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Abstract. We know many results about colorability for single-valued maps. But
we know a few results about colorability for set-valued maps. In this paper we
generalize some results on colorability for single-valued maps to those for set-valued
maps. Especially, our main result is a generalization of E. K. van Douwen’s result,
which insists that every fixed-point free continuous closed map f : X → X with
sup

˘

|f−1(x)| : x ∈ X
¯

< ∞ on a finite-dimensional paracompact space X is col-
orable. In fact, we prove the following: Let X be a finite-dimensional paracompact
space and f : X → Fk(X) a fixed-point free upper semi-continuous map, where Fk(X)
is the family of non-empty subsets of X with at most k elements. Suppose that
sup

˘

|f−1(x)| : x ∈ X
¯

< ∞ and
S

{f(x) : x ∈ F} is closed in X for any closed subset
F of X. Then f is colorable.

1 Introduction
All spaces under discussion are regular. We will discuss some set-valued versions of

results about colorability for single-valued maps.
We define some notions about colorability of single-valued maps as follows: Let X be a

subset of a space Y and f : X → Y a single-valued map. For a subset A of X, A is called a
color of f if A∩ f(A) = ∅ and a bright color of f if A

Y ∩ f(A)
Y

= ∅, where A
Y

denotes the
closure of A in Y . Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f . Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f .

The following shows the essential meaning of colorability for single-valued maps:

Proposition 1.1. Let X be a closed subspace of a normal space Y and let f : X → Y be
a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.
(2) The Stone-Čech extension βf : βX → βY of f is fixed-point free.

Also the following results for single-valued maps are known:

Proposition 1.2. Let X be a compact subspace of a space Y and let f : X → Y be a
fixed-point free continuous map. Then f is colorable.

Theorem 1.3. ([5]) Let X be a closed subspace of a locally compact separable metrizable
space Y with dim Y ≤ n and let f : X → Y be a fixed-point free continuous map. Then, f
is brightly colorable.
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Theorem 1.4. ([6]) Let X be a paracompact space with dimX ≤ n and let f : X → X be
a fixed-point free continuous closed map such that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞. Then,

f is colorable with at most (l + 1)(n + 1) + 1 colors.

Theorem 1.5. ([2]) Let X be a separable metrizable space with dimX ≤ n and let f : X →
X be a fixed-point free homeomorphism. Then, f is colorable with at most n + 3 colors.

In this paper we generalize these results for single-valued maps to some results for set-
valued maps. To start our discussion we give a topology of the space consisting of closed
subsets (see [9] in detail).

For a space X we define the hyperspace 2X of X as the family of all non-empty closed
subsets of X and endow 2X with the Vietoris topology, which has

〈 U 〉 =
{

A ∈ 2X : A ⊂
∪

U and A ∩ U 6= ∅ for any U ∈ U
}

,

where U is a finite family of open subsets of X, as the basic open subsets of 2X . Also let
K(X) and Fk(X) for k ∈ N denote the family of non-empty compact subsets of X and the
family of non-empty finite subsets of X with at most k elements, respectively.

Let X and Y be spaces and f : X → 2Y a set-valued map. For A ⊂ X we write
f(A) =

∪
{f(x) : x ∈ A}. Also for y ∈ Y , B ⊂ Y and B ⊂ 2Y we write f−1(y) = {x ∈

X : y ∈ f(x)}, f−1(B) = {x ∈ X : f(x) ∩ B 6= ∅} and f−1[B] = {x ∈ X : f(x) ∈ B}. Also
f : X → 2Y is upper semi-continuous if for x ∈ X and an open set V of Y with f(x) ⊂ V ,
f−1[〈{V }〉](= {x′ ∈ X : f(x′) ⊂ V }) is open in X.

When X ⊂ Y we define some notions about colorability of set-valued maps as follows:
A map f : X → 2Y is called a fixed-point free map if x /∈ f(x) for any x ∈ X. For a
subset A of X, A is called a color of f if A ∩ f(A) = ∅ and called a bright color of f if

A
Y ∩ f(A)

Y
= ∅. Also we call a finite closed cover of X consisting of colors of f a coloring

of f and we say that f is colorable if there is a coloring of f . Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f .

