COLORINGS FOR SET-VALUED MAPS

Atsushi Ebisawa and Hisao Kato

Received March 28, 2014; revised November 27, 2014

ABSTRACT. We know many results about colorability for single-valued maps. But we know a few results about colorability for set-valued maps. In this paper we generalize some results on colorability for single-valued maps to those for set-valued maps. Especially, our main result is a generalization of E. K. van Douwen's result, which insists that every fixed-point free continuous closed map $f: X \to X$ with $\sup\{|f^{-1}(x)| : x \in X\} < \infty$ on a finite-dimensional paracompact space X is colorable. In fact, we prove the following: Let X be a finite-dimensional paracompact space and $f: X \to \mathcal{F}_k(X)$ a fixed-point free upper semi-continuous map, where $\mathcal{F}_k(X)$ is the family of non-empty subsets of X with at most k elements. Suppose that $\sup\{|f^{-1}(x)| : x \in X\} < \infty$ and $\bigcup\{f(x) : x \in F\}$ is closed in X for any closed subset F of X. Then f is colorable.

1 Introduction

All spaces under discussion are regular. We will discuss some set-valued versions of results about colorability for single-valued maps.

We define some notions about colorability of single-valued maps as follows: Let X be a subset of a space Y and $f: X \to Y$ a single-valued map. For a subset A of X, A is called a color of f if $A \cap f(A) = \emptyset$ and a bright color of f if $\overline{A}^Y \cap \overline{f(A)}^Y = \emptyset$, where \overline{A}^Y denotes the closure of A in Y. Also we call a finite closed cover of X consisting of colors of f a coloring of f and we say that f is colorable if there is a coloring of f. Similarly, we define a bright coloring of f and say that f is brightly colorable if there is a bright coloring of f.

The following shows the essential meaning of colorability for single-valued maps:

Proposition 1.1. Let X be a closed subspace of a normal space Y and let $f : X \to Y$ be a fixed-point free continuous map. Then, the following are equivalent:

- (1) f is brightly colorable.
- (2) The Stone-Čech extension $\beta f : \beta X \to \beta Y$ of f is fixed-point free.

Also the following results for single-valued maps are known:

Proposition 1.2. Let X be a compact subspace of a space Y and let $f : X \to Y$ be a fixed-point free continuous map. Then f is colorable.

Theorem 1.3. ([5]) Let X be a closed subspace of a locally compact separable metrizable space Y with dim $Y \leq n$ and let $f: X \to Y$ be a fixed-point free continuous map. Then, f is brightly colorable.

²⁰¹⁴ Msthematics Subject Classification. 54F45, 54C60, 54H25.

Key words and phrases. set-valued map, color, fixed-point free, extension.

Theorem 1.4. ([6]) Let X be a paracompact space with dim $X \leq n$ and let $f : X \to X$ be a fixed-point free continuous closed map such that $l = \sup\{|f^{-1}(x)| : x \in X\} < \infty$. Then, f is colorable with at most (l+1)(n+1) + 1 colors.

Theorem 1.5. ([2]) Let X be a separable metrizable space with dim $X \leq n$ and let $f : X \to X$ be a fixed-point free homeomorphism. Then, f is colorable with at most n + 3 colors.

In this paper we generalize these results for single-valued maps to some results for setvalued maps. To start our discussion we give a topology of the space consisting of closed subsets (see [9] in detail).

For a space X we define the hyperspace 2^X of X as the family of all non-empty closed subsets of X and endow 2^X with the Vietoris topology, which has

$$\langle \mathcal{U} \rangle = \left\{ A \in 2^X : A \subset \bigcup \mathcal{U} \text{ and } A \cap U \neq \emptyset \text{ for any } U \in \mathcal{U} \right\},$$

where \mathcal{U} is a finite family of open subsets of X, as the basic open subsets of 2^X . Also let $\mathcal{K}(X)$ and $\mathcal{F}_k(X)$ for $k \in \mathbb{N}$ denote the family of non-empty compact subsets of X and the family of non-empty finite subsets of X with at most k elements, respectively.

Let X and Y be spaces and $f: X \to 2^Y$ a set-valued map. For $A \subset X$ we write $f(A) = \bigcup \{f(x) : x \in A\}$. Also for $y \in Y$, $B \subset Y$ and $\mathcal{B} \subset 2^Y$ we write $f^{-1}(y) = \{x \in X : y \in f(x)\}, f^{-1}(B) = \{x \in X : f(x) \cap B \neq \emptyset\}$ and $f^{-1}[\mathcal{B}] = \{x \in X : f(x) \in \mathcal{B}\}$. Also $f: X \to 2^Y$ is upper semi-continuous if for $x \in X$ and an open set V of Y with $f(x) \subset V$, $f^{-1}[\langle \{V\}\rangle][=\{x' \in X : f(x') \subset V\})$ is open in X.

