
Abstract

In this paper, we consider the class of α[γ,γ
′
]-generalized closed set

in topological spaces and investigate some of their properties. We also
present and study new separation axioms by using the notions of α-open
and α-bioperations. Also, we analyze the relations with some well known
separation axioms.

1 Introduction

The study of α-open sets was initiated by Njȧstad [3]. Maheshwari et al. [8]
and Maki et al. [9] introduced and studied a new separation axiom called α-
separation axiom. Kasahara [2] defined the concept of an operation on topolog-
ical spaces and introduced α-closed graphs of an operation. Ogata [4] called the
operation α as γ operation and introduced the notion of γ-open sets and used
it to investigate some new separation axioms. For two operations on τ some
bioperation-separation axioms were defined [7], [5]. Moreover, H.Z.Ibrahim [6]
defined the concept of an operation on αO(X, τ) and introduced αγ-open sets
and αγ-Ti (i = 0, 12 , 1, 2) in topological spaces. In this paper, in Section 3,
we introduce the concept of α[γ,γ′ ]-generalized closed sets and investigate some
of its important properties. The notion of new bioperation α-separation ax-
ioms is introduced in Section 4. We compare these separation axioms with the
separation axioms in [10], [4], [6], [7] and [5].

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topological spaces
on which no separation axioms are assumed, unless otherwise mentioned. Let
(X, τ) be a topological space and A be a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A
of a topological space (X, τ) is said to be α-open [3] if A ⊆ Int(Cl(Int(A))).
The complement of an α-open set is said to be α-closed. The intersection of all
α-closed sets containing A is called the α-closure of A and is denoted by αCl(A).
The family of all α-open (resp. α-closed) sets in a topological space (X, τ) is
denoted by αO(X, τ) (resp. αC(X, τ)). An operation γ [2] on a topology τ is a
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mapping from τ in to the power set P (X) of (X, τ) such that V ⊆ V γ for each
V ∈ τ , where V γ denotes the value of γ at V . A subset A of (X, τ) with an
operation γ on τ is called γ-open [4] if for each x ∈ A, there exists an open set
U such that x ∈ U and Uγ ⊆ A. An operation γ : αO(X, τ) → P (X) [6] is a
mapping satisfying the following property, V ⊆ V γ for each V ∈ αO(X, τ). We
call the mapping γ an operation on αO(X, τ). A subset A of (X, τ) is called an
αγ-open set [6] if for each point x ∈ A, there exists an α-open set U of (X, τ)
containing x such that Uγ ⊆ A. We denote the set of all αγ-open sets of (X, τ)
by αO(X, τ)γ . An operation γ on αO(X, τ) is said to be α-regular [6] if for
each point x ∈ X and every α-open sets U and V containing x, there exists an
α-open set W of (X, τ) containing x such that W γ ⊆ Uγ ∩ V γ . An operation γ
on αO(X, τ) is said to be α-open [6] if for every α-open set U of each x ∈ X,
there exists an αγ-open set V such that x ∈ V and V ⊆ Uγ . Let γ and γ

′

be two operations on αO(X, τ). A subset A of (X, τ) is said to be α[γ,γ′ ]-open

[1; Definition 3.1] if for each x ∈ A there exist α-open sets U and V of (X, τ)
containing x such that Uγ ∩ V γ′ ⊆ A. The set of all α[γ,γ′ ]-open sets of (X, τ)

is denoted by αO(X, τ)[γ,γ′ ]. A subset F of (X, τ) is said to be α[γ,γ′ ]-closed if

its complement X \ F is α[γ,γ′ ]-open. The intersection of all α[γ,γ′ ]-closed sets

containing A is called the α[γ,γ′ ]-closure of A and denoted by α[γ,γ′ ]-Cl(A). The
union of all α[γ,γ′ ]-open sets contained in A is called the α[γ,γ′ ]-interior of A and

denoted by α[γ,γ′ ]-Int(A). A point x ∈ X is in αCl[γ,γ′ ](A) [1; Definition 3.33],

if (Uγ ∩W γ′
) ∩A 6= φ for each α-open sets U and W containing x.

Proposition 2.1 ([1; Proposition 3.45]) Let A be any subset of a topological
space (X, τ). Then, X \ α[γ,γ′ ]-Int(A) = α[γ,γ′ ]-Cl(X \A).

Theorem 2.2 ([1; Theorem 3.38]) If γ and γ
′

are α-open operations and A a
subset of (X, τ). Then, we have αCl[γ,γ′ ](αCl[γ,γ′ ](A)) = αCl[γ,γ′ ](A).

Proposition 2.3 ([1; Proposition 3.14]) Let A be any subset of a topological
space (X, τ). If A is [γ, γ

′
]-open [5], then A is α[γ,γ′ ]-open.

Remark 2.4 ([1; Remark 3.5]) If γ and γ
′

are α-regular operations, then αO(X, τ)[γ,γ′ ]

forms a topology on X.

Proposition 2.5 ([1; Proposition 3.17]) Let A and B be any subsets of a topo-
logical space (X, τ). If A is αγ-open and B is αγ′ -open, then A ∩ B is α[γ,γ′ ]-
open.

Definition 2.6 ([1; Definition 4.1]) A function f : (X, τ)→ (Y, σ) is said to be
(α[γ,γ′ ], α[β,β′ ])-continuous if for each point x ∈ X and each α-open sets W and

S of (Y, σ) containing f(x) there exist α-open sets U and V of (X, τ) containing

x such that f(Uγ ∩ V γ
′

) ⊆W β ∩ Sβ′
.

Definition 2.7 ([1; Definition 4.11]) A function f : (X, τ) → (Y, σ) is said
to be (α[γ,γ′ ], α[β,β′ ])-closed if for each α[γ,γ′ ]-closed set A of (X, τ), f(A) is

α[β,β′ ]-closed in (Y, σ).



3 α[γ,γ′ ]-g.Closed Sets

In this section, we define and study some properties of α[γ,γ′ ]-g.closed sets.