Any space X can be embedded to 2X by the inclusion ι : X → 2X defined by x 7→ {x}.
Hence all results for set-valued maps are also true for single-valued maps. The proofs are
modifications of proofs for single-valued versions in [5], [6] and [2].

Also let (A,B) be a pair of disjoint closed subsets of a space X. A subset S of X is
called a partition between A and B if there is a pair (U, V ) of disjoint open subsets of X
such that A ⊂ U , B ⊂ V and X\S = U ∪ V .

2 Results
First, we present a generalization of Proposition 1.2.

Proposition 2.1. Let X be a compact subspace of a space Y and let f : X → 2Y be a
fixed-point free and upper semi-continuous map. Then, f is colorable.

Proof. By compactness of X it is sufficient to show that for each x ∈ X there is an open
neighborhood of x in X such that its closure is a color of f . Take x ∈ X. Then x /∈ f(x)
since f is fixed-point free. By regularity of Y there are two open neighborhoods U and V
of x and f(x) in Y , respectively, such that U ∩ V = ∅. Since f is upper semi-continuous,
f−1[〈{V }〉] is open in X. By regularity of X there is an open neighborhood W of x in X
such that W ⊂ U ∩ f−1[〈{V }〉]. This is as required.
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Next, we consider a generalization of Theorem 1.3.

Theorem 2.2. ([4]) Let X be a closed subspace of Rn and let f : X → Fk(Rn) be a
fixed-point free continuous map. Then, f is brightly colorable.

Applying Theorem 2.2, we obtain a generalization of Theorem 1.3 as follows.

Theorem 2.3. Let X be a closed subset of a locally compact separable metrizable space Y
with dim Y ≤ n and let f : X → Fk(Y ) be a fixed-point free continuous map. Then, f is
brightly colorable.

Proof. We may assume that Y is closed in R2n+1 since any n-dimensional locally compact
separable metrizable space can be embedded in R2n+1 as a closed subset. Therefore, this
proof is completed by Theorem 2.2.

Remark. For Theorem 2.2 we know that for n, k ∈ N there is a minimal integer K(n, k)
such that every fixed point free continuous map f : X → Fk(Rn) is colorable with at most
K(n, k) colors (see [4]). So we can see that K(2n + 1, k) plays the same part for Theorem
2.3. But it is not clear about the exact values.

To show our main result we define the order and give a lemma.
Let X be a space and U a family of subsets of X and n ∈ {0, 1, 2, ...}. We define the

order of U , which is denoted by ord U , as follows:

ordU ≤ n if sup
{∣∣{U ∈ U : x ∈ U

}∣∣ : x ∈ X
}
≤ n.

Remark. In many books ord U ≤ n is defined by
∣∣{U ∈ U : x ∈ U

}∣∣ ≤ n + 1 for any x ∈ X.
But in this paper we use the above definition to see inequalities about the order easily.

Lemma 2.4. ([6]) Let X be a normal space. Let {Gi : i = 1, ..., k} be a family of closed
subsets of X with ord{Gi : i = 1, ..., k} ≤ dim X + 1 and {Wi : i = 1, ..., k} an open cover
of X such that Gi ⊂ Wi for i = 1, ..., k. Then, there is an open cover {Vi : i = 1, ..., k} of
X such that ord{Vi : i = 1, ..., k} ≤ dimX + 1 and Gi ⊂ Vi and Vi ⊂ Wi for i = 1, ..., k.

The following theorem is a generalization of Theorem 1.4.

Theorem 2.5. Let X be a paracompact space with dim X ≤ n and let f : X → Fk(X) be a
fixed-point free upper semi-continuous map. Suppose that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞

and f(F ) is closed in X for any closed subset F of X. Then, f is colorable with at most
(k + l)(n + 1) + 1 colors.