When $X \subset Y$ we define some notions about colorability of set-valued maps as follows: A map $f : X \to 2^Y$ is called a *fixed-point free* map if $x \notin f(x)$ for any $x \in X$. For a subset A of X, A is called a *color* of f if $A \cap f(A) = \emptyset$ and called a *bright color* of f if $\overline{A}^Y \cap \overline{f(A)}^Y = \emptyset$. Also we call a finite closed cover of X consisting of colors of f a *coloring* of f and we say that f is *colorable* if there is a coloring of f. Similarly, we define a *bright coloring* of f.

Any space X can be embedded to 2^X by the inclusion $\iota : X \to 2^X$ defined by $x \mapsto \{x\}$. Hence all results for set-valued maps are also true for single-valued maps. The proofs are modifications of proofs for single-valued versions in [5], [6] and [2].

Also let (A, B) be a pair of disjoint closed subsets of a space X. A subset S of X is called a partition between A and B if there is a pair (U, V) of disjoint open subsets of X such that $A \subset U$, $B \subset V$ and $X \setminus S = U \cup V$.

2 Results

First, we present a generalization of Proposition 1.2.

Proposition 2.1. Let X be a compact subspace of a space Y and let $f : X \to 2^Y$ be a fixed-point free and upper semi-continuous map. Then, f is colorable.

Proof. By compactness of X it is sufficient to show that for each $x \in X$ there is an open neighborhood of x in X such that its closure is a color of f. Take $x \in X$. Then $x \notin f(x)$ since f is fixed-point free. By regularity of Y there are two open neighborhoods U and V of x and f(x) in Y, respectively, such that $U \cap V = \emptyset$. Since f is upper semi-continuous, $f^{-1}[\langle \{V\}\rangle]$ is open in X. By regularity of X there is an open neighborhood W of x in X such that $\overline{W} \subset U \cap f^{-1}[\langle \{V\}\rangle]$. This is as required. Next, we consider a generalization of Theorem 1.3.

Theorem 2.2. ([4]) Let X be a closed subspace of \mathbb{R}^n and let $f : X \to \mathcal{F}_k(\mathbb{R}^n)$ be a fixed-point free continuous map. Then, f is brightly colorable.

Applying Theorem 2.2, we obtain a generalization of Theorem 1.3 as follows.

Theorem 2.3. Let X be a closed subset of a locally compact separable metrizable space Y with dim $Y \leq n$ and let $f : X \to \mathcal{F}_k(Y)$ be a fixed-point free continuous map. Then, f is brightly colorable.

Proof. We may assume that Y is closed in \mathbb{R}^{2n+1} since any n-dimensional locally compact separable metrizable space can be embedded in \mathbb{R}^{2n+1} as a closed subset. Therefore, this proof is completed by Theorem 2.2.

Remark. For Theorem 2.2 we know that for $n, k \in \mathbb{N}$ there is a minimal integer K(n, k) such that every fixed point free continuous map $f: X \to \mathcal{F}_k(\mathbb{R}^n)$ is colorable with at most K(n, k) colors (see [4]). So we can see that K(2n + 1, k) plays the same part for Theorem 2.3. But it is not clear about the exact values.

To show our main result we define the *order* and give a lemma.

Let X be a space and \mathcal{U} a family of subsets of X and $n \in \{0, 1, 2, ...\}$. We define the order of \mathcal{U} , which is denoted by ord \mathcal{U} , as follows:

ord
$$\mathcal{U} \le n$$
 if $\sup \left\{ \left| \left\{ U \in \mathcal{U} : x \in U \right\} \right| : x \in X \right\} \le n.$

Remark. In many books ord $\mathcal{U} \leq n$ is defined by $|\{U \in \mathcal{U} : x \in U\}| \leq n+1$ for any $x \in X$. But in this paper we use the above definition to see inequalities about the order easily.

