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Abstract

In this paper, we consider the class of o, ,Y/]—generalized closed set
in topological spaces and investigate some of their properties. We also
present and study new separation axioms by using the notions of a-open
and a-bioperations. Also, we analyze the relations with some well known
separation axioms.

1 Introduction

The study of a-open sets was initiated by Njastad [3]. Maheshwari et al. [§]
and Maki et al. [9] introduced and studied a new separation axiom called a-
separation axiom. Kasahara [2] defined the concept of an operation on topolog-
ical spaces and introduced a-closed graphs of an operation. Ogata [4] called the
operation « as -y operation and introduced the notion of y-open sets and used
it to investigate some new separation axioms. For two operations on 7 some
bioperation-separation axioms were defined [7], [5]. Moreover, H.Z.Ibrahim [6]
defined the concept of an operation on aO(X, ) and introduced a.-open sets
and o,-T; (i = 0, %, 1,2) in topological spaces. In this paper, in Section 3,
we introduce the concept of oz[wﬁ/]—generalized closed sets and investigate some
of its important properties. The notion of new bioperation a-separation ax-
ioms is introduced in Section 4. We compare these separation axioms with the
separation axioms in [10], [4], [6], [7] and [5].

2 Preliminaries

Throughout this paper, (X, 7) and (Y, o) represent non-empty topological spaces
on which no separation axioms are assumed, unless otherwise mentioned. Let
(X, 7) be a topological space and A be a subset of X. The closure of A and
the interior of A are denoted by CI(A) and Int(A), respectively. A subset A
of a topological space (X, 7) is said to be a-open [3] if A C Int(Cl(Int(A))).
The complement of an a-open set is said to be a-closed. The intersection of all
a-closed sets containing A is called the a-closure of A and is denoted by aCI(A).
The family of all a-open (resp. a-closed) sets in a topological space (X, 7) is
denoted by aO(X, ) (resp. aC(X,7)). An operation «y [2] on a topology 7 is a
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mapping from 7 in to the power set P(X) of (X, 7) such that V' C V7 for each
V € 7, where V7 denotes the value of v at V. A subset A of (X, 7) with an
operation 7 on 7 is called y-open [4] if for each x € A, there exists an open set
U such that x € U and UY C A. An operation v : aO(X,7) — P(X) [6] is a
mapping satisfying the following property, V' C V7 for each V € aO(X, 7). We
call the mapping v an operation on aO(X, 7). A subset A of (X, 7) is called an
a,-open set [6] if for each point z € A, there exists an a-open set U of (X, )
containing x such that UY C A. We denote the set of all . ,-open sets of (X, 7)
by aO(X,T),. An operation v on aO(X, ) is said to be a-regular [6] if for
each point x € X and every a-open sets U and V containing x, there exists an
a-open set W of (X, 7) containing x such that W7 C UYN V7. An operation 7
on aO(X, 1) is said to be a-open [6] if for every a-open set U of each x € X,
there exists an a.-open set V such that x € V and V' C U". Let v and ’y/
be two operations on aO(X, 7). A subset A of (X,7) is said to be o, ,/j-open
[1; Definition 3.1] if for each x € A there exist a-open sets U and V of (X, 1)
containing z such that U7 NV C A. The set of all o, /1-open sets of (X, 7)
is denoted by aO(X,T), ,/|. A subset F' of (X, ) is said to be a, ./ |-closed if
its complement X \ F is @y /)-OPen. The intersection of all Ay ]
containing A is called the v, ,/-closure of A and denoted by ay, ,/-CI(A). The
union of all [, /1-0pen sets contained in A is called the o, ./ -interior of A and
denoted by a, ./-Int(A). A point 2 € X is in aCl, +(A) [1; Definition 3.33],
it (U'N WVI) N A # ¢ for each a-open sets U and W containing x.

-closed sets

Proposition 2.1 ([1; Proposition 3.45]) Let A be any subset of a topological
space (X, 7). Then, X \ o, -Int(A) = ap, -CUX \ A).

Theorem 2.2 ([1; Theorem 3.38]) If v and v are a-open operations and A a
subset of (X, 7). Then, we have aCl, . (aCl, 1 (A)) = aCly, ./ (A).

Proposition 2.3 ([1; Proposition 3.14]) Let A be any subset of a topological
space (X, 7). If A is [y, ]-open [5], then A is a, s1-open.

Remark 2.4 ([1; Remark 3.5)) Ify and~ are a-regular operations, then aO(X, 1)
forms a topology on X.

7]

Proposition 2.5 ([1; Proposition 3.17]) Let A and B be any subsets of a topo-
logical space (X, 7). If A is ay-open and B is . -open, then AN B is Ay A"
open.