Proof. First, fix x ∈ X. Since f is fixed-point free, there are two open neighborhoods Ux

and Vx of x and f(x) in X, respectively, such that Ux ∩ Vx = ∅. f−1[〈{Vx}〉] is an open
neighborhood of x in X since f is upper semi-continuous. Put Wx = Ux ∩ f−1[〈{Vx}〉].
Then Wx ∩ f(Wx) = ∅.

Put W = {Wx : x ∈ X}. Then W covers X. So by paracompactness of X there is a
locally finite closed refinement A of W. List A as {Aξ : ξ < κ} for some ordinal number κ.
Observe that Aξ ∪ f(Aξ) = ∅ for each ξ < κ.
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Next, put p = (k+ l)(n+1)+1 and for each ξ < κ we will construct inductively a closed
cover {Bξ,i : i = 1, ..., p} of Aξ in a way such that if

Cη,i =
∪
ξ<η

Bξ,i for i = 1, ..., p

then for all η < κ we have

(1η) Cη,i ∩ f(Cη,i) = ∅ for i = 1, ..., p,

(2η) ord
{
Cη,i : i = 1, ..., p

}
≤ n + 1.

We note that Cη,i is closed in X for each η < κ and i = 1, ..., p since A is locally finite.
The construction: For η = 0 (10) and (20) hold since C0,i = ∅ for i = 1, ..., p.
When constructing {Bξ,i : i = 1, ..., p} for an η < κ and each ξ < η, we may assume

(1η) and (2η) to hold. Now we will construct {Bη,i : i = 1, ..., p}. For i = 1, ..., p define

Di = f−1(Cη,i) ∪ f(Cη,i).

Then Di is closed in X since f is upper semi-continuous. To see that

(a) {Aη\Di : i = 1, ..., p} covers Aη

we claim that
p∩

i=1

Di = ∅.

By (2η) and |f(x)| ≤ k, |f−1(x)| ≤ l for all x ∈ X we have

ord{f−1(Cη,i) : i = 1, ..., p} ≤ k(n + 1),
ord{f(Cη,i) : i = 1, ..., p} ≤ l(n + 1).

Indeed, for the first when we put f(x) = {x1, ..., xk} for each x ∈ X,
∣∣{i : xj ∈ Cη,i}

∣∣ ≤ n+1
for j = 1, ..., k by (2η). Hence

∣∣{i : x ∈ f−1(Cη,i)}
∣∣ =

∣∣∣ k∪
j=1

{i : xj ∈ Cη,i}
∣∣∣

≤
k∑

j=1

∣∣{i : xj ∈ Cη,i}
∣∣

≤ k(n + 1).

Similarly, we can verify the second.
Thus, from the definition of Di

ord{Di : i = 1, ..., p} ≤ ord{f−1(Cη,i) ∪ f(Cη,i) : i = 1, ..., p}
≤ k(n + 1) + l(n + 1)
= (k + l)(n + 1).

So
∩p

i=1 Di = ∅ and (a) holds.
By (1η)
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(b) Cη,i ∩ Di = ∅ for i = 1, ..., p.

So because dim Aη ≤ n, ord{Aη ∩Cη,i : i = 1, ..., p} ≤ n + 1 and Aη ∩Cη,i ⊂ Aη\Di for
i = 1, ..., p, by Lemma 2.4 there is a relatively open cover {Oi : i = 1, ..., p} of Aη such that

(c) Aη ∩ Cη,i ⊂ Oi, Oi ⊂ Aη\Di for i = 1, ..., p ,

(d) ord
{
Oi : i = 1, ..., p

}
≤ n + 1.