Lemma 2.4. ([6]) Let X be a normal space. Let $\{G_i : i = 1, ..., k\}$ be a family of closed subsets of X with $\operatorname{ord}\{G_i : i = 1, ..., k\} \leq \dim X + 1$ and $\{W_i : i = 1, ..., k\}$ an open cover of X such that $G_i \subset W_i$ for i = 1, ..., k. Then, there is an open cover $\{V_i : i = 1, ..., k\}$ of X such that $\operatorname{ord}\{\overline{V_i} : i = 1, ..., k\} \leq \dim X + 1$ and $G_i \subset V_i$ and $\overline{V_i} \subset W_i$ for i = 1, ..., k.

The following theorem is a generalization of Theorem 1.4.

Theorem 2.5. Let X be a paracompact space with dim $X \leq n$ and let $f: X \to \mathcal{F}_k(X)$ be a fixed-point free upper semi-continuous map. Suppose that $l = \sup\{|f^{-1}(x)| : x \in X\} < \infty$ and f(F) is closed in X for any closed subset F of X. Then, f is colorable with at most (k+l)(n+1)+1 colors.

Proof. First, fix $x \in X$. Since f is fixed-point free, there are two open neighborhoods U_x and V_x of x and f(x) in X, respectively, such that $U_x \cap V_x = \emptyset$. $f^{-1}[\langle \{V_x\}\rangle]$ is an open neighborhood of x in X since f is upper semi-continuous. Put $W_x = U_x \cap f^{-1}[\langle \{V_x\}\rangle]$. Then $W_x \cap f(W_x) = \emptyset$.

Put $\mathcal{W} = \{W_x : x \in X\}$. Then \mathcal{W} covers X. So by paracompactness of X there is a locally finite closed refinement \mathcal{A} of \mathcal{W} . List \mathcal{A} as $\{A_{\xi} : \xi < \kappa\}$ for some ordinal number κ . Observe that $A_{\xi} \cup f(A_{\xi}) = \emptyset$ for each $\xi < \kappa$.

Next, put p = (k+l)(n+1)+1 and for each $\xi < \kappa$ we will construct inductively a closed cover $\{B_{\xi,i} : i = 1, ..., p\}$ of A_{ξ} in a way such that if

$$C_{\eta,i} = \bigcup_{\xi < \eta} B_{\xi,i} \quad \text{for } i = 1, ..., p$$

then for all $\eta < \kappa$ we have

(1_{$$\eta$$}) $C_{\eta,i} \cap f(C_{\eta,i}) = \emptyset$ for $i = 1, ..., p$,

(2_{$$\eta$$}) ord $\{C_{\eta,i}: i = 1, ..., p\} \le n + 1.$

We note that $C_{\eta,i}$ is closed in X for each $\eta < \kappa$ and i = 1, ..., p since A is locally finite. The construction: For $\eta = 0$ (1₀) and (2₀) hold since $C_{0,i} = \emptyset$ for i = 1, ..., p.

When constructing $\{B_{\xi,i} : i = 1, ..., p\}$ for an $\eta < \kappa$ and each $\xi < \eta$, we may assume (1_{η}) and (2_{η}) to hold. Now we will construct $\{B_{\eta,i} : i = 1, ..., p\}$. For i = 1, ..., p define

$$D_i = f^{-1}(C_{\eta,i}) \cup f(C_{\eta,i}).$$

Then D_i is closed in X since f is upper semi-continuous. To see that

(a) $\{A_{\eta} \setminus D_i : i = 1, ..., p\}$ covers A_{η}

we claim that

$$\bigcap_{i=1}^{p} D_i = \emptyset.$$

By (2_{η}) and $|f(x)| \leq k$, $|f^{-1}(x)| \leq l$ for all $x \in X$ we have

ord{
$$f^{-1}(C_{\eta,i}): i = 1, ..., p$$
} $\leq k(n+1)$,
ord{ $f(C_{\eta,i}): i = 1, ..., p$ } $\leq l(n+1)$.

Indeed, for the first when we put $f(x) = \{x_1, ..., x_k\}$ for each $x \in X$, $|\{i : x_j \in C_{\eta,i}\}| \le n+1$ for j = 1, ..., k by (2_{η}) . Hence

$$|\{i : x \in f^{-1}(C_{\eta,i})\}| = \left|\bigcup_{j=1}^{k} \{i : x_j \in C_{\eta,i}\}\right|$$
$$\leq \sum_{j=1}^{k} |\{i : x_j \in C_{\eta,i}\}|$$
$$\leq k(n+1).$$

Similarly, we can verify the second.