Definition 2.6 ([1; Definition 4.1]) A function f: (X,7) — (Y, 0) is said to be
(a[,m/}, a[ﬁ’ﬁ/])-continuous if for each point x € X and each a-open sets W and
S of (Y, o) containing f(x) there exist a-open sets U and V of (X, T) containing
x such that f(UTNVT)CWPNSH,

Definition 2.7 ([1; Definition 4.11]) A function f : (X,7) — (Y,0) is said
to be (o, 15 g g))-closed if for each a, .+ -closed set A of (X,7), f(A) is
g g -closed in (Y, 0).



3 oz[%ﬂ-g.Closed Sets

In this section, we define and study some properties of ahﬁ/]—g.closed sets.

Definition 3.1 A subset A of (X, 7) is said to be an oy, 1j-generalized closed
(briefly, ahﬂf]—g.closed) set if ahﬁ/}—Cl(A) C U whenever A C U and U is an
o, 1-open set in (X, 7).

Remark 3.2 [t is clear that every ahﬁ/]—closed set is a[%vf]—g.closed. But the
converse is not true in general as it is shown in the following example.

Example 3.3 Let X = {a,b,c} and 7 = {¢,{a}, {b} {a,b},{a,c}, X}. For
each A€ aO(X, 1), we deﬁne two operations v and 7y , respectively, by AY =
A =4 if Ae B; A = A =X if A ¢ B, where B = {{b},{a,c}}. Now,
if we let A = {a}, since the only o, ,/1-open supersets of A are {a,c} and X,

then A is ahﬁf]—g.closed. But it is easy to see that A is not ahﬁ/]—closed.

Proposition 3.4 If A is y-open and ozhﬁz]—g.closed then A is a[%vf]—closed.

Proof. As every y-open set is Oy /]-OPen and A C A, we have oz[%ﬂ-C’l(A) C
/i, al;o AC a[%,y/]—Cl(A), therefore a[%,y/]—Cl(A) = A. That is, A is ap, /-
closed.

Remark 3.5 If A is Oy -open and o, or-g.closed then A is oy 1-closed.

Proposition 3.6 The intersection of an Ay o179 closed set and an Uy o] -closed
set is always ahw/]—g.closed.

Proof. Let A be an Ay )8 closed set and F' be an Ny -closed set. Assume
that U is an a, 5/jopen set such that ANF C U. Set G = X \ F. Then we
have A C U UG, since G is [y ,')-OPen, then U UG is [y '1-0Pen and since A
is a, ./ -g.closed, then o, ,1-Cl(A) CUUG. Now, ay, - —Cl(AﬂF) C oy
CIl(A) ﬂa[%ﬂ—Cl(F) = oz[%w/]—C'l(A) NEFCUUGNF=(UNF)U¢p CU (ct.
[1; Proposition 3.32]).

Remark 3.7 The intersection of two ahﬁr]—g.closed sets need not be Ay a1
g.closed in general. It is shown by the following example.

Example 3.8 Let X = {a,b,c} and 7 be a discrete topology on X. For each
A € aO(X, 1) we define two operations vy and fy', respectively, by AV = A”’/ =A
if A={a}; AV = A =X if A# {a}. Set A= {a,b} and B ={a,c}. Clearly,
A and B are ahﬁ/]—g.closed sets, since X is their only Q| '-0pen superset.
But C = {a} = AN B is not o, ,/-g.closed, since C' C {a} € aO(X,T)
and o, 1-Cl(C) = X ¢ {a}.

']

Proposition 3.9 If v ana 'y/ are a-reqular operations on aO(X, 7). Then the
finite union of ahﬁ/]—g.closed sets is always an ahﬁ/]—g.closed set.



Proof. Let A and B be two a, 1-8-closed sets, and let AUB CU, where U is

o, ,/1-open. Since A and B are ay, ./ -g.closed sets, we have o, .-Cl(A) CU
and ay, /-Cl(B) C U; and so oz[ -Cl(A) Uy, -CU(B) C U But we have
CZ(A) Uap,.,-Cl(B) = o, -Cl(AU B) (cf. [1; Proposition 3.32]).

Therefore o, —Cl(A UB)CU and so AU B is an o, ,s1-g.closed set.

Remark 3.10 The union of two Ay 4179 closed sets need not be Ay y'179 closed
in general. It is shown by the following example.

Example 3.11 Let X = {a,b,c} and 7 be a dzscrete topology on X. For each
A € aO(X, 1) we define two operations vy and ~', respectively, by A7 = A if
A€ B; A" =X if A¢ B, where B= {{a,b},{a,c},{b,c}}; and A" = X. Let
A ={a} and B = {b}. Here A and B are o, /1-g.closed but AU B = {a,b} is
not oy, s1-g.closed, since {a,b} is o, r-open and oy, .-Cl({a,b}) =
Proposition 3.12 If a subset A of (X, 1) is oy '1-9-closed and ACBC
o, ,1-Cl(A), then B is an ay, ./ -g.closed set in (X, 7).