Definition 3.1 A subset A of (X, τ) is said to be an α[γ,γ′ ]-generalized closed

(briefly, α[γ,γ′ ]-g.closed) set if α[γ,γ′ ]-Cl(A) ⊆ U whenever A ⊆ U and U is an

α[γ,γ′ ]-open set in (X, τ).

Remark 3.2 It is clear that every α[γ,γ′ ]-closed set is α[γ,γ′ ]-g.closed. But the
converse is not true in general as it is shown in the following example.

Example 3.3 Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, {a, c}, X}. For
each A ∈ αO(X, τ), we define two operations γ and γ

′
, respectively, by Aγ =

Aγ
′

= A if A ∈ B; Aγ = Aγ
′

= X if A /∈ B, where B = {{b}, {a, c}}. Now,
if we let A = {a}, since the only α[γ,γ′ ]-open supersets of A are {a, c} and X,
then A is α[γ,γ′ ]-g.closed. But it is easy to see that A is not α[γ,γ′ ]-closed.

Proposition 3.4 If A is γ-open and α[γ,γ′ ]-g.closed then A is α[γ,γ′ ]-closed.

Proof. As every γ-open set is α[γ,γ′ ]-open and A ⊆ A, we have α[γ,γ′ ]-Cl(A) ⊆
A, also A ⊆ α[γ,γ′ ]-Cl(A), therefore α[γ,γ′ ]-Cl(A) = A. That is, A is α[γ,γ′ ]-
closed.

Remark 3.5 If A is α[γ,γ′ ]-open and α[γ,γ′ ]-g.closed then A is α[γ,γ′ ]-closed.

Proposition 3.6 The intersection of an α[γ,γ′ ]-g.closed set and an α[γ,γ′ ]-closed
set is always α[γ,γ′ ]-g.closed.

Proof. Let A be an α[γ,γ′ ]-g.closed set and F be an α[γ,γ′ ]-closed set. Assume

that U is an α[γ,γ′ ]-open set such that A ∩ F ⊆ U . Set G = X \ F . Then we
have A ⊆ U ∪G, since G is α[γ,γ′ ]-open, then U ∪G is α[γ,γ′ ]-open and since A

is α[γ,γ′ ]-g.closed, then α[γ,γ′ ]-Cl(A) ⊆ U ∪G. Now, α[γ,γ′ ]-Cl(A∩F ) ⊆ α[γ,γ′ ]-

Cl(A)∩α[γ,γ′ ]-Cl(F ) = α[γ,γ′ ]-Cl(A)∩F ⊆ (U ∪G)∩F = (U ∩F )∪φ ⊆ U (cf.

[1; Proposition 3.32]).

Remark 3.7 The intersection of two α[γ,γ′ ]-g.closed sets need not be α[γ,γ′ ]-
g.closed in general. It is shown by the following example.

Example 3.8 Let X = {a, b, c} and τ be a discrete topology on X. For each

A ∈ αO(X, τ) we define two operations γ and γ
′
, respectively, by Aγ = Aγ

′

= A

if A = {a}; Aγ = Aγ
′

= X if A 6= {a}. Set A = {a, b} and B = {a, c}. Clearly,
A and B are α[γ,γ′ ]-g.closed sets, since X is their only α[γ,γ′ ]-open superset.

But C = {a} = A ∩ B is not α[γ,γ′ ]-g.closed, since C ⊆ {a} ∈ αO(X, τ)[γ,γ′ ]

and α[γ,γ′ ]-Cl(C) = X 6⊆ {a}.

Proposition 3.9 If γ ana γ
′

are α-regular operations on αO(X, τ). Then the
finite union of α[γ,γ′ ]-g.closed sets is always an α[γ,γ′ ]-g.closed set.



Proof. Let A and B be two α[γ,γ′ ]-g.closed sets, and let A∪B ⊆ U , where U is

α[γ,γ′ ]-open. Since A and B are α[γ,γ′ ]-g.closed sets, we have α[γ,γ′ ]-Cl(A) ⊆ U
and α[γ,γ′ ]-Cl(B) ⊆ U ; and so α[γ,γ′ ]-Cl(A) ∪ α[γ,γ′ ]-Cl(B) ⊆ U . But, we have

α[γ,γ′ ]-Cl(A) ∪ α[γ,γ′ ]-Cl(B) = α[γ,γ′ ]-Cl(A ∪ B) (cf. [1; Proposition 3.32]).

Therefore α[γ,γ′ ]-Cl(A ∪B) ⊆ U and so A ∪B is an α[γ,γ′ ]-g.closed set.

Remark 3.10 The union of two α[γ,γ′ ]-g.closed sets need not be α[γ,γ′ ]-g.closed
in general. It is shown by the following example.

Example 3.11 Let X = {a, b, c} and τ be a discrete topology on X. For each
A ∈ αO(X, τ) we define two operations γ and γ

′
, respectively, by Aγ = A if

A ∈ B; Aγ = X if A /∈ B, where B = {{a, b}, {a, c}, {b, c}}; and Aγ
′

= X. Let
A = {a} and B = {b}. Here A and B are α[γ,γ′ ]-g.closed but A ∪B = {a, b} is

not α[γ,γ′ ]-g.closed, since {a, b} is α[γ,γ′ ]-open and α[γ,γ′ ]-Cl({a, b}) = X.

Proposition 3.12 If a subset A of (X, τ) is α[γ,γ′ ]-g.closed and A ⊆ B ⊆
α[γ,γ′ ]-Cl(A), then B is an α[γ,γ′ ]-g.closed set in (X, τ).

Proof. Let U be an α[γ,γ′ ]-open set of (X, τ) such that B ⊆ U . Since A is

α[γ,γ′ ]-g.closed, we have α[γ,γ′ ]-Cl(A) ⊆ U . Now, by [1; Proposition 3.32] and

assumptions, it is shown that α[γ,γ′ ]-Cl(A) ⊆ α[γ,γ′ ]-Cl(B) ⊆ α[γ,γ′ ]-Cl[α[γ,γ′ ]-

Cl(A)] = α[γ,γ′ ]-Cl(A) ⊆ U ; and so α[γ,γ′ ]-Cl(B) ⊆ U . Therefore, B is an

α[γ,γ′ ]-g.closed set of (X, τ).