Thus, from the definition of D_i

ord{
$$D_i : i = 1, ..., p$$
} \leq ord{ $f^{-1}(C_{\eta,i}) \cup f(C_{\eta,i}) : i = 1, ..., p$ }
 $\leq k(n+1) + l(n+1)$
 $= (k+l)(n+1).$

So $\bigcap_{i=1}^{p} D_i = \emptyset$ and (a) holds. By (1_n)

(b)
$$C_{n,i} \cap D_i = \emptyset$$
 for $i = 1, ..., p$.

So because dim $A_{\eta} \leq n$, ord $\{A_{\eta} \cap C_{\eta,i} : i = 1, ..., p\} \leq n+1$ and $A_{\eta} \cap C_{\eta,i} \subset A_{\eta} \setminus D_i$ for i = 1, ..., p, by Lemma 2.4 there is a relatively open cover $\{O_i : i = 1, ..., p\}$ of A_{η} such that

(c) $A_{\eta} \cap C_{\eta,i} \subset O_i, \overline{O_i} \subset A_{\eta} \setminus D_i \text{ for } i = 1, ..., p$, (d) $\operatorname{ord} \{\overline{O_i} : i = 1, ..., p\} < n + 1.$

Define $B_{\eta,i} = \overline{O_i}$ for i = 1, ..., p. Then, $C_{\eta+1,i} = C_{\eta,i} \cup B_{\eta,i} = C_{\eta,i} \cup \overline{O_i}$ for i = 1, ..., p. We check $(1_{\eta+1})$ and $(2_{\eta+1})$. For $(2_{\eta+1})$ we obtain

$$\operatorname{ord}\{C_{\eta+1,i}: i = 1, ..., p\} = \operatorname{ord}\{C_{\eta,i} \cup \overline{O_i}: i = 1, ..., p\}$$
$$= \operatorname{ord}\{(C_{\eta,i} \setminus A_{\eta}) \cup \overline{O_i}: i = 1, ..., p\}$$
$$\leq n+1$$

by (2_{η}) , (d) and the first part of (c). For $(1_{\eta+1})$ it is sufficient to prove that

$$C_{\eta,i} \cap f(C_{\eta,i}) = \emptyset,$$

$$C_{\eta,i} \cap f(B_{\eta,i}) = \emptyset,$$

$$B_{\eta,i} \cap f(C_{\eta,i}) = \emptyset,$$

$$B_{\eta,i} \cap f(B_{\eta,i}) = \emptyset$$

for i = 1, ..., p. The first and fourth are trivial from (1_{η}) and the property of A_{η} . Also $B_{\eta,i} \cap f^{-1}(C_{\eta,i}) = \emptyset$ if and only if $C_{\eta,i} \cap f(B_{\eta,i}) = \emptyset$. Thus, the second and third hold by the second part of (c). This completes the construction of $B_{\xi,i}$.

Finally, define

$$C_i = \bigcup_{\eta < \kappa} C_{\eta, i}$$
 for $i = 1, ..., p$.

It is easy to see that $C = \{C_i : i = 1, ..., p\}$ is a closed cover of X consisting of colors of f. Consequently, C is as required.

When X is compact, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let X be a compact space with dim $X \leq n$ and let $f : X \to \mathcal{F}_k(X)$ be a fixedpoint free and upper semi-continuous map. Suppose that $l = \sup\{|f^{-1}(x)| : x \in X\} < \infty$. Then f is colorable with at most (k+l)(n+1) + 1 colors.

Proof. By compactness of X, f(F) is closed in X for any closed subset F of X. So this is shown from Theorem 2.5.

The numbers of colors in the above results are not sharp. Here we consider reducing the numbers of colors.

Lemma 2.7. Let X be a separable metrizable space with dim $X \leq n$ and let $f: X \to 2^X$ be an upper semi-continuous map such that f(F) is closed in X and dim $f^{-1}(F) = \dim F$ for any closed subset F of X. Let φ and $\varphi_i (i = 1, 2,)$ denote one of the map f and the inclusion ι . Assume that $S = \{S_i : i \in \mathbb{N}\}$ is a family of closed subsets of X such that

$$\dim(\varphi_{i_1}(S_{i_1}) \cap \dots \cap \varphi_{i_k}(S_{i_k})) \le n - k$$

whenever $i_1 < \cdots < i_k$ and $k = 1, \dots, n+1$. Then for every pair (G, H) of disjoint closed subsets of X there is a partition S between G and H in X such that

$$\dim(\varphi_{i_1}(S_{i_1}) \cap \dots \cap \varphi_{i_{k-1}}(S_{i_{k-1}}) \cap \varphi(S)) \le n-k$$

whenever $i_1 < \cdots < i_{k-1}$ and k = 1, ..., n + 1.