Proof. Let U be an a, -open set of (X, 7) such that B C U. Since A is
o, /178-closed, we have a, .-Cl(A) € U. Now, by [1; Proposition 3.32] and
assumptions, it is shown that a, .\-Cl(A) C o, ,-ClU(B) C a, ,/-Cllag, -
Cl(A)] = ap, /-Cl(A) C U; and so a, -Cl(B) C U. Therefore, B is an
o, /78-closed set of (X, 7).

Proposition 3.13 For each x € X, {z} is a|, ,/-closed or X \ {z} is o, /-
g.closed in (X, 7).

Proof. Suppose that {z} is not oy, +-closed. Then X \ {z} is not «, ,/;-open.
Let U be any ap, /-open set such that X \{z} C U. Then this implies U = X
and so o, ,-ClU(X \ {z}) C U. Hence X \ {z} is o[, ,/-g.closed.

Proposition 3.14 The following statements (1), (2) and (3) are equivalent for
a subset A of (X, 7).

1. Ais ap, . -g.closed in (X, T).
2. o, 1-Cl({z}) N A # ¢ holds for every x € ay, 1-Cl(A).

3. oz[%ﬂ—Cl(A) \ A does not contain any non-empty o, /\-closed set.

Proof. (1) = (2). Suppose that there exists a point z € a, /-Cl(A) such
that ap, -Cl({z}) N A = ¢. Since Oy ) -Cl({z}) is o closed (cf. [1;
Proposition 3.32]), X \ oy, ,/;-Cl({z}) is an o, ,/;-open set of (X, 7). Since
ACX\ ( [ ~1Cl({z})) and A'is af, /)-8 closed this implies o, ,-Cl(A) C

X\ o, ,/1-Cl({z}) holds; and hence x ¢ o, ,1-Cl(A). This is a contradlctlon



Therefore, we conclude that ay, ./-Cl({z}) N A # ¢ holds for every x € ay, /-
Cl(A).

(2) = (3). Suppose that there exists a non-empty «y, ./ -closed set F' such that
FCop, -Cl(A)\ 4; and so ANF = ¢. Let y € F. Then, y € o, /1-Cl(A)
and y ¢ A. By (2), it is obtained that ¢ # o, 1-Cl({y}) N A Q Ay
CI(F)NA=FnNA; and so FN A # ¢. This is a contradiction; and so (3) is
claimed.

(3) = (1). Let A C U, where U is a, j-open in (X, 7). If oy, -CI(A)
is not contained in U, then a, ,/-CI(A) N (X \U) # ¢. Now, since ap, -
ClA)N(X\U) € ap, ,)-CU(A)\ A and o, /-CL(A) N (X \U) is a non-empty

ah,vf]—closed set, we obtain a contradiction and therefore A is ozhﬁ/]—g.closed.

Proposition 3.15 If A is an Ay o179 closed set of a space X, then the following
are equivalent:

1. Ais a[%,y/]-closed.

2. oy, -CUA)\ A is oy, y-closed.

Proof. (1) = (2). Since A is oy, sj-closed, then oy, 1-CI(A) = A holds (cf.
[1; Proposition 3.32 (3)]); and so «a, ,/-Cl(A) \ A = ng and the set ¢ is o, /-
closed.

(2) = (1). Since Ais ay, ,/-g.closed, o, ./ -CI1(A)\ A does not contain any non-
empty o, /-closed subset (cf. Proposition 3.14); and so a, ./-Cl(A) \ A = ¢.
This shows that A is a, ,/j-closed.

Proposition 3.16 For a space (X, 1), the following are equivalent:
1. Every subset of X is ahﬁ/]-g.closed.
2' CYO(X,T)[,Y ’

]

=aC(X, 7))
Proof. (1) = (2). Let U € aO(X, 1), ;- Then, by hypothesis, U is oy, /-
g-closed which implies that ay, ./-CIl(U) C U, so, a, ,-CIl(U) = U. Thus, we
have U € aC (X, 7), ,/1; and so aO(X, 1), 11 € aC(X, 7), /. Conversely, let
Ve alC(X, 7)) Then X\V € aO(X, 7)) By using the above result,
it is shown that V € aO(X,7)[, ; and so aC(X,7) C aO0(X, 1)
Therefore, we have the proof of (2).

(2) = (1). If A is a subset of a space (X,7) such that A C U where U €
aO(X, 7)., then U € aC(X )77] Therefore ay, /-Cl(A) C ap,
CU(U) = U which shows that A is o, +-g.closed.

v AT

Definition 3.17 A subset A of X is Uy 4']~9-0PEN if its complement X \ A is
o, 1-9-closed in (X, 7).

Remark 3.18 It is clear that every QU ~/]-0PEN Set s oy, L ry-g.open. But the

converse is not true in general as it is shown in the following example.