Define Bη,i = Oi for i = 1, ..., p. Then, Cη+1,i = Cη,i ∪ Bη,i = Cη,i ∪ Oi for i = 1, ..., p.
We check (1η+1) and (2η+1). For (2η+1) we obtain

ord{Cη+1,i : i = 1, ..., p} = ord{Cη,i ∪ Oi : i = 1, ..., p}
= ord{(Cη,i\Aη) ∪ Oi : i = 1, ..., p}
≤ n + 1

by (2η), (d) and the first part of (c). For (1η+1) it is sufficient to prove that

Cη,i ∩ f(Cη,i) = ∅,
Cη,i ∩ f(Bη,i) = ∅,
Bη,i ∩ f(Cη,i) = ∅,
Bη,i ∩ f(Bη,i) = ∅

for i = 1, ..., p. The first and fourth are trivial from (1η) and the property of Aη. Also
Bη,i ∩ f−1(Cη,i) = ∅ if and only if Cη,i ∩ f(Bη,i) = ∅. Thus, the second and third hold by
the second part of (c). This completes the construction of Bξ,i.

Finally, define
Ci =

∪
η<κ

Cη,i for i = 1, ..., p.

It is easy to see that C = {Ci : i = 1, ..., p} is a closed cover of X consisting of colors of f .
Consequently, C is as required.

When X is compact, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let X be a compact space with dim X ≤ n and let f : X → Fk(X) be a fixed-
point free and upper semi-continuous map. Suppose that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞.

Then f is colorable with at most (k + l)(n + 1) + 1 colors.

Proof. By compactness of X, f(F ) is closed in X for any closed subset F of X. So this is
shown from Theorem 2.5.

The numbers of colors in the above results are not sharp. Here we consider reducing the
numbers of colors.

Lemma 2.7. Let X be a separable metrizable space with dim X ≤ n and let f : X → 2X

be an upper semi-continuous map such that f(F ) is closed in X and dim f−1(F ) = dimF
for any closed subset F of X. Let ϕ and ϕi(i = 1, 2, ......) denote one of the map f and the
inclusion ι. Assume that S = {Si : i ∈ N} is a family of closed subsets of X such that

dim(ϕi1(Si1) ∩ · · · ∩ ϕik
(Sik

)) ≤ n − k
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whenever i1 < · · · < ik and k = 1, ..., n + 1. Then for every pair (G,H) of disjoint closed
subsets of X there is a partition S between G and H in X such that

dim(ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ ϕ(S)) ≤ n − k

whenever i1 < · · · < ik−1 and k = 1, ..., n + 1.

Proof. Put Xk =
∪
{ϕi1(Si1)∩· · ·∩ϕik

(Sik
) : i1 < · · · < ik} for k = 1, ..., n. Write X0 = X.

Then Xk is an Fσ-subset of X. By assumptions of S we have dimXk ≤ n − k. So there is
an Fσ-subset Z of X with dimZ = 0 and dim(Xk\Z) ≤ n − k − 1 for k = 1, ..., n. Since
f is upper semi-continuous, f−1(Z) is an Fσ-subset of X. By assumption of f we have
dim(Z ∪ f−1(Z)) = 0. Hence there is a partition S between G and H in X such that
S ∩ (Z ∪ f−1(Z)) = ∅.

Then

ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ S ⊂ Xk−1\Z,

ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ f(S) ⊂ Xk−1\Z,

whenever i1 < · · · < ik−1 and k = 1, ..., n + 1. Therefore,

dim((ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ ϕ(S)) ≤ n − (k − 1) − 1
= n − k.

So S is as required.

Lemma 2.8. Let X be a separable metrizable space with dim X ≤ n and let f : X → 2X be
an upper semi-continuous map such that f(F ) is closed in X and dim f−1(F ) = dim F =
dim f(F ) for any closed subset F of X. Let ϕ and ϕi(i = 1, 2, ......) denote one of the map
f and the inclusion ι. Let U = {Ui : i = 1, ...,m} be an open cover of X and K = {Ki : i =
1, ...,m} be an closed shrinking of U . Then there is a closed cover L = {Li : i = 1, ...,m}
of X such that Ki ⊂ Li ⊂ Ui for i = 1, ...,m and

ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1) = ∅

whenever 1 ≤ i1 < · · · < in+1 ≤ m.