Proof. Put $X_k = \bigcup \{ \varphi_{i_1}(S_{i_1}) \cap \cdots \cap \varphi_{i_k}(S_{i_k}) : i_1 < \cdots < i_k \}$ for k = 1, ..., n. Write $X_0 = X$. Then X_k is an F_{σ} -subset of X. By assumptions of S we have dim $X_k \leq n - k$. So there is an F_{σ} -subset Z of X with dim Z = 0 and dim $(X_k \setminus Z) \leq n - k - 1$ for k = 1, ..., n. Since f is upper semi-continuous, $f^{-1}(Z)$ is an F_{σ} -subset of X. By assumption of f we have dim $(Z \cup f^{-1}(Z)) = 0$. Hence there is a partition S between G and H in X such that $S \cap (Z \cup f^{-1}(Z)) = \emptyset$.

Then

$$\varphi_{i_1}(S_{i_1}) \cap \dots \cap \varphi_{i_{k-1}}(S_{i_{k-1}}) \cap S \subset X_{k-1} \setminus Z,$$

$$\varphi_{i_1}(S_{i_1}) \cap \dots \cap \varphi_{i_{k-1}}(S_{i_{k-1}}) \cap f(S) \subset X_{k-1} \setminus Z,$$

whenever $i_1 < \cdots < i_{k-1}$ and $k = 1, \dots, n+1$. Therefore,

$$\dim((\varphi_{i_1}(S_{i_1}) \cap \dots \cap \varphi_{i_{k-1}}(S_{i_{k-1}}) \cap \varphi(S)) \le n - (k-1) - 1$$
$$= n - k.$$

So S is as required.

Lemma 2.8. Let X be a separable metrizable space with dim $X \leq n$ and let $f: X \to 2^X$ be an upper semi-continuous map such that f(F) is closed in X and dim $f^{-1}(F) = \dim F =$ dim f(F) for any closed subset F of X. Let φ and $\varphi_i (i = 1, 2,)$ denote one of the map f and the inclusion ι . Let $\mathcal{U} = \{U_i : i = 1, ..., m\}$ be an open cover of X and $\mathcal{K} = \{K_i : i =$ $1, ..., m\}$ be an closed shrinking of \mathcal{U} . Then there is a closed cover $\mathcal{L} = \{L_i : i = 1, ..., m\}$ of X such that $K_i \subset L_i \subset U_i$ for i = 1, ..., m and

$$\varphi_{i_1}(\partial L_{i_1}) \cap \dots \cap \varphi_{i_{n+1}}(\partial L_{i_{n+1}}) = \emptyset$$

whenever $1 \leq i_1 < \cdots < i_{n+1} \leq m$.

Proof. The proof will be done by induction.

First, we define L_1 . Since dim $X \leq n$, there is a partition S_1 between K_1 and $X \setminus U_1$ in X such that dim $S_1 \leq n-1$. By assumption of f we have dim $f(S_1) \leq n-1$. Now $X \setminus S_1$ is the disjoint union of two open subsets V_1 and W_1 in X such that $K_1 \subset V_1$ and $X \setminus U_1 \subset W_1$. Define $L_1 = \overline{V_1}$. Then $\partial L_1 \subset S_1$ and so dim $\varphi(\partial L_1) \leq n-1$.

Next, assume that for some $r \in \{1, ..., m\}$ L_i is defined for i = 1, ..., r - 1 such that the family $\{\partial L_i : i = 1, ..., r - 1\}$ has the property

(*)
$$\dim(\varphi_{i_1}(\partial L_{i_1}) \cap \dots \cap \varphi_{i_k}(\partial L_{i_k})) \le n - k,$$

whenever $1 \leq i_1 < \cdots < i_k \leq r-1$ and k = 1, ..., n+1. From Lemma 2.7 there is a partition S_r between K_r and $X \setminus U_r$ in X such that the property (*) holds for the family $\{\partial L_i : i = 1, ..., r-1\} \cup \{S_r\}$. Now $X \setminus S_r$ is the disjoint union of two open subsets V_r and W_r in X such that $K_r \subset V_r$ and $X \setminus U_r \subset W_r$. Define $L_r = \overline{V_r}$. Then $\partial L_r \subset S_r$ and so the property (*) holds for $\{\partial L_i : i = 1, ..., r\}$. This completes the construction of L_i .

