finite.

The construction: For n =0 (1p) and (2¢) hold since Cy; = 0 for i = 1,..., p.

When constructing {Be; : @ = 1,...,p} for an n < k and each { < 1, we may assume
(1,) and (2,) to hold. Now we will construct {B,; :¢=1,...,p}. For i =1,...,p define

D; = fﬁl(cn,i) U f(Cn,i)-
Then D; is closed in X since f is upper semi-continuous. To see that
(a) {A,\D; : i =1,...,p} covers A,
we claim that ,
() Di = 0.
i=1
By (2,) and |f(z)| <k, |f~!(z)| < for all z € X we have

ord{f~HCy):i=1,....p} < k(n+1),
ord{f(Cy;):i=1,...,p} <l(n+1).

Indeed, for the first when we put f(z) = {z1, ..., } for each x € X, {{2 txj € Cn,i}‘ <n+1
for j =1,...,k by (2,). Hence

k
(o e O = |Ulizay € Cuid

|{Z NEIS On,i}|

M=

IN
it
5\ [l

+1).

Similarly, we can verify the second.
Thus, from the definition of D;

ord{D; :i=1,...p} <ord{f (C,:) U f(Cpi):i=1,..,p}
<kn+1)+i(n+1)
=(k+Dn+1).

So NY_, D; = 0 and (a) holds.
By (1)
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(b) CpinND;=0fori=1,..,p.

So because dim A,y < n, ord{4, NC,;:i=1,...,p} <n+1and 4,NC,,; C A,\D; for
i=1,...,p, by Lemma 2.4 there is a relatively open cover {O; : i =1, ...,p} of A, such that

(c) A,NC,,; C Oy, 0, C AN\D; fori=1,...p,
(d) ord{O; :i=1,..,p} <n+1.

Define B, ; = O; fori=1,...,p. Then, Cpt1,: =CyiUBy; = Cy 4 UO,; fori=1,..,p.
We check (1,+1) and (2,41). For (2,4+1) we obtain

ord{Cyt1,;:i=1,...p} =ord{C,; UO; : i = 1,...,p}
= ord{(Cy,\A,) U0, :i=1,..,p}
<n+1

by (2,), (d) and the first part of (c). For (1,41) it is sufficient to prove that

for i = 1,...,p. The first and fourth are trivial from (1,) and the property of A,. Also
By, N f7HCyi) =0 if and only if C,,; N f(B,;) = 0. Thus, the second and third hold by
the second part of (c). This completes the construction of Be ;.
Finally, define
C; = U Cpi fori=1,..p.

nN<k

Tt is easy to see that C = {C; : i = 1,...,p} is a closed cover of X consisting of colors of f.
Consequently, C is as required. O

When X is compact, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let X be a compact space with dim X < n and let f : X — Fp(X) be a fized-
point free and upper semi-continuous map. Suppose that | = Sup{|f_1(x)\ rx € X} < 00.
Then f is colorable with at most (k+1)(n+ 1)+ 1 colors.

Proof. By compactness of X, f(F) is closed in X for any closed subset F' of X. So this is
shown from Theorem 2.5. O

The numbers of colors in the above results are not sharp. Here we consider reducing the
numbers of colors.

Lemma 2.7. Let X be a separable metrizable space with dim X < n and let f : X — 2%
be an upper semi-continuous map such that f(F) is closed in X and dim f~*(F) = dim F’
for any closed subset F' of X. Let ¢ and ¢;(i =1,2,...... ) denote one of the map f and the
inclusion v. Assume that S = {S; : i € N} is a family of closed subsets of X such that

dim(@il (511) n---N Pir (SZIC)) <n-—k
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whenever i1 < --- < i and k =1,....n+ 1. Then for every pair (G, H) of disjoint closed
subsets of X there is a partition S between G and H in X such that

dim(wil (Sll) n---N (pik—l(sik—l) N QO(S)) <n-—k

whenever i1 < -+ <ip_1 andk=1,...n+ 1.

Proof. Put Xi = J{wi, (Si,) NN (Siy,) 11 < -+ <ig}lork=1,..,n. Write Xg = X.
Then X}, is an F,y-subset of X. By assumptions of & we have dim X < n — k. So there is
an F,-subset Z of X with dimZ = 0 and dim(X\Z) <n—k — 1 for k = 1,...,n. Since
f is upper semi-continuous, f~!(Z) is an F,-subset of X. By assumption of f we have
dim(Z U f=Y(Z)) = 0. Hence there is a partition S between G and H in X such that
SN(Zuf1(2)=0.

Then

Piy (Sil) n---N Soik—l(Sik—l) nsc kal\Z7
@iy (Siy) N N iy (Si ) N F(S) C X\ Z,

whenever i < --- < ig_1 and k =1,...,n + 1. Therefore,

dim((@s, (Si,) NN (Si_ ) Np(S)) <n—(k—-1) -1

=n—k.