Proposition 3.13 For each x ∈ X, {x} is α[γ,γ′ ]-closed or X \ {x} is α[γ,γ′ ]-

g.closed in (X, τ).

Proof. Suppose that {x} is not α[γ,γ′ ]-closed. Then X \ {x} is not α[γ,γ′ ]-open.

Let U be any α[γ,γ′ ]-open set such that X \{x} ⊆ U . Then this implies U = X;

and so α[γ,γ′ ]-Cl(X \ {x}) ⊆ U . Hence X \ {x} is α[γ,γ′ ]-g.closed.

Proposition 3.14 The following statements (1), (2) and (3) are equivalent for
a subset A of (X, τ).

1. A is α[γ,γ′ ]-g.closed in (X, τ).

2. α[γ,γ′ ]-Cl({x}) ∩A 6= φ holds for every x ∈ α[γ,γ′ ]-Cl(A).

3. α[γ,γ′ ]-Cl(A) \A does not contain any non-empty α[γ,γ′ ]-closed set.

Proof. (1) ⇒ (2). Suppose that there exists a point x ∈ α[γ,γ′ ]-Cl(A) such

that α[γ,γ′ ]-Cl({x}) ∩ A = φ. Since α[γ,γ′ ]-Cl({x}) is α[γ,γ′ ]-closed (cf. [1;

Proposition 3.32]), X \ α[γ,γ′ ]-Cl({x}) is an α[γ,γ′ ]-open set of (X, τ). Since

A ⊆ X \ (α[γ,γ′ ]-Cl({x})) and A is α[γ,γ′ ]-g.closed, this implies α[γ,γ′ ]-Cl(A) ⊆
X \ α[γ,γ′ ]-Cl({x}) holds; and hence x /∈ α[γ,γ′ ]-Cl(A). This is a contradiction.



Therefore, we conclude that α[γ,γ′ ]-Cl({x})∩A 6= φ holds for every x ∈ α[γ,γ′ ]-

Cl(A).
(2)⇒ (3). Suppose that there exists a non-empty α[γ,γ′ ]-closed set F such that

F ⊆ α[γ,γ′ ]-Cl(A) \ A; and so A ∩ F = φ. Let y ∈ F . Then, y ∈ α[γ,γ′ ]-Cl(A)

and y /∈ A. By (2), it is obtained that φ 6= α[γ,γ′ ]-Cl({y}) ∩ A ⊆ α[γ,γ′ ]-

Cl(F ) ∩ A = F ∩ A; and so F ∩ A 6= φ. This is a contradiction; and so (3) is
claimed.
(3) ⇒ (1). Let A ⊆ U , where U is α[γ,γ′ ]-open in (X, τ). If α[γ,γ′ ]-Cl(A)

is not contained in U , then α[γ,γ′ ]-Cl(A) ∩ (X \ U) 6= φ. Now, since α[γ,γ′ ]-

Cl(A)∩ (X \U) ⊆ α[γ,γ′ ]-Cl(A) \A and α[γ,γ′ ]-Cl(A)∩ (X \U) is a non-empty
α[γ,γ′ ]-closed set, we obtain a contradiction and therefore A is α[γ,γ′ ]-g.closed.

Proposition 3.15 If A is an α[γ,γ′ ]-g.closed set of a space X, then the following
are equivalent:

1. A is α[γ,γ′ ]-closed.

2. α[γ,γ′ ]-Cl(A) \A is α[γ,γ′ ]-closed.

Proof. (1) ⇒ (2). Since A is α[γ,γ′ ]-closed, then α[γ,γ′ ]-Cl(A) = A holds (cf.

[1; Proposition 3.32 (3)]); and so α[γ,γ′ ]-Cl(A) \ A = φ and the set φ is α[γ,γ′ ]-
closed.
(2)⇒ (1). Since A is α[γ,γ′ ]-g.closed, α[γ,γ′ ]-Cl(A)\A does not contain any non-

empty α[γ,γ′ ]-closed subset (cf. Proposition 3.14); and so α[γ,γ′ ]-Cl(A) \A = φ.
This shows that A is α[γ,γ′ ]-closed.

Proposition 3.16 For a space (X, τ), the following are equivalent:

1. Every subset of X is α[γ,γ′ ]-g.closed.

2. αO(X, τ)[γ,γ′ ] = αC(X, τ)[γ,γ′ ].

Proof. (1) ⇒ (2). Let U ∈ αO(X, τ)[γ,γ′ ]. Then, by hypothesis, U is α[γ,γ′ ]-

g.closed which implies that α[γ,γ′ ]-Cl(U) ⊆ U , so, α[γ,γ′ ]-Cl(U) = U . Thus, we

have U ∈ αC(X, τ)[γ,γ′ ]; and so αO(X, τ)[γ,γ′ ] ⊆ αC(X, τ)[γ,γ′ ]. Conversely, let

V ∈ αC(X, τ)[γ,γ′ ]. Then, X \ V ∈ αO(X, τ)[γ,γ′ ]. By using the above result,

it is shown that V ∈ αO(X, τ)[γ,γ′ ]; and so αC(X, τ)[γ,γ′ ] ⊆ αO(X, τ)[γ,γ′ ].

Therefore, we have the proof of (2).
(2) ⇒ (1). If A is a subset of a space (X, τ) such that A ⊆ U where U ∈
αO(X, τ)[γ,γ′ ], then U ∈ αC(X, τ)[γ,γ′ ]. Therefore α[γ,γ′ ]-Cl(A) ⊆ α[γ,γ′ ]-

Cl(U) = U which shows that A is α[γ,γ′ ]-g.closed.