_	_	-	
L			
L			

Take $1 \leq i_1 < \cdots < i_{n+1} \leq m$. Then

$$\dim(\varphi_{i_1}(\partial L_{i_1}) \cap \dots \cap \varphi_{i_{n+1}}(\partial L_{i_{n+1}})) \le n - (n+1) = -1$$

and so

$$\varphi_{i_1}(\partial L_{i_1}) \cap \dots \cap \varphi_{i_{n+1}}(\partial L_{i_{n+1}}) = \emptyset.$$

Consequently, $\mathcal{L} = \{L_i : i = 1, ..., m\}$ is as required.

Lemma 2.9. ([2]) Let $\mathcal{K} = \{K_i : i = 1, ..., k\}$ be a finite closed cover of a space X. Define $L_i = \overline{K_i \setminus (\bigcup_{j=1}^{i-1} K_j)}$ for i = 1, ..., m. Then $\mathcal{L} = \{L_i : i = 1, ..., k\}$ has the following properties:

(1) $L_s \cap L_t = \partial L_s \cap \partial L_t$ for $s \neq t$.

(2) If $\partial L_{i_1} \cap \cdots \cap \partial L_{i_m} \neq \emptyset$, then $\partial K_{i_1} \cap \cdots \cap \partial K_{i_{m-1}} \neq \emptyset$ whenever $1 \le i_1 < \cdots < i_m \le k$.

The following theorem is a generalization of Theorem 1.5.

Theorem 2.10. Let X be a separable metrizable space with dim $X \leq n$ and let $f : X \to \mathcal{F}_k(X)$ be a fixed-point free upper semi-continuous map such that $l = \sup\{|f^{-1}(x)| : x \in X\} < \infty$. Suppose that f(F) is closed in X and dim $f^{-1}(F) = \dim F = \dim f(F)$ for any closed subset F of X. Then f is colorable with at most kn + k + l + 1 colors.

Proof. f is colorable by Theorem 2.5. So there is a coloring $\mathcal{A} = \{A_i : i = 1, ..., r\}$ of f for some $r \in \mathbb{N}$. Assume that r > kn + k + l + 1. Because A_i and $f(A_i)$ are disjoint closed subsets of X for each i = 1, ..., r and X is normal, there are two open neighborhoods U_i and V_i of A_i and f(A) in X, respectively, such that $U_i \cap V_i = \emptyset$ for each i = 1, ..., r. Since f is upper semi-continuous, $f^{-1}[\langle \{V_i\}\rangle]$ is an open neighborhood of A_i in X for each i = 1, ..., r. Put $B_i = U_i \cap f^{-1}[\langle \{V_i\}\rangle]$ for each i = 1, ..., r. Then $\mathcal{B} = \{B_i | i = 1, ..., r\}$ is an open cover of X such that $A_i \subset B_i$ and $B_i \cap f(B_i) = \emptyset$ for i = 1, ..., r.

Define $g: X \to 2^X$ by g(x) = f(f(x)) for $x \in X$. Since f is upper semi-continuous, g is upper semi-continuous. For any closed subset F of X, g(F) = f(f(F)) and $g^{-1}(F) = f^{-1}(f^{-1}(F))$. Hence g(F) is closed in X and dim $g^{-1}(F) = \dim F = \dim g(F)$ by assumptions of f. These enable us to apply Lemma 2.8 as φ and $\varphi_i(i = 1, 2, \dots)$ denote one of the map g and the inclusion ι . So there is a closed cover $\mathcal{C} = \{C_i : i = 1, \dots, r\}$ of X such that $A_i \subset C_i \subset B_i$ for $i = 1, \dots, r$ and

(
$$\sharp$$
) $\varphi_{i_1}(\partial C_{i_1}) \cap \dots \cap \varphi_{i_{n+1}}(\partial C_{i_{n+1}}) = \emptyset,$

whenever $1 \leq i_1 < \cdots < i_{n+1} \leq r$. Define $D_i = \overline{C_i \setminus (\bigcup_{j=1}^{i-1} C_j)}$ and let $\mathcal{D} = \{D_i : i = 1, ..., r\}$. Observe that \mathcal{D} is a coloring of f.