Proof. The proof will be done by induction.
First, we define L1. Since dimX ≤ n, there is a partition S1 between K1 and X\U1 in

X such that dim S1 ≤ n− 1. By assumption of f we have dim f(S1) ≤ n− 1. Now X\S1 is
the disjoint union of two open subsets V1 and W1 in X such that K1 ⊂ V1 and X\U1 ⊂ W1.
Define L1 = V1. Then ∂L1 ⊂ S1 and so dim ϕ(∂L1) ≤ n − 1.

Next, assume that for some r ∈ {1, ...,m} Li is defined for i = 1, ..., r − 1 such that the
family {∂Li : i = 1, ..., r − 1} has the property

(∗) dim(ϕi1(∂Li1) ∩ · · · ∩ ϕik
(∂Lik

)) ≤ n − k,

whenever 1 ≤ i1 < · · · < ik ≤ r − 1 and k = 1, ..., n + 1. From Lemma 2.7 there is a
partition Sr between Kr and X\Ur in X such that the property (∗) holds for the family
{∂Li : i = 1, ..., r − 1} ∪ {Sr}. Now X\Sr is the disjoint union of two open subsets Vr and
Wr in X such that Kr ⊂ Vr and X\Ur ⊂ Wr. Define Lr = Vr. Then ∂Lr ⊂ Sr and so the
property (∗) holds for {∂Li : i = 1, ..., r}. This completes the construction of Li.
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Take 1 ≤ i1 < · · · < in+1 ≤ m. Then

dim(ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1)) ≤ n − (n + 1) = −1

and so
ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1) = ∅.

Consequently, L = {Li : i = 1, ...,m} is as required.

Lemma 2.9. ([2]) Let K = {Ki : i = 1, ..., k} be a finite closed cover of a space X.
Define Li = Ki\(

∪i−1
j=1 Kj) for i = 1, ...,m. Then L = {Li : i = 1, ..., k} has the following

properties:
(1) Ls ∩ Lt = ∂Ls ∩ ∂Lt for s 6= t.
(2) If ∂Li1∩· · ·∩∂Lim 6= ∅, then ∂Ki1∩· · ·∩∂Kim−1 6= ∅ whenever 1 ≤ i1 < · · · < im ≤ k.

The following theorem is a generalization of Theorem 1.5.

Theorem 2.10. Let X be a separable metrizable space with dim X ≤ n and let f : X →
Fk(X) be a fixed-point free upper semi-continuous map such that l = sup

{
|f−1(x)| : x ∈

X
}

< ∞. Suppose that f(F ) is closed in X and dim f−1(F ) = dimF = dim f(F ) for any
closed subset F of X. Then f is colorable with at most kn + k + l + 1 colors.

Proof. f is colorable by Theorem 2.5. So there is a coloring A = {Ai : i = 1, ..., r} of f for
some r ∈ N. Assume that r > kn + k + l + 1. Because Ai and f(Ai) are disjoint closed
subsets of X for each i = 1, ..., r and X is normal, there are two open neighborhoods Ui and
Vi of Ai and f(A) in X, respectively, such that Ui ∩ Vi = ∅ for each i = 1, ..., r. Since f is
upper semi-continuous, f−1[〈{Vi}〉] is an open neighborhood of Ai in X for each i = 1, ..., r.
Put Bi = Ui ∩ f−1[〈{Vi}〉] for each i = 1, ..., r. Then B = {Bi|i = 1, ..., r} is an open cover
of X such that Ai ⊂ Bi and Bi ∩ f(Bi) = ∅ for i = 1, ..., r.

Define g : X → 2X by g(x) = f(f(x)) for x ∈ X. Since f is upper semi-continuous, g
is upper semi-continuous. For any closed subset F of X, g(F ) = f(f(F )) and g−1(F ) =
f−1(f−1(F )). Hence g(F ) is closed in X and dim g−1(F ) = dim F = dim g(F ) by assump-
tions of f . These enable us to apply Lemma 2.8 as ϕ and ϕi(i = 1, 2, ......) denote one of
the map g and the inclusion ι. So there is a closed cover C = {Ci : i = 1, ..., r} of X such
that Ai ⊂ Ci ⊂ Bi for i = 1, ..., r and

(]) ϕi1(∂Ci1) ∩ · · · ∩ ϕin+1(∂Cin+1) = ∅,

whenever 1 ≤ i1 < · · · < in+1 ≤ r. Define Di = Ci\(
∪i−1

j=1 Cj) and let D = {Di : i =
1, ..., r}. Observe that D is a coloring of f .