So S is as required. O

Lemma 2.8. Let X be a separable metrizable space with dim X < n and let f : X — 2% be
an upper semi-continuous map such that f(F) is closed in X and dim f~*(F) = dim F =
dim f(F') for any closed subset F' of X. Let ¢ and @;(i = 1,2, ...... ) denote one of the map
f and the inclusion v. LetUd ={U; :i =1,...,m} be an open cover of X and K = {K,; :i =
1,...,m} be an closed shrinking of U. Then there is a closed cover L ={L; :i=1,...,m}
of X such that K; C L; CU; fori=1,...,m and

Piq (aLn) n---N Pint1 (8Lin+1) =0
whenever 1 < i1 < -+ <ipgp1 <M.

Proof. The proof will be done by induction.

First, we define Ly. Since dim X < n, there is a partition S; between K; and X\U; in
X such that dimS; < n — 1. By assumption of f we have dim f(S7) < n—1. Now X\S5; is
the disjoint union of two open subsets V7 and W; in X such that K; C V5 and X\U; C Wi.
Define L; = V;. Then 0L; C S and so dim p(9L;) <n — 1.

Next, assume that for some r € {1,...,m} L; is defined for ¢ = 1, ..., — 1 such that the
family {OL; : i = 1, ..., — 1} has the property

(*) dim(;, (0L, ) M-+ N @y, (0L, ) <n—k,

whenever 1 < 41 < -~ <1 <r—1and k = 1,...n+ 1. From Lemma 2.7 there is a
partition S, between K, and X\U, in X such that the property (*) holds for the family
{0L; :i=1,..,r —1} U{S,}. Now X\S, is the disjoint union of two open subsets V,. and
W, in X such that K, C V,. and X\U, C W,.. Define L, = V,.. Then 9L, C S, and so the
property () holds for {OL; : i =1,...,7}. This completes the construction of L;.
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Take 1 <4 <--- < ipy1 < m. Then
dim(@il (8[’21) n---N Pint1 (aLin+1)) <n-— (TL + 1) =-1

and so
Piq (aLil) n---N Pint1 (8Lin,+1) =0.

Consequently, £L ={L; :i=1,...,m} is as required. O

Lemma 2.9. ([2]) Let K = {K; : i = 1,...,k} be a finite closed cover of a space X.
Define L; = Kl\(Uz;ll K;) fori=1,...,m. Then L ={L; : i =1,...,k} has the following
properties:

(1) LsN Ly = OLs N OLy for s £ t.

(2) If OL;,N---NOL;,, # 0, then OK;,N---NIOK;, |, # 0 wheneverl <iy < -+ < i, <k.

The following theorem is a generalization of Theorem 1.5.

Theorem 2.10. Let X be a separable metrizable space with dim X < n and let f : X —
Fi(X) be a fized-point free upper semi-continuous map such that | = sup{|f*1(x)| tx €
X} < o0. Suppose that f(F) is closed in X and dim f~1(F) = dim F = dim f(F) for any
closed subset F' of X. Then f is colorable with at most kn +k + 1+ 1 colors.

Proof. f is colorable by Theorem 2.5. So there is a coloring A = {A4; :i=1,...,r} of f for
some r € N. Assume that r > kn + k + 1 + 1. Because A; and f(A4;) are disjoint closed
subsets of X for each ¢ =1, ..., and X is normal, there are two open neighborhoods U; and
V; of A; and f(A) in X, respectively, such that U; N V; = ) for each i = 1,...,7. Since f is
upper semi-continuous, f~[({V;})] is an open neighborhood of A; in X for each i =1,...,7.
Put B; = U; N f7H{{V;})] for each i = 1,...,7. Then B = {B;|i = 1,...,r} is an open cover
of X such that 4; C B; and B;N f(B;) =0 fori=1,...,7.

Define g : X — 2% by g(z) = f(f(z)) for € X. Since f is upper semi-continuous, g
is upper semi-continuous. For any closed subset F of X, g(F) = f(f(F)) and g~ '(F) =
F~YfYF)). Hence g(F) is closed in X and dim g~}(F) = dim F = dim g(F) by assump-
tions of f. These enable us to apply Lemma 2.8 as ¢ and ¢;(i = 1,2, ...... ) denote one of
the map g and the inclusion ¢. So there is a closed cover C = {C; : i = 1,...,r} of X such
that A, Cc C; € B; fori=1,...,r and

(ﬁ) Piy (6011) n---N Py i1 (acin+1) = ®7

whenever 1 < 4y < -+ < iyy; < 7. Define D; = Cl\(U;;ll C;)and let D ={D; : i =
1,...,7}. Observe that D is a coloring of f.