Example 3.19 Consider Ezample 3.3, if A = {b,c} then A is o, s1-g.open
but not [y ] -OPEN.

Proposition 3.20 A subset A of (X,7) is o, /1-9-open if and only if F C
o, 1 Int(A) whenever F'C A and F is oy, ./ -closed in (X, ).

Proof. By Definition 3.17 and Proposition 2.1, the proof is obtained.

Remark 3.21 The union of two ALy 4'1-g-0pen sets need not be Ly 419 OPEN
in general. It is shown by the following example.

Example 3.22 Consider Example 3.8, if A= {b} and B = {c} then A and B
are ap, ./ -g.open sets in X, but AU B = {b,c} is not an ap, ~/-g-open set m

Proposition 3.23 Let v and fy' be an a-regular operations on aO(X,7), and
let A and B be two Qp, /-g-open sets in a space (X,7). Then AN B is also

Qy /] ~9-0Pen.
Proof. By Definition 3.17 and Proposition 3.9, it is proved.

Proposition 3.24 Every singleton point set in a space (X, T) is either Ay 41"

g-open or o /]—closed.

VY

Proof. By Definition 3.17 and Proposition 3.13, it is proved.

Proposition 3.25 Ifa Int(A) CBCAandAis Oy /1-9-0pen, then B
is o 11-.0pen.

Proof. By Definition 3.17 and Propositions 2.1, 3.12, the proof is obtained.

4 o /]-Separations Spaces

7Y

,1,2) and investigate

In this section we introduce a[ﬂm/]—Ti spaces (i = O,%

relations among these spaces.

Definition 4.1 A topological space (X, T) is said to be a[%v/]'T% if every ALy 41"
g.closed set is ozh,,/]-closed.

Remark 4.2 It follows from Remark 3.2 that (X, 1) is oy, Ty if and only if
the oz[%wl]—g.closedness coincides with the a[%vr]—closedness.

Definition 4.3 A topological space (X, T) is said to be oy 1710 if for each pair
of distinct points Y in X, there exist a-open sets U and V such that x € UNV

andy%U’VﬁV'Y,oryeUﬂV andm%U”ﬂV”.



Definition 4.4 A topological space (X, T) is said to be oy 1711 if for each pair
of distinct points x,y in X, there exist a-open sets U and V' containing r and

a-open sets W and S containing y such that y ¢ UYNVY and x ¢ WY NS .

Definition 4.5 A topological space (X, 1) is said to be CM[%,Y/]-TQ if for each pair
of distinct points x,y in X, there exist a-open sets U and V' containing x and

a-open sets W and S containing y such that (U7 N V"Y/) NN S"Y,) = ¢.

Remark 4.6 For given two distinct points x and y, the ahﬁ/]-TO-axiom re-

quires that there exist a-open sets U, V., W and S satisfying one of conditions
(1),(2),(3) and (4):
L azeUNV,yeWnsS,y¢U'NVY andad WINST .

2. 2eUNV,z2eWnS,ydUTNVY andy¢ W NS .
3. yeUﬁV,yeWﬂS,x¢U70V7/ andx¢W’YﬁSVI.
4. yEUﬂV,xEWﬂS,xgéU'YﬂV'Y, andy¢W“’ﬁSVl.

Remark 4.7 (1) A topological space (X,7) is o, ,-To if and only if (2) for
each distinct pomts xz,y in X, there exists an - open set W such that x € W

andy¢W“fﬂW7,oryEWandmg,éW”’ﬂW”f.

Proposition 4.8 A topological space (X, 1) is a[,w/]-T% if and only if for each

v € X, {z} is either o, /y-closed or oy, sj-open.

¥l

Proof. (Necessity) Suppose {z} is not Oy /j-closed. Then by Proposition 3.13,
X\ Az} is ap, j-g.closed. Since (X, 7)is ap, /-T1, X\ {z} is oy, j-closed,
that is {z} is o, ,/-open.
(Sufficiency) Let A be any «, ./ -g.closed set in (X,7) and x € a, ,/-Cl(A).
It suffices to prove that x € A for the following two cases:

Case 1. {z} is o, ,/-closed: for this case, by Proposition 3.14, it is shown
that {z} Z oy, /-CI(A) \ A; and so z € A.

Case 2. {z} is o}, ,/;-open: for this case, we have that {z} N A # ¢ (cf. [I;
Proposition 3.31]); and so = € A.
Hence, A is o, /)-closed; and so (X, 7) is a, T}
Proposition 4.9 Let v and ’y/ be a-open operations. Then, a topological space
(X, 1) is ALy oy ]—TO if and only if for each pair of distinct points x,y of X,

aCly, ]({a:}) # aCly, n({y}).