Take x ∈ Dr and put f−1(x) = {y1, ..., yl} and f(x) = {z1, ..., zk}. Define m, pa and qb

for a = 1, ..., l, b = 1, ..., k as follows:

m = |{i : (f−1(x) ∪ f(x)) ∩ Di 6= ∅}|,
p1 = |{i : y1 ∈ Di}|,
pa = |{i : {y1, ..., ya−1} ∩ Di = ∅ and ya ∈ Di}| (a ≥ 2),
q1 = |{i : f−1(x) ∩ Di = ∅ and z1 ∈ Di}|,
qb = |{i : (f−1(x) ∪ {z1, ..., zb−1}) ∩ Di = ∅ and zb ∈ Di}| (b ≥ 2).
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Without lost of generality we may assume that pa ≥ 1, qb ≥ 1 for a = 1, ..., l, b = 1, ..., k.
Note that no indices i overlap in the definition of pa and qb for a = 1, ..., l, b = 1, ..., k i.e.

m =
l∑

a=1

pa +
k∑

b=1

qb

By Lemma 2.9

ya ∈ ∂Ci for at least pa − 1 indices i,

zb ∈ ∂Ci for at least qb − 1 indices i,

for a = 1, ..., l, b = 1, ..., k. So

f(x) ⊂ g(∂Ci) for at least
l∑

a=1

(pa − 1) indices i.

Hence for b = 1, ..., k

zb ∈ ϕ(∂Ci) for at least
l∑

a=1

(pa − 1) + (qb − 1) indices i.

By the property (]) for b = 1, ..., k

l∑
a=1

(pa − 1) + (qb − 1) ≤ n.

Since pa − 1 ≥ 0 for a = 1, ..., l,

m =
l∑

a=1

pa +
k∑

b=1

qb

=
l∑

a=1

(pa − 1) + l +
k∑

b=1

(qb − 1) + k

≤
k∑

b=1

( l∑
a=1

(pa − 1) + (qb − 1)
)

+ k + l

≤
k∑

b=1

n + k + l

= kn + k + l.

Now since r > kn + k + l + 1, there is a j(x) ∈ {1, ..., r − 1} such that x /∈ f−1(Dj(x))∪
f(Dj(x)). Because f−1(Dj(x)) and f(Dj(x)) are closed in X, there is an open neighborhood
Wx of x in X such that Wx ⊂ Br\(f−1(Dj(x)) ∪ f(Dj(x))).

Put W = {Wx : x ∈ Dr}. By paracompactness of Dr there is a locally finite closed
refinement K = {Ks : s ∈ S} of W, where S is an index set. Define ψ : S → {1, ..., r − 1}
as it satisfies that Ks ⊂ Br\(f−1(Dψ(s)) ∪ f(Dψ(s))). Put Ej =

∪
{Ks : j = ψ(s)} and

Fj = Dj ∪Ej for j = 1, ..., r−1. Then F = {Fj : j = 1, ..., r−1} is a coloring of f consisting
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of r − 1 colors. In fact, since K is locally finite, Ej is closed in X and so Fj is closed in X.
To show that Fj is a color of f for each j = 1, ..., r − 1 we check the followings:

Dj ∩ f(Dj) = ∅,
Dj ∩ f(Ej) = ∅,
Ej ∩ f(Dj) = ∅,
Ej ∩ f(Ej) = ∅

for j = 1, ..., r − 1. The second can be replaced by Ej ∩ f−1(Dj) = ∅. Therefore, all hold
since D is the coloring of f and Ej ⊂ Br\(f−1(Dj) ∪ f(Dj)).