Definition 3.17 A subset A of X is α[γ,γ′ ]-g.open if its complement X \ A is

α[γ,γ′ ]-g.closed in (X, τ).

Remark 3.18 It is clear that every α[γ,γ′ ]-open set is α[γ,γ′ ]-g.open. But the
converse is not true in general as it is shown in the following example.



Example 3.19 Consider Example 3.3, if A = {b, c} then A is α[γ,γ′ ]-g.open
but not α[γ,γ′ ]-open.

Proposition 3.20 A subset A of (X, τ) is α[γ,γ′ ]-g.open if and only if F ⊆
α[γ,γ′ ]-Int(A) whenever F ⊆ A and F is α[γ,γ′ ]-closed in (X, τ).

Proof. By Definition 3.17 and Proposition 2.1, the proof is obtained.

Remark 3.21 The union of two α[γ,γ′ ]-g.open sets need not be α[γ,γ′ ]-g.open
in general. It is shown by the following example.

Example 3.22 Consider Example 3.8, if A = {b} and B = {c} then A and B
are α[γ,γ′ ]-g.open sets in X, but A ∪ B = {b, c} is not an α[γ,γ′ ]-g.open set in
X.

Proposition 3.23 Let γ and γ
′

be an α-regular operations on αO(X, τ), and
let A and B be two α[γ,γ′ ]-g.open sets in a space (X, τ). Then A ∩ B is also
α[γ,γ′ ]-g.open.

Proof. By Definition 3.17 and Proposition 3.9, it is proved.

Proposition 3.24 Every singleton point set in a space (X, τ) is either α[γ,γ′ ]-
g.open or α[γ,γ′ ]-closed.

Proof. By Definition 3.17 and Proposition 3.13, it is proved.

Proposition 3.25 If α[γ,γ′ ]-Int(A) ⊆ B ⊆ A and A is α[γ,γ′ ]-g.open, then B
is α[γ,γ′ ]-g.open.

Proof. By Definition 3.17 and Propositions 2.1, 3.12, the proof is obtained.

4 α[γ,γ′ ]-Separations Spaces

In this section we introduce α[γ,γ′ ]-Ti spaces (i = 0, 12 , 1, 2) and investigate
relations among these spaces.

Definition 4.1 A topological space (X, τ) is said to be α[γ,γ′ ]-T 1
2

if every α[γ,γ′ ]-
g.closed set is α[γ,γ′ ]-closed.

Remark 4.2 It follows from Remark 3.2 that (X, τ) is α[γ,γ′ ]-T 1
2

if and only if
the α[γ,γ′ ]-g.closedness coincides with the α[γ,γ′ ]-closedness.

Definition 4.3 A topological space (X, τ) is said to be α[γ,γ′ ]-T0 if for each pair
of distinct points x, y in X, there exist α-open sets U and V such that x ∈ U ∩V
and y /∈ Uγ ∩ V γ

′

, or y ∈ U ∩ V and x /∈ Uγ ∩ V γ
′

.



Definition 4.4 A topological space (X, τ) is said to be α[γ,γ′ ]-T1 if for each pair
of distinct points x, y in X, there exist α-open sets U and V containing x and

α-open sets W and S containing y such that y /∈ Uγ ∩ V γ
′

and x /∈W γ ∩ Sγ
′

.

Definition 4.5 A topological space (X, τ) is said to be α[γ,γ′ ]-T2 if for each pair
of distinct points x, y in X, there exist α-open sets U and V containing x and

α-open sets W and S containing y such that (Uγ ∩ V γ
′

) ∩ (W γ ∩ Sγ
′

) = φ.

Remark 4.6 For given two distinct points x and y, the α[γ,γ′ ]-T0-axiom re-
quires that there exist α-open sets U , V , W and S satisfying one of conditions
(1), (2), (3) and (4):

1. x ∈ U ∩ V , y ∈W ∩ S, y /∈ Uγ ∩ V γ
′

and x /∈W γ ∩ Sγ
′

.

2. x ∈ U ∩ V , x ∈W ∩ S, y /∈ Uγ ∩ V γ
′

and y /∈W γ ∩ Sγ
′

.

3. y ∈ U ∩ V , y ∈W ∩ S, x /∈ Uγ ∩ V γ
′

and x /∈W γ ∩ Sγ
′

.

4. y ∈ U ∩ V , x ∈W ∩ S, x /∈ Uγ ∩ V γ
′

and y /∈W γ ∩ Sγ
′

.

Remark 4.7 (1) A topological space (X, τ) is α[γ,γ′ ]-T0 if and only if (2) for
each distinct points x, y in X, there exists an α-open set W such that x ∈ W
and y /∈W γ ∩W γ

′

, or y ∈W and x /∈W γ ∩W γ
′

.

Proposition 4.8 A topological space (X, τ) is α[γ,γ′ ]-T 1
2

if and only if for each

x ∈ X, {x} is either α[γ,γ′ ]-closed or α[γ,γ′ ]-open.

Proof. (Necessity) Suppose {x} is not α[γ,γ′ ]-closed. Then by Proposition 3.13,

X \ {x} is α[γ,γ′ ]-g.closed. Since (X, τ) is α[γ,γ′ ]-T 1
2
, X \ {x} is α[γ,γ′ ]-closed,

that is {x} is α[γ,γ′ ]-open.

(Sufficiency) Let A be any α[γ,γ′ ]-g.closed set in (X, τ) and x ∈ α[γ,γ′ ]-Cl(A).
It suffices to prove that x ∈ A for the following two cases:

Case 1. {x} is α[γ,γ′ ]-closed: for this case, by Proposition 3.14, it is shown

that {x} 6⊆ α[γ,γ′ ]-Cl(A) \A; and so x ∈ A.

Case 2. {x} is α[γ,γ′ ]-open: for this case, we have that {x} ∩ A 6= φ (cf. [1;

Proposition 3.31]); and so x ∈ A.
Hence, A is α[γ,γ′ ]-closed; and so (X, τ) is α[γ,γ′ ]-T 1

2
.