Proof. (Necessity) Let x,y be any two distinct points of X. Then, there exist

a-open sets U and V such that z € UNV and y ¢ U”ﬂV”l, orz ¢ UTNV7 and
y € UNV. For the first case, we have that (U"NV™ )N{y} = ¢ and this implies
that = ¢ aCly, +({y}). For the final case, we have that y ¢ aCl, ., ({z}).



Consequently, for the distinct points  and y, aCly, 1 ({z}) # aCl, /1 ({y}).
(Sufficiency) By hypothesis, there exists a point z € X satisfying the following
two cases:

Case 1. z € aCl, /({z}) but = ¢ aCl, /({y}): we claim that z ¢
aCly, ., ({y}). Indeed, suppose that x € aCl},, .+ ({y}) holds; then, by Theorem
2.2, it is shown that aCly, //({z}) C aCl|, . ({y}); this contradicts the fact
that 2 ¢ aCly, ,({y}). Thus, z ¢ aCl, ({y}); and so there exist a-open
sets U and V such that € UNV and (U"NVY)N{y} = ¢.

Case 2. z € aCly, ({y}) but z ¢ aCly, _//({z}): for this case, by similar
way to Case 1 above, it is shown that y ¢ aCl, . ({z}); and so there exist U
and V' such that y € U' NV and (U7 NV N {z} = ¢.

Therefore, by Case 1 and Case 2, it is proved that (X, 7) is oy 4/ To-

Proposition 4.10 A topological space (X, T) is oy 1711 if and only if for each
z € X, {a} is oy, v -closed.

Proof. (Necessity) Let = be a point of X. Suppose y € X \ {«}. Then, there
exist a-open sets W and S containing y and « ¢ W7 N 57/. Consequently
yewW'n 57 C X\ {z}, that is X \ {z} is o, ,/}-open.

(Sufficiency) Let x,y € X with  # y. Now z # y implies y € X \ {z} and
z € X \ {y}. Hence X \ {y} is an oy, +-open set containing z, so there exist

a-open sets U and V' containing x such that U NVY C X \ {y}. Similarly
X\ {z} is an [ ,/)-0pen set containing y, so there exist a-open sets W and

S containing y such that W7 N s C X\ {z}. Accordingly X is an o, /-Th
space.

Proposition 4.11 The following statements are equivalent for a topological
space (X, T) with an operations v and v on aO(X,T).

1. (X, 1) is apy o y-To.

2. Let x € X. For each y # x, there exist a-open sets U and V' containing x
such that y ¢ aCl, (U NV ).

3. For each v € X, N{aCl, (U N V“’l) U,V € aO(X,7) and z €
unvy}={z}.

Proof. (1) = (2). Let € X. For each y # x, it follows from (1) that there exist
a-open sets U and V containing = and a-open sets W and S containing y such
that (U N V7') N (W7 N ST ) = ¢. This implies that y ¢ aCl, (U7 NV7).
(2) = (3). Set B(z) = N{aCly, .4 (UNVT): U,V € aO(X,7) and z € UNV},
where z € X. Let z € X. We claim that B(z) = {z}. Indeed, y be any point
of X with x # y. It follows from (2) that there exist a-open sets U and V such



that z e UNV and y ¢ aCly, (U7 N VVI) Thus, we have that y ¢ B(x) and
so {z} = B(xz), because {z} C B(z) C aCl}, /(U" N vy ) hold.

(3) = (1). Let 2,y € X with « # y. By (3), 1t 1s assumed that B(z) = {z} where
B(x) is defined in the proof of (2) = (3) above. Then, there exist a-open sets U
and V' such that y ¢ aCl,, (UTNV? ); and hence (UYNVY )N(WTNST ) = ¢

for some a-open sets W and S containing y. Therefore, (X, 7) is o, /- T5.

Proposition 4.12 (i) If (X,7) is ap, ,/-T», then it is ap, ./ -T1.
(11) If (X, 1) zs oy, 11, then it. zs oy Ts
(iii) If (X, 7) is oy Ty, then it is oy o-To.

Proof. (i) The proof is straightforward from Definitions 4.4 and 4.5.

(ii) The proof is obvious by Propositions 4.8 and 4.10.

(iii) Let « and y be any two distinct points of (X, 7). By Proposition 4.8,
the singleton {z} is o, ,/|-closed or ay, /)-open.

Case 1. {z} is ay, s -closed: for this case, X \ {z} is an o, /-open set
containing y; and so there exist a-open sets W and S containing y such that
WrNn ST C X\ {z}. Thus we have that y e W NS and z ¢ WTNS7.

Case 2. {z} is o, -open: for this case, there exist a-open sets U and

V' containing x such that UY N vy C {x}. This implies that x € U NV and

y ¢ UTNVY .
Therefore, we have X is a[%ﬂ—TO.

Remark 4.13 The following series of examples show that all converses of Propo-
sition 4.12 can not be reserved.