We have reduced the number of colors by one, under the assumption that this number
is greater than kn + k + l + 1. Inductively, the coloring of f can be reduced to a coloring
of f with kn + k + l + 1 colors.

When X is compact, Theorem 2.10 implies the following corollary by the same way as
Corollary 2.6.

Corollary 2.11. Let X be a compact metrizable space with dim X ≤ n and let f : X →
Fk(X) be a fixed-point free upper semi-continuous map such that l = sup

{
|f−1(x)| : x ∈

X
}

< ∞. Suppose that dim f−1(F ) = dimF = dim f(F ) for any closed subset F of X.
Then f is colorable with at most kn + k + l + 1 colors.

We would like to finish the paper by mentioning a relation between colorability and the
Stone-Čech compactification. Let X be a normal space. Then the Stone-Čech compacti-
fication βX of X is equivalent to the Wallman compactification of X with respect to the
Wallman base consisting of all closed subsets of X. Hence F

βX ∩ G
βX

= ∅ for any pair
(F,G) of disjoint closed subsets of X. Also if F is closed in X, βF = F

βX
. So we may

assume that βF ⊂ βX.
The following is a generalization of Proposition 1.1.

Proposition 2.12. Let X be a closed subspace of a normal space Y and let f : X → K(Y )
be a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.
(2) The Stone-Čech extension βf : βX → 2βY of f is fixed-point free.

Proof. We will show that (1) implies (2). Since 2βY is compact and K(Y ) ⊂ 2βY , there is
a continuous extension βf : βX → 2βY of f . Take z ∈ βX to show that βf is fixed-point
free . By (1) there is a bright coloring C of f . Then CβY

is a finite cover of βX and hence

there is a C ∈ C such that z ∈ C
βY

. Because C is a bright color of f , C ∩ f(C)
Y

= ∅. By

the property of the Stone-Čech compactification C
βY ∩ f(C)

βY
= ∅. By continuity of f

βf(z) ⊂ βf(C
βY

) ⊂ βf(C)
βY

⊂ f(C)
βY

.

Thus, z /∈ βf(z).
Next, we will show that (2) implies (1). Since βf is fixed-point free continuous and βX

is compact, βf is colorable from Proposition 2.1. So there is a coloring C of βf . Then the
restriction of C to X is as required.

This shows that colorability for set-valued continuous maps with compact values is
similar to that for single-valued continuous maps.



10 A. EBISAWA and H. KATO

References

[1] J. W. Alexander, Order sets, complexes and the problem of compactification, Proc. Natl.
Acad. Sci., 25 (1939), 296-298.

[2] J. M. Aarts, R. J. Fokkink and H. Vermeer, V ariations on a theorem of Lusternik and
Schnirelmann, Topology, 35 (1996), 1051-1056.

[3] J. M. Aarts and T. Nishiura, Dimension and extensions, North-Holland Publishing Co.,
Amsterdam, (1992).

[4] R. Z. Buzyakova, On multivalued fixed-point free maps on Rn, Proc. Amer. Math. Soc.,
140 (2012), 2929-2936.

[5] R. Z. Buzyakova and A. Chigogidze, Fixed-point free maps of Euclidean spaces, Fund.
Math., 212 (2011), 1-16.

[6] E. K. van Douwen, βX and fixed-point free maps, Topology Appl., 51 (1993), 191-195.

[7] R. Engelking, General Topology, PWN, Warszawa, (1977).

[8] O. Frink, Topology in lattices, Trans. Amer. Math. Soc., 51 (1941), 569-582.

[9] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 7 (1951), 152-182.

[10] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Pub-
lishing Co., Amsterdam, (2001).

Communicated by Yasunao Hattori

Atsushi Ebisawa Hisao Kato
Institute of Mathematics Institute of Mathematics
University of Tsukuba University of Tsukuba
Ibaraki 305-8571, Japan Ibaraki 305-8571, Japan
E-mail adress: ebisawa554@gmail.com E-mail adress: hkato@math.tsukuba.ac.jp