Proposition 4.9 Let γ and γ
′

be α-open operations. Then, a topological space
(X, τ) is α[γ,γ′ ]-T0 if and only if for each pair of distinct points x, y of X,

αCl[γ,γ′ ]({x}) 6= αCl[γ,γ′ ]({y}).

Proof. (Necessity) Let x, y be any two distinct points of X. Then, there exist

α-open sets U and V such that x ∈ U∩V and y /∈ Uγ∩V γ
′

, or x /∈ Uγ∩V γ
′

and
y ∈ U ∩V . For the first case, we have that (Uγ ∩V γ′

)∩{y} = φ and this implies
that x /∈ αCl[γ,γ′ ]({y}). For the final case, we have that y /∈ αCl[γ,γ′ ]({x}).



Consequently, for the distinct points x and y, αCl[γ,γ′ ]({x}) 6= αCl[γ,γ′ ]({y}).
(Sufficiency) By hypothesis, there exists a point z ∈ X satisfying the following
two cases:

Case 1. z ∈ αCl[γ,γ′ ]({x}) but z /∈ αCl[γ,γ′ ]({y}): we claim that x /∈
αCl[γ,γ′ ]({y}). Indeed, suppose that x ∈ αCl[γ,γ′ ]({y}) holds; then, by Theorem

2.2, it is shown that αCl[γ,γ′ ]({x}) ⊆ αCl[γ,γ′ ]({y}); this contradicts the fact

that z /∈ αCl[γ,γ′ ]({y}). Thus, x /∈ αCl[γ,γ′ ]({y}); and so there exist α-open

sets U and V such that x ∈ U ∩ V and (Uγ ∩ V γ′
) ∩ {y} = φ.

Case 2. z ∈ αCl[γ,γ′ ]({y}) but z /∈ αCl[γ,γ′ ]({x}): for this case, by similar

way to Case 1 above, it is shown that y /∈ αCl[γ,γ′ ]({x}); and so there exist U
′

and V
′

such that y ∈ U ′ ∩ V ′
and (U

′γ ∩ V ′γ′
) ∩ {x} = φ.

Therefore, by Case 1 and Case 2, it is proved that (X, τ) is α[γ,γ′ ]-T0.

Proposition 4.10 A topological space (X, τ) is α[γ,γ′ ]-T1 if and only if for each

x ∈ X, {x} is α[γ,γ′ ]-closed.

Proof. (Necessity) Let x be a point of X. Suppose y ∈ X \ {x}. Then, there

exist α-open sets W and S containing y and x /∈ W γ ∩ Sγ
′

. Consequently

y ∈W γ ∩ Sγ
′

⊆ X \ {x}, that is X \ {x} is α[γ,γ′ ]-open.

(Sufficiency) Let x, y ∈ X with x 6= y. Now x 6= y implies y ∈ X \ {x} and
x ∈ X \ {y}. Hence X \ {y} is an α[γ,γ′ ]-open set containing x, so there exist

α-open sets U and V containing x such that Uγ ∩ V γ
′

⊆ X \ {y}. Similarly
X \ {x} is an α[γ,γ′ ]-open set containing y, so there exist α-open sets W and

S containing y such that W γ ∩ Sγ
′

⊆ X \ {x}. Accordingly X is an α[γ,γ′ ]-T1
space.

Proposition 4.11 The following statements are equivalent for a topological
space (X, τ) with an operations γ and γ

′
on αO(X, τ).

1. (X, τ) is α[γ,γ′ ]-T2.

2. Let x ∈ X. For each y 6= x, there exist α-open sets U and V containing x

such that y /∈ αCl[γ,γ′ ](U
γ ∩ V γ

′

).

3. For each x ∈ X, ∩{αCl[γ,γ′ ](U
γ ∩ V γ

′

) : U, V ∈ αO(X, τ) and x ∈
U ∩ V } = {x}.

Proof. (1)⇒ (2). Let x ∈ X. For each y 6= x, it follows from (1) that there exist
α-open sets U and V containing x and α-open sets W and S containing y such

that (Uγ ∩ V γ
′

) ∩ (W γ ∩ Sγ
′

) = φ. This implies that y /∈ αCl[γ,γ′ ](U
γ ∩ V γ

′

).

(2)⇒ (3). Set B(z) = ∩{αCl[γ,γ′ ](U
γ ∩V γ

′

) : U, V ∈ αO(X, τ) and z ∈ U ∩V },
where z ∈ X. Let x ∈ X. We claim that B(x) = {x}. Indeed, y be any point
of X with x 6= y. It follows from (2) that there exist α-open sets U and V such



that x ∈ U ∩ V and y /∈ αCl[γ,γ′ ](U
γ ∩ V γ

′

). Thus, we have that y /∈ B(x) and

so {x} = B(x), because {x} ⊆ B(x) ⊆ αCl[γ,γ′ ](U
γ ∩ V γ

′

) hold.

(3)⇒ (1). Let x, y ∈ X with x 6= y. By (3), it is assumed that B(x) = {x} where
B(x) is defined in the proof of (2)⇒ (3) above. Then, there exist α-open sets U

and V such that y /∈ αCl[γ,γ′ ](U
γ∩V γ

′

); and hence (Uγ∩V γ
′

)∩(W γ∩Sγ
′

) = φ

for some α-open sets W and S containing y. Therefore, (X, τ) is α[γ,γ′ ]-T2.

Proposition 4.12 (i) If (X, τ) is α[γ,γ′ ]-T2, then it is α[γ,γ′ ]-T1.

(ii) If (X, τ) is α[γ,γ′ ]-T1, then it is α[γ,γ′ ]-T 1
2
.

(iii) If (X, τ) is α[γ,γ′ ]-T 1
2
, then it is α[γ,γ′ ]-T0.

Proof. (i) The proof is straightforward from Definitions 4.4 and 4.5.
(ii) The proof is obvious by Propositions 4.8 and 4.10.
(iii) Let x and y be any two distinct points of (X, τ). By Proposition 4.8,

the singleton {x} is α[γ,γ′ ]-closed or α[γ,γ′ ]-open.