Take x € D, and put f~*(z) = {y1,..., s} and f(x) = {21, ..., zx}. Define m, p, and g
fora=1,...,1,b=1,....k as follows:

m = |{i: (f~H(z)U f(x)) N D; # 0},

p1={i:y1 € Di}l,

Pa = |{7’ : {yla -'-aya—l} ND; =0 and Ya € Dz}| (a > 2)3

g =i:f~Yz)NnD;=0and z; € D;}|,

@ ={i: (f (@) U{a1, s 2-1}) N D; = 0 and 2, € Di}| (b > 2).
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Without lost of generality we may assume that p, > 1, q, > 1fora=1,....,0,b=1,... k.
Note that no indices i overlap in the definition of p, and ¢, fora=1,....[,b=1,....k i.e.

By Lemma 2.9

Yo € 0C; for at least p, — 1 indices ¢,
zp € 0C; for at least ¢, — 1 indices 1,

fora=1,..,1,b=1,...k So

!
f(z) C g(dC;) for at least Z(pa — 1) indices 1.

a=1
Hence for b=1, ...,k

!
zp € p(0C;) for at least Z(pa — 1)+ (g — 1) indices 1.

a=1

By the property (f) for b=1,...,k

Since p, —1 >0 for a=1,...,1,
l k
m=> pat) @
a=1 b=1

l k
=Y a1 +1+> (@—1)+k
a=1 b=1
l

k
<3 (Y- D+l 1)) +

b=1 a=1

k
<> n+k+l
b=1
=kn+k+1

Now since 7 > kn + k 41+ 1, there is a j(z) € {1,...,r — 1} such that & ¢ f~'(Dj(,)) U
f(Djx))- Because f~(Dj,)) and f(Dj(,)) are closed in X, there is an open neighborhood
W, of z in X such that W, C By \(f ™ (D)) U f(Dj()))-

Put W = {W, : ¢ € D,}. By paracompactness of D, there is a locally finite closed
refinement K = {K; : s € S} of W, where S is an index set. Define ¢ : S — {1,...,r — 1}
as it satisfies that Ky C By \(f~'(Dy(s)) U f(Dy(s))). Put B = H{K, : j = ¢(s)} and
F;=D;jUE;forj=1,...,r—1. Then F = {F;:j=1,...,r—1} is a coloring of f consisting
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of r — 1 colors. In fact, since K is locally finite, F; is closed in X and so Fj is closed in X.
To show that F} is a color of f for each j = 1,...,7 — 1 we check the followings:

for j = 1,...,r — 1. The second can be replaced by E; N f~1(D;) = 0. Therefore, all hold
since D is the coloring of f and E; C B, \(f~1(D;) U f(D;)).

We have reduced the number of colors by one, under the assumption that this number
is greater than kn 4+ k + [ + 1. Inductively, the coloring of f can be reduced to a coloring
of f with kn+ k+ 1+ 1 colors. O

When X is compact, Theorem 2.10 implies the following corollary by the same way as
Corollary 2.6.

Corollary 2.11. Let X be a compact metrizable space with dim X < n and let f : X —
Fi(X) be a fized-point free upper semi-continuous map such that | = sup{|f~(z)| : = €
X} < oo. Suppose that dim f~(F) = dim F = dim f(F) for any closed subset F of X.
Then f is colorable with at most kn + k + 1+ 1 colors.

We would like to finish the paper by mentioning a relation between colorability and the
Stone-Cech compactification. Let X be a normal space. Then the Stone-Cech compacti-
fication X of X is equivalent to the Wallman compactification of X with respect to the
Wallman base consisting of all closed subsets of X. Hence FXAT™ =0 for any pair

(F,G) of disjoint closed subsets of X. Also if F' is closed in X, SF = FBX. So we may
assume that gF C gX.
The following is a generalization of Proposition 1.1.

Proposition 2.12. Let X be a closed subspace of a normal space Y and let f : X — K(Y')
be a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.

(2) The Stone-Cech extension Bf : BX — 2°Y of f is fived-point free.
Proof. We will show that (1) implies (2). Since 2°Y is compact and K(Y) C 28Y, there is
a continuous extension Sf : X — 28V of f. Take z € X to show that 3f is fixed-point
free . By (1) there is a bright coloring C of f. Then @ﬁy is a finite cover of X and hence
there is a C € C such that z € O . Because C is a bright color of f, C'N f(C)Y = (. By

» — ———BY
the property of the Stone-Cech compactification ™ n f (C’)ﬁ = (). By continuity of f

Bf(z) c I c BIE) <T@y

Thus, z ¢ Gf(2).

Next, we will show that (2) implies (1). Since Sf is fixed-point free continuous and X
is compact, Gf is colorable from Proposition 2.1. So there is a coloring C of Sf. Then the
restriction of C to X is as required. O

This shows that colorability for set-valued continuous maps with compact values is
similar to that for single-valued continuous maps.
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