Example 4.14 Let (X, 1), v and 7/ be the same space and the same operations
as in FExample 3.11. Then, it is shown directly that each singleton is Q-

closed in (X, 7). By Proposition 4.10, (X,7) is oy, T1. But, we can show

that (UT N VV,) N (wrn SV/) # ¢ holds for any a-open sets U, V, W and S.
This implies (X, ) is not o, 1-T>

Example 4.15 Let X = {a,b,c} and 7 = {¢, X, {a}, {a,b},{a,c}} be a topol-
ogy on X. For each A € aO(X,T) we define two operations v and ’y respec-
tively, by AY = A7 = A Then, it is shown directly that each singleton is
o, 1-closed or oy, s -open in (X, 7). By Proposition 4.8, (X,T) is oy 1s
However, by Proposition 4.10, (X, 1) is not Ay T, in fact, a singleton {a}

is not ALy o] -closed.

Example 4.16 Let X = {a,b,c} and 7 = {¢, X,{a}, {a, b}} be a topology on
X. For each A€ aO0(X,T) we deﬁne two operations v and 'y respectively, by
A=A = A ifbg A; AV = A = X ifbe A. Then, (X,7) is not opy T
because a singleton {c} is neither QU 4-0pen nor o, L -closed. It is shown
directly that (X, 7) is a 1-To.



Remark 4.17 From Proposition 4.12 and FExamples 4.14, 4.15 and 4.16, the
following implications hold and none of the implications is reversible:
L

v 12— o Ty —— a1 Ty —— oy, - To,

where A — B represents that A implies B.

Proposition 4.18 If (X, 1) is oy 17 Tis then it is o-T;, where i = 0,1 5:1,2
Proof. The proofs for i = 0,2 follow from definitions. The proof for i = 1 (resp.
i= %) follows from [1; Proposition 3.7] and Proposition 4.10 (resp. Proposition
48)]

Remark 4.19 The following example shows that all converses of Proposition
4.18 can not be reserved.

Example 4.20 Let X = {a,b,c} and 7 be a discrete topology on X. For each

A € aO(X, 1) we define two operations y andv respectively, by AV = A =X,
Then, (X, 1) is «-T; but it is not oy 415, where i =0, ;,1, 2.

Proposition 4.21 If (X, 1) is o, -T;, then it is a[,m/]—Ti, where i = 0, ;1 2.
Proof. The proofs for i = 0,1,2 follow from Definitions 4.3, 4.4, 4.5 and [6;
Definition 3.6]. The proof for i = 1 is obtained as follows: Let 2 € X. Then,{z}
is ay-open or a,-closed by [6; Theorem 3.2]. So, {z} is Q[ ,/]7OPEN OF Q[ 11
closed because every a,-open is o, /-open (cf. [1; Proposition 3.18]). The
proof is completed from Proposition 4.8.

Remark 4.22 The following series of examples show that all converses of Propo-
sition 4.21 can not be reserved.

Example 4.23 Let X = {a,b,c} and 7 be a discrete topology on X.

(i) For each A € aO(X,T) we define two opemtions v and v, respec-
tively, by AV = A7 = Aif A € B; A7 = A = X if A ¢ B, where
B = {{a,b},{a,c},{b,c}}. Then, (X,7) is o, ;-T2 but not Oé,y-Tg

(ii) For each A € aO(X,T) we define two operations v and ', respectively,
by A" = Aif Ae B; AY =X if A ¢ B, where B = {{a,b},{a,c}}; and
AV = AifA={bc}; A7 =X if A#{b,c}. Then, (X,7) is o, -Ti but not
i1

(iii) For each A € aO(X,T) we define two opemtzons v and v, respectively,
by AV =Aif A={a}; AV =X if A#{a}; andAW—AzfA—{b} A =X
if A#{b}. Then, (X,7) is o, . )-To but not a-Tp.

o -T;, where ¢ =

7'

Proposition 4.24 If (X,7) is [’y,v |-T;, then it is oy 413, wherei = 0, % 5:1,2



Proof. The proofs for i = 0,2 follow from Proposition 2.3, Definitions 4.3, 4.5
and [5; Definitions 5.2, 5.4]. The proof for ¢ = 1 (resp. i = %) follows from [5;
Proposition 5.8] (resp. [5; Proposition 5.7]) and Proposition 2.3.

Remark 4.25 The following example show that the converses of Proposition
4.24 can not be reserved, for i =0, % We propose the following two questions
since we could not find counter examples:

Are the spaces o, 41711 and ['y,'y/]—Tl equivalent or not?

What about o, +1-T> and (7,7 -T2 ?

Example 4.26 Let X = {a,b,c} and 7 = {¢,X,{a}} be a topology on X.
For each A € aO(X,7) we define two operations vy and ’y respectively, by

A=A = A Then, (X, 7) is o, . -T; but not [y, '|-T;, where i = 0,3

Proposition 4.27 If (X, 1) is (v,y ) Ty, then it is oy o)-T;, where i = 0,1 5, 1,2.