Case 1. {x} is α[γ,γ′ ]-closed: for this case, X \ {x} is an α[γ,γ′ ]-open set
containing y; and so there exist α-open sets W and S containing y such that

W γ ∩ Sγ
′

⊆ X \ {x}. Thus we have that y ∈W ∩ S and x /∈W γ ∩ Sγ
′

.
Case 2. {x} is α[γ,γ′ ]-open: for this case, there exist α-open sets U and

V containing x such that Uγ ∩ V γ
′

⊆ {x}. This implies that x ∈ U ∩ V and

y /∈ Uγ ∩ V γ
′

.
Therefore, we have X is α[γ,γ′ ]-T0.

Remark 4.13 The following series of examples show that all converses of Propo-
sition 4.12 can not be reserved.

Example 4.14 Let (X, τ), γ and γ
′

be the same space and the same operations
as in Example 3.11. Then, it is shown directly that each singleton is α[γ,γ′ ]-

closed in (X, τ). By Proposition 4.10, (X, τ) is α[γ,γ′ ]-T1. But, we can show

that (Uγ ∩ V γ
′

) ∩ (W γ ∩ Sγ
′

) 6= φ holds for any α-open sets U, V, W and S.
This implies (X, τ) is not α[γ,γ′ ]-T2

Example 4.15 Let X = {a, b, c} and τ = {φ,X, {a}, {a, b}, {a, c}} be a topol-
ogy on X. For each A ∈ αO(X, τ) we define two operations γ and γ

′
, respec-

tively, by Aγ = Aγ
′

= A. Then, it is shown directly that each singleton is
α[γ,γ′ ]-closed or α[γ,γ′ ]-open in (X, τ). By Proposition 4.8, (X, τ) is α[γ,γ′ ]-T 1

2
.

However, by Proposition 4.10, (X, τ) is not α[γ,γ′ ]-T1, in fact, a singleton {a}
is not α[γ,γ′ ]-closed.

Example 4.16 Let X = {a, b, c} and τ = {φ,X, {a}, {a, b}} be a topology on
X. For each A ∈ αO(X, τ) we define two operations γ and γ

′
, respectively, by

Aγ = Aγ
′

= A if b /∈ A; Aγ = Aγ
′

= X if b ∈ A. Then, (X, τ) is not α[γ,γ′ ]-T 1
2

because a singleton {c} is neither α[γ,γ′ ]-open nor α[γ,γ′ ]-closed. It is shown

directly that (X, τ) is α[γ,γ′ ]-T0.



Remark 4.17 From Proposition 4.12 and Examples 4.14, 4.15 and 4.16, the
following implications hold and none of the implications is reversible:

α[γ,γ′ ]-T2
// α[γ,γ′ ]-T1

// α[γ,γ′ ]-T 1
2

// α[γ,γ′ ]-T0,

where A→ B represents that A implies B.

Proposition 4.18 If (X, τ) is α[γ,γ′ ]-Ti, then it is α-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs for i = 0, 2 follow from definitions. The proof for i = 1 (resp.
i = 1

2 ) follows from [1; Proposition 3.7] and Proposition 4.10 (resp. Proposition
4.8).

Remark 4.19 The following example shows that all converses of Proposition
4.18 can not be reserved.

Example 4.20 Let X = {a, b, c} and τ be a discrete topology on X. For each

A ∈ αO(X, τ) we define two operations γ and γ
′
, respectively, by Aγ = Aγ

′

= X.
Then, (X, τ) is α-Ti but it is not α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proposition 4.21 If (X, τ) is αγ-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs for i = 0, 1, 2 follow from Definitions 4.3, 4.4, 4.5 and [6;
Definition 3.6]. The proof for i = 1

2 is obtained as follows: Let x ∈ X. Then,{x}
is αγ-open or αγ-closed by [6; Theorem 3.2]. So, {x} is α[γ,γ′ ]-open or α[γ,γ′ ]-

closed because every αγ-open is α[γ,γ′ ]-open (cf. [1; Proposition 3.18]). The
proof is completed from Proposition 4.8.

Remark 4.22 The following series of examples show that all converses of Propo-
sition 4.21 can not be reserved.

Example 4.23 Let X = {a, b, c} and τ be a discrete topology on X.
(i) For each A ∈ αO(X, τ) we define two operations γ and γ

′
, respec-

tively, by Aγ = Aγ
′

= A if A ∈ B; Aγ = Aγ
′

= X if A /∈ B, where
B = {{a, b}, {a, c}, {b, c}}. Then, (X, τ) is α[γ,γ′ ]-T2 but not αγ-T2.

(ii) For each A ∈ αO(X, τ) we define two operations γ and γ
′
, respectively,

by Aγ = A if A ∈ B; Aγ = X if A /∈ B, where B = {{a, b}, {a, c}}; and

Aγ
′

= A if A = {b, c}; Aγ
′

= X if A 6= {b, c}. Then, (X, τ) is α[γ,γ′ ]-Ti but not

αγ-Ti, where i = 1
2 , 1.

(iii) For each A ∈ αO(X, τ) we define two operations γ and γ
′
, respectively,

by Aγ = A if A = {a}; Aγ = X if A 6= {a}; and Aγ
′

= A if A = {b}; Aγ
′

= X
if A 6= {b}. Then, (X, τ) is α[γ,γ′ ]-T0 but not αγ-T0.

Proposition 4.24 If (X, τ) is [γ, γ
′
]-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.



Proof. The proofs for i = 0, 2 follow from Proposition 2.3, Definitions 4.3, 4.5
and [5; Definitions 5.2, 5.4]. The proof for i = 1 (resp. i = 1

2 ) follows from [5;
Proposition 5.8] (resp. [5; Proposition 5.7]) and Proposition 2.3.