Take $x \in D_r$ and put $f^{-1}(x) = \{y_1, ..., y_l\}$ and $f(x) = \{z_1, ..., z_k\}$. Define *m*, p_a and q_b for a = 1, ..., l, b = 1, ..., k as follows:

$$\begin{split} m &= |\{i: (f^{-1}(x) \cup f(x)) \cap D_i \neq \emptyset\}|, \\ p_1 &= |\{i: y_1 \in D_i\}|, \\ p_a &= |\{i: \{y_1, ..., y_{a-1}\} \cap D_i = \emptyset \text{ and } y_a \in D_i\}| \ (a \ge 2), \\ q_1 &= |\{i: f^{-1}(x) \cap D_i = \emptyset \text{ and } z_1 \in D_i\}|, \\ q_b &= |\{i: (f^{-1}(x) \cup \{z_1, ..., z_{b-1}\}) \cap D_i = \emptyset \text{ and } z_b \in D_i\}| \ (b \ge 2). \end{split}$$

Without lost of generality we may assume that $p_a \ge 1$, $q_b \ge 1$ for a = 1, ..., l, b = 1, ..., k. Note that no indices *i* overlap in the definition of p_a and q_b for a = 1, ..., l, b = 1, ..., k i.e.

$$m = \sum_{a=1}^{l} p_a + \sum_{b=1}^{k} q_b$$

By Lemma 2.9

$$y_a \in \partial C_i$$
 for at least $p_a - 1$ indices i ,
 $z_b \in \partial C_i$ for at least $q_b - 1$ indices i ,

for a = 1, ..., l, b = 1, ..., k. So

$$f(x) \subset g(\partial C_i)$$
 for at least $\sum_{a=1}^{l} (p_a - 1)$ indices *i*.

Hence for b = 1, ..., k

$$z_b \in \varphi(\partial C_i)$$
 for at least $\sum_{a=1}^{l} (p_a - 1) + (q_b - 1)$ indices *i*.

By the property (\sharp) for b = 1, ..., k

$$\sum_{a=1}^{l} (p_a - 1) + (q_b - 1) \le n$$

Since $p_a - 1 \ge 0$ for a = 1, ..., l,

$$m = \sum_{a=1}^{l} p_a + \sum_{b=1}^{k} q_b$$

= $\sum_{a=1}^{l} (p_a - 1) + l + \sum_{b=1}^{k} (q_b - 1) + k$
 $\leq \sum_{b=1}^{k} \left(\sum_{a=1}^{l} (p_a - 1) + (q_b - 1) \right) + k + l$
 $\leq \sum_{b=1}^{k} n + k + l$
= $kn + k + l$.

Now since r > kn + k + l + 1, there is a $j(x) \in \{1, ..., r-1\}$ such that $x \notin f^{-1}(D_{j(x)}) \cup f(D_{j(x)})$. Because $f^{-1}(D_{j(x)})$ and $f(D_{j(x)})$ are closed in X, there is an open neighborhood W_x of x in X such that $W_x \subset B_r \setminus (f^{-1}(D_{j(x)}) \cup f(D_{j(x)}))$.

Put $\mathcal{W} = \{W_x : x \in D_r\}$. By paracompactness of D_r there is a locally finite closed refinement $\mathcal{K} = \{K_s : s \in S\}$ of \mathcal{W} , where S is an index set. Define $\psi : S \to \{1, ..., r-1\}$ as it satisfies that $K_s \subset B_r \setminus (f^{-1}(D_{\psi(s)}) \cup f(D_{\psi(s)}))$. Put $E_j = \bigcup \{K_s : j = \psi(s)\}$ and $F_j = D_j \cup E_j$ for j = 1, ..., r-1. Then $\mathcal{F} = \{F_j : j = 1, ..., r-1\}$ is a coloring of f consisting

of r-1 colors. In fact, since \mathcal{K} is locally finite, E_j is closed in X and so F_j is closed in X. To show that F_j is a color of f for each j = 1, ..., r-1 we check the followings:

$$D_{j} \cap f(D_{j}) = \emptyset,$$

$$D_{j} \cap f(E_{j}) = \emptyset,$$

$$E_{j} \cap f(D_{j}) = \emptyset,$$

$$E_{i} \cap f(E_{j}) = \emptyset$$

for j = 1, ..., r - 1. The second can be replaced by $E_j \cap f^{-1}(D_j) = \emptyset$. Therefore, all hold since \mathcal{D} is the coloring of f and $E_j \subset B_r \setminus (f^{-1}(D_j) \cup f(D_j))$.

We have reduced the number of colors by one, under the assumption that this number is greater than kn + k + l + 1. Inductively, the coloring of f can be reduced to a coloring of f with kn + k + l + 1 colors.