Proof. The proofs follow from [5; Proposition 6.12] and Proposition 4.24.

Remark 4.28 The converse of Proposition 4.27 can not reversible by [[5]; Re-
mark 6.13, Examples 6.14 and 6.15] and Proposition 4.24.

Proposition 4.29 If (X, 1) is v-T;, then it is Ay iy ]-TZ, where i = 0, 3 5,1,2.
Proof. The proofs follow from [5; Proposition 6.1] and Proposition 4.24.

Remark 4.30 The converse of Proposition 4.29 can not reversible by [5; Re-
mark 6.2] and Proposition 4.2/.

Remark 4.31 From Propositions 4.12, 4.18, 4.21, 4. 24, 4.27, 4.29, [10; Re-
mark 2.1], and [4; p.180], for distinct operations v and v we have the following
diagram. We note that some implications in the following diagram are not re-
versible by Remarks 4.18, 4.19, 4.22, 4.25, 4.28 and 4.50:



7T (1.7 )T —= (v,7)-Ty (77T (1,7 )-To
T —— [,y o —— 3,7 - Th — 1.7
OyTo == ap e —>

e

Oé»y—Tl OZ—TQ

Oz,y—T% — oy~ 1y,

where A — B represents that A implies B.

Proposition 4.32 Suppose thaty and fy/ are a-regular operations on aO(X, T).
A space (X, T) is oy 7T if and only if an associated space (X, aO(X, T)[%,”)
is T;, where i = 1,1/2.

Proof. It follows from Remark 2.4 that a subset A is o, ,/j-open in (X, 7) if and
only if A is open in (X,aO0(X,7), ). Therefore, the proof for i = 1 (resp.
i = 1) follows from Propositions 4.8 (resp. Proposition 4.10).

Proposition 4.33 Let v and ’y/ be a-regular operations on aO(X,1).
(i) If (X,00(X, 7)) is Ti, then (X, 7) is o, 1T, where i =0, 2.
(ii) Moreover, suppose that v and v are a-open operations on aO(X, 7).
If (X,7) is oy 4115, then (X, a0(X, 7')[%7/]) is T;, where i = 0, 2.

Proof. (i) The proof for i« = 0 (resp. ¢ = 2) follows from the Tp-separation
property (resp. Hausdorffness) of (X,aO(X, ’T)[,Y’,Y/]), the concept of Ay )
open sets (cf. [1; Definition 3.1]) and Definton 4.3 (resp. Definition 4.5).

(ii) Let 2 and y be distinct points of X. For i = 2, since (X,7) is ap, /-
T5, there exist a-open sets U; and /Vl containing x and a-open sets Wi and
S containing y such that (U7 NVY )N (W NST ) = ¢. Since v and ' are
a-open operations on «O(X, 7), so there ex1st a-open sets U, W and o, open

sets VSsuchthathUﬁVCUA’ﬂvl ,yGWﬂSCWA’ﬂSA’ and

UnNnvV)Nnwns)cuynvy )n(wyn SW ) = ¢. It follows from Proposition

2.5, that UNV € aO(X, 7), /) and WN S € aO(X, 7), /- This implies that



(X,00(X, 7)) is To. The proof for i = 0 follows from Definition 4.3, and
Proposition 2.5.

Proposition 4.34 If f : (X,7) — (Y,0) is (a}, ), o54))-continuous and
(a[ﬂm/], a[ﬁ,ﬁ/])-closed, then

(i) f(A) is g gr)-g.closed for every ay, ./ -g.closed set A of (X,7); and

(i) f~4(B) is o, 1-9-closed for every ayg gry-g.closed set B of (Y, o).

Proof. (i) Let V be an a4 4-open set containing f(A). Then, f~'(V) is an
o, /1-open set containing A (cf. [1; Theorem 4.2]) and so ap, ,-Cl(A) C
f_l(V). It follows that f(«, . -Cl(A)) is an ag g-closed set (cf. Defini-
tion 2.7) and hence ag 51-CU(f(A)) C a 51-Cl(f(ey, /1-CU(A))) = floy, -
Cl(A)) € V. This implies that f(A) is o 5-8. closed

(ii) Let U be any o, ./-open set such that f7YB)CU. Let F = Ay
CI(f~Y(B))n (X \ U), then F is ap, -closed in (X, 7). This implies f(F)
is apg gy-closed set in (Y,o) (cf. Definition 2.7). Since f(F) = f(ay, -
CI(f~H(B)N(X\U)) C oz 5-CUB) N F(X\U) C o 5-CUB) N (Y'\ B) (cf
[1; Theorem 4.2]), it is shown that ag 5-C1(B) \ B contains an o g-closed
set f(F). It follows from Proposition 3.14 that f(F) = ¢ and hence F = ¢.
Therefore a[%,y/]—Cl(f_l(B)) C U. This shows that f~1(B) is [y,,/8-closed.