Remark 4.25 The following example show that the converses of Proposition
4.24 can not be reserved, for i = 0, 12 . We propose the following two questions
since we could not find counter examples:

Are the spaces α[γ,γ′ ]-T1 and [γ, γ
′
]-T1 equivalent or not?

What about α[γ,γ′ ]-T2 and [γ, γ
′
]-T2?

Example 4.26 Let X = {a, b, c} and τ = {φ,X, {a}} be a topology on X.
For each A ∈ αO(X, τ) we define two operations γ and γ

′
, respectively, by

Aγ = Aγ
′

= A. Then, (X, τ) is α[γ,γ′ ]-Ti but not [γ, γ
′
]-Ti, where i = 0, 12 .

Proposition 4.27 If (X, τ) is (γ, γ
′
)-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs follow from [5; Proposition 6.12] and Proposition 4.24.

Remark 4.28 The converse of Proposition 4.27 can not reversible by [[5]; Re-
mark 6.13, Examples 6.14 and 6.15] and Proposition 4.24.

Proposition 4.29 If (X, τ) is γ-Ti, then it is α[γ,γ′ ]-Ti, where i = 0, 12 , 1, 2.

Proof. The proofs follow from [5; Proposition 6.1] and Proposition 4.24.

Remark 4.30 The converse of Proposition 4.29 can not reversible by [5; Re-
mark 6.2] and Proposition 4.24.

Remark 4.31 From Propositions 4.12, 4.18, 4.21, 4.24, 4.27, 4.29, [10; Re-
mark 2.1], and [4; p.180], for distinct operations γ and γ

′
we have the following

diagram. We note that some implications in the following diagram are not re-
versible by Remarks 4.13, 4.19, 4.22, 4.25, 4.28 and 4.30:



γ-T 1
2

//

��999999999999999999
γ-T0

��9999999999999999999

γ-T1

44iiiiiiiiiiiiiiiiiiiiiii

**TTTTTTTTTTTTTTTTTTTTT (γ, γ
′
)-T2 //

��

(γ, γ
′
)-T1 ////

��

(γ, γ
′
)-T 1

2

��

// (γ, γ
′
)-T0

��
γ-T2 //

OO

[γ, γ
′
]-T2 //

��

[γ, γ
′
]-T1 ////

��

[γ, γ
′
]-T 1

2

��

// [γ, γ
′
]-T0

��
αγ-T2

��

// α[γ,γ′ ]-T2
//

��

α[γ,γ′ ]-T1
//

��

α[γ,γ′ ]-T 1
2

��

// α[γ,γ′ ]-T0

��
αγ-T1

44iiiiiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUUUUUUU α-T2 // α-T1 // α-T 1
2

// α-T0

αγ-T 1
2

//

AA������������������
αγ-T0,

AA������������������

where A→ B represents that A implies B.

Proposition 4.32 Suppose that γ and γ
′

are α-regular operations on αO(X, τ).
A space (X, τ) is α[γ,γ′ ]-Ti if and only if an associated space (X,αO(X, τ)[γ,γ′ ])

is Ti, where i = 1, 1/2.

Proof. It follows from Remark 2.4 that a subset A is α[γ,γ′ ]-open in (X, τ) if and

only if A is open in (X,αO(X, τ)[γ,γ′ ]). Therefore, the proof for i = 1
2 (resp.

i = 1) follows from Propositions 4.8 (resp. Proposition 4.10).

Proposition 4.33 Let γ and γ
′

be α-regular operations on αO(X, τ).
(i) If (X,αO(X, τ)[γ,γ′ ]) is Ti, then (X, τ) is α[γ,γ′ ]-Ti, where i = 0, 2.

(ii) Moreover, suppose that γ and γ
′

are α-open operations on αO(X, τ).
If (X, τ) is α[γ,γ′ ]-Ti, then (X,αO(X, τ)[γ,γ′ ]) is Ti, where i = 0, 2.

Proof. (i) The proof for i = 0 (resp. i = 2) follows from the T0-separation
property (resp. Hausdorffness) of (X,αO(X, τ)[γ,γ′ ]), the concept of α[γ,γ′ ]-

open sets (cf. [1; Definition 3.1]) and Definton 4.3 (resp. Definition 4.5).
(ii) Let x and y be distinct points of X. For i = 2, since (X, τ) is α[γ,γ′ ]-

T2, there exist α-open sets U1 and V1 containing x and α-open sets W1 and

S1 containing y such that (Uγ1 ∩ V
γ
′

1 ) ∩ (W γ
1 ∩ S

γ
′

1 ) = φ. Since γ and γ
′

are
α-open operations on αO(X, τ), so there exist αγ-open sets U,W and αγ′ -open

sets V, S such that x ∈ U ∩ V ⊆ Uγ1 ∩ V
γ
′

1 , y ∈ W ∩ S ⊆ W γ
1 ∩ S

γ
′

1 and

(U ∩ V )∩ (W ∩ S) ⊆ (Uγ1 ∩ V
γ
′

1 )∩ (W γ
1 ∩ S

γ
′

1 ) = φ. It follows from Proposition
2.5, that U ∩ V ∈ αO(X, τ)[γ,γ′ ] and W ∩ S ∈ αO(X, τ)[γ,γ′ ]. This implies that



(X,αO(X, τ)[γ,γ′ ]) is T2. The proof for i = 0 follows from Definition 4.3, and
Proposition 2.5.

Proposition 4.34 If f : (X, τ) → (Y, σ) is (α[γ,γ′ ], α[β,β′ ])-continuous and

(α[γ,γ′ ], α[β,β′ ])-closed, then

(i) f(A) is α[β,β′ ]-g.closed for every α[γ,γ′ ]-g.closed set A of (X, τ); and

(ii) f−1(B) is α[γ,γ′ ]-g.closed for every α[β,β′ ]-g.closed set B of (Y, σ).