When X is compact, Theorem 2.10 implies the following corollary by the same way as Corollary 2.6.

Corollary 2.11. Let X be a compact metrizable space with dim $X \leq n$ and let $f: X \to \mathcal{F}_k(X)$ be a fixed-point free upper semi-continuous map such that $l = \sup\{|f^{-1}(x)| : x \in X\} < \infty$. Suppose that dim $f^{-1}(F) = \dim F = \dim f(F)$ for any closed subset F of X. Then f is colorable with at most kn + k + l + 1 colors.

We would like to finish the paper by mentioning a relation between colorability and the Stone-Čech compactification. Let X be a normal space. Then the Stone-Čech compactification βX of X is equivalent to the Wallman compactification of X with respect to the Wallman base consisting of all closed subsets of X. Hence $\overline{F}^{\beta X} \cap \overline{G}^{\beta X} = \emptyset$ for any pair (F, G) of disjoint closed subsets of X. Also if F is closed in X, $\beta F = \overline{F}^{\beta X}$. So we may assume that $\beta F \subset \beta X$.

The following is a generalization of Proposition 1.1.

Proposition 2.12. Let X be a closed subspace of a normal space Y and let $f : X \to \mathcal{K}(Y)$ be a fixed-point free continuous map. Then, the following are equivalent:

- (1) f is brightly colorable.
- (2) The Stone-Čech extension $\beta f : \beta X \to 2^{\beta Y}$ of f is fixed-point free.

Proof. We will show that (1) implies (2). Since $2^{\beta Y}$ is compact and $\mathcal{K}(Y) \subset 2^{\beta Y}$, there is a continuous extension $\beta f : \beta X \to 2^{\beta Y}$ of f. Take $z \in \beta X$ to show that βf is fixed-point free. By (1) there is a bright coloring \mathcal{C} of f. Then $\overline{\mathcal{C}}^{\beta Y}$ is a finite cover of βX and hence there is a $C \in \mathcal{C}$ such that $z \in \overline{\mathcal{C}}^{\beta Y}$. Because C is a bright color of f, $C \cap \overline{f(C)}^Y = \emptyset$. By the property of the Stone-Čech compactification $\overline{\mathcal{C}}^{\beta Y} \cap \overline{f(C)}^{\beta Y} = \emptyset$. By continuity of f

$$\beta f(z) \subset \beta f(\overline{C}^{\beta Y}) \subset \overline{\beta f(C)}^{\beta Y} \subset \overline{f(C)}^{\beta Y}.$$

Thus, $z \notin \beta f(z)$.

Next, we will show that (2) implies (1). Since βf is fixed-point free continuous and βX is compact, βf is colorable from Proposition 2.1. So there is a coloring C of βf . Then the restriction of C to X is as required.

This shows that colorability for set-valued continuous maps with compact values is similar to that for single-valued continuous maps.

A. EBISAWA and H. KATO

References

- J. W. Alexander, Order sets, complexes and the problem of compactification, Proc. Natl. Acad. Sci., 25 (1939), 296-298.
- [2] J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik and Schnirelmann, Topology, 35 (1996), 1051-1056.
- [3] J. M. Aarts and T. Nishiura, *Dimension and extensions*, North-Holland Publishing Co., Amsterdam, (1992).
- [4] R. Z. Buzyakova, On multivalued fixed-point free maps on Rⁿ, Proc. Amer. Math. Soc., 140 (2012), 2929-2936.
- [5] R. Z. Buzyakova and A. Chigogidze, Fixed-point free maps of Euclidean spaces, Fund. Math., 212 (2011), 1-16.
- [6] E. K. van Douwen, βX and fixed-point free maps, Topology Appl., 51 (1993), 191-195.
- [7] R. Engelking, General Topology, PWN, Warszawa, (1977).
- [8] O. Frink, Topology in lattices, Trans. Amer. Math. Soc., 51 (1941), 569-582.
- [9] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 7 (1951), 152-182.
- [10] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Publishing Co., Amsterdam, (2001).

Communicated by Yasunao Hattori

Atsushi Ebisawa	Hisao Kato
Institute of Mathematics	Institute of Mathematics
University of Tsukuba	University of Tsukuba
Ibaraki 305-8571, Japan	Ibaraki 305-8571, Japan
E-mail adress: ebisawa554@gmail.com	E-mail adress: hkato@math.tsukuba.ac.jp