Theorem 4.35 Suppose that there exists an (a[%’v/]’ a[ﬂﬂ/])—contmuous and
(apy 15 p,5))-closed function, say f: (X, 7) = (Y,0).

(i) If f is injective and (Y, 0) is ag g1y —T1 then (X, 7) is ap, T

(ii) If f is surjective and (X,7) is o, ) T%, then (Y,0) 1s g gy Ty

Proof. (i) Let A be an «, ,/-g.closed set of (X, 7). We claim that A is ap, /-
closed in (X, 7). By Proposition 4.34 (i), f(A) is o5 g)-g-closed. Since (Y, 0)
is oz g-T, this implies that f(A) is ayg gj-closed. Since f is (a1, oz,41)-
continuous and injective, then, we have A = f~1(f(A)) is o, p-closed (cf. [1;
Theorem 4.2]). Hence (X, 7) is ap, -T1.

(i) Let B be an ag 5-g.closed set in (Y, o). By Proposition 4.34 (ii) and
assumptions, it is shown that B = f(f~(B)) is o, -closed; and hence (Y, 0)
is agg,61°T} -

Theorem 4.36 Suppose that there exists an (a[%,y/], a[ﬂﬁ/])-continuous injec-
tion. If (Y,0) is ag g1-T;, then (X, 7) is o, r-Ti, where i =0,1,2.

Proof. Let f: (X,7) = (Y,0) be the (ay, /), &5 5))-continuous injection. The
proof for i = 1 is as follows: Let x € X. Then, by Proposition 4.10, {f(z)}
is ag g-closed in (Y,0). By [1; Theorem 4.2] and Proposition 4.10, {z} is
o, /1-closed and hence (X,7) is o, ./1-T1. The proofs for i = 0,2 follow from
Definitions 4.3, 4.5 and [1; Theorem 4 2]



Definition 4.37 A function f : (X,7) — (Y,0) is called an (o, /. o5.4)-
homeomorphism if f is an (a[,m/], a[ﬁ,ﬁ/])-continuous bijection and f~1 : (Y, o) —
(X,7) is (a5 517, apy)-continuous.  The collection of all (o, ), oy 1)~
homeomorphisms from (X, 1) onto itself is denoted by ahﬂ/]—h(X, 7).

Theorem 4.38 (i) Suppose that there exists an (o, /), oz g))-homeomorphism
between topological spaces (X, 1) and (Y,0). Then, (X,7) is oy, 1-T; if and
only if (Y,0) is ag g -Ti, where i =0, 3.1,2.

(i) For each topological space (X,T), the collection a, -h(X,7) forms a
group under the composition of functions.

(iii) For an (o, /), g 5'1)-homeomorphism f : (X, 1) — (Y, 0), there exists
a group isomorphism, say fi : oy, -h(X,7) = a5 51-M(Y, 0).

Proof. Put Hx = oy, /-h(X, 7).

(i) This follows from Theorems 4.35, 4.36 and Definition 4.37.

(ii) First we prove that: if a € Hx and b € Hx, then boa € Hx. Indeed,
since a and b (resp. a~! and b~!) are o, /1-continuous bijectons, bo a (resp.
a~tob ! = (boa)7") is also an «ay, s -continuous bijection (cf. [1; Theorem
4.10]); and so boa € Hx, where boa : X — X is the composite functions of
a:X — X and b: X — X such that (boa)(z) = b(a(x)) for every point x € X.
Thus, the following binary operation nyx : Hx X Hx — Hx is well defined by
nx(a,b) = boa. Putting a - b =nx(a,b), we have the following properties:

1. (@-b)-c=a-(b-c) holds for every elements a,b,c € Hx;

2. for all element a € Hy, there exists an element ¢ € Hx such that a-e =
e-a=a hold in Hx;

3. for each element a € Hy, there exists an element a; € Hx such that
a-a; =aj-a=-eholdin Hy.

Indeed, (1) is obtained obviously; (2) is obtained by taking e = 1x and using
the fact that 1x € Hx, where 1x : X — X is the identity function; (3) is
obtained by taking a; = a~! for each a € Hx. Then, by definition of groups,
the pair (Hx,nx) forms a group under the composition of functions.

(iii) The required group isomorphism f, : Hxy — Hy is well defined by
fi(a) = fo(ao f71) for every element a € Hx. Indeed, f.(a) € Hy holds
for every a € Hx (cf. [1; Theorem 4.10]); fi(a-b) = fo(boa)o f7! =
fobof~tofoaof~t = (fu(b))o(fi(a)) = fi(a)- f«(b) hold for every elements
a,b € Hx and so f, : Hx — Hy is a homomorphism. Hence f, : Hx — Hy is
the required isomorphism.
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