Proof. (i) Let V be an α[β,β′ ]-open set containing f(A). Then, f−1(V ) is an

α[γ,γ′ ]-open set containing A (cf. [1; Theorem 4.2]) and so α[γ,γ′ ]-Cl(A) ⊆
f−1(V ). It follows that f(α[γ,γ′ ]-Cl(A)) is an α[β,β′ ]-closed set (cf. Defini-

tion 2.7) and hence α[β,β′ ]-Cl(f(A)) ⊆ α[β,β′ ]-Cl(f(α[γ,γ′ ]-Cl(A))) = f(α[γ,γ′ ]-

Cl(A)) ⊆ V . This implies that f(A) is α[β,β′ ]-g.closed.

(ii) Let U be any α[γ,γ′ ]-open set such that f−1(B) ⊆ U . Let F = α[γ,γ′ ]-

Cl(f−1(B)) ∩ (X \ U), then F is α[γ,γ′ ]-closed in (X, τ). This implies f(F )

is α[β,β′ ]-closed set in (Y, σ) (cf. Definition 2.7). Since f(F ) = f(α[γ,γ′ ]-

Cl(f−1(B))∩ (X \U)) ⊆ α[β,β′ ]-Cl(B)∩f(X \U) ⊆ α[β,β′ ]-Cl(B)∩ (Y \B) (cf.

[1; Theorem 4.2]), it is shown that α[β,β′ ]-Cl(B) \ B contains an α[β,β′ ]-closed

set f(F ). It follows from Proposition 3.14 that f(F ) = φ and hence F = φ.
Therefore α[γ,γ′ ]-Cl(f

−1(B)) ⊆ U . This shows that f−1(B) is α[γ,γ′ ]-g.closed.

Theorem 4.35 Suppose that there exists an (α[γ,γ′ ], α[β,β′ ])-continuous and

(α[γ,γ′ ], α[β,β′ ])-closed function, say f : (X, τ)→ (Y, σ).

(i) If f is injective and (Y, σ) is α[β,β′ ]-T 1
2
, then (X, τ) is α[γ,γ′ ]-T 1

2
.

(ii) If f is surjective and (X, τ) is α[γ,γ′ ]-T 1
2
, then (Y, σ) is α[β,β′ ]-T 1

2
.

Proof. (i) Let A be an α[γ,γ′ ]-g.closed set of (X, τ). We claim that A is α[γ,γ′ ]-

closed in (X, τ). By Proposition 4.34 (i), f(A) is α[β,β′ ]-g.closed. Since (Y, σ)

is α[β,β′ ]-T 1
2
, this implies that f(A) is α[β,β′ ]-closed. Since f is (α[γ,γ′ ], α[β,β′ ])-

continuous and injective, then, we have A = f−1(f(A)) is α[γ,γ′ ]-closed (cf. [1;

Theorem 4.2]). Hence (X, τ) is α[γ,γ′ ]-T 1
2
.

(ii) Let B be an α[β,β′ ]-g.closed set in (Y, σ). By Proposition 4.34 (ii) and

assumptions, it is shown that B = f(f−1(B)) is α[γ,γ′ ]-closed; and hence (Y, σ)
is α[β,β′ ]-T 1

2
.

Theorem 4.36 Suppose that there exists an (α[γ,γ′ ], α[β,β′ ])-continuous injec-

tion. If (Y, σ) is α[β,β′ ]-Ti, then (X, τ) is α[γ,γ′ ]-Ti, where i = 0, 1, 2.

Proof. Let f : (X, τ)→ (Y, σ) be the (α[γ,γ′ ], α[β,β′ ])-continuous injection. The

proof for i = 1 is as follows: Let x ∈ X. Then, by Proposition 4.10, {f(x)}
is α[β,β′ ]-closed in (Y, σ). By [1; Theorem 4.2] and Proposition 4.10, {x} is

α[γ,γ′ ]-closed and hence (X, τ) is α[γ,γ′ ]-T1. The proofs for i = 0, 2 follow from

Definitions 4.3, 4.5 and [1; Theorem 4.2].



Definition 4.37 A function f : (X, τ) → (Y, σ) is called an (α[γ,γ′ ], α[β,β′ ])-

homeomorphism if f is an (α[γ,γ′ ], α[β,β′ ])-continuous bijection and f−1 : (Y, σ)→
(X, τ) is (α[β,β′ ], α[γ,γ′ ])-continuous. The collection of all (α[γ,γ′ ], α[γ,γ′ ])-

homeomorphisms from (X, τ) onto itself is denoted by α[γ,γ′ ]-h(X, τ).

Theorem 4.38 (i) Suppose that there exists an (α[γ,γ′ ], α[β,β′ ])-homeomorphism

between topological spaces (X, τ) and (Y, σ). Then, (X, τ) is α[γ,γ′ ]-Ti if and

only if (Y, σ) is α[β,β′ ]-Ti, where i = 0, 12 , 1, 2.

(ii) For each topological space (X, τ), the collection α[γ,γ′ ]-h(X, τ) forms a
group under the composition of functions.

(iii) For an (α[γ,γ′ ], α[β,β′ ])-homeomorphism f : (X, τ)→ (Y, σ), there exists

a group isomorphism, say f∗ : α[γ,γ′ ]-h(X, τ)→ α[β,β′ ]-h(Y, σ).

Proof. Put HX = α[γ,γ′ ]-h(X, τ).

(i) This follows from Theorems 4.35, 4.36 and Definition 4.37.
(ii) First we prove that: if a ∈ HX and b ∈ HX , then b ◦ a ∈ HX . Indeed,

since a and b (resp. a−1 and b−1) are α[γ,γ′ ]-continuous bijectons, b ◦ a (resp.

a−1 ◦ b−1 = (b ◦ a)−1) is also an α[γ,γ′ ]-continuous bijection (cf. [1; Theorem

4.10]); and so b ◦ a ∈ HX , where b ◦ a : X → X is the composite functions of
a : X → X and b : X → X such that (b ◦a)(x) = b(a(x)) for every point x ∈ X.
Thus, the following binary operation ηX : HX ×HX → HX is well defined by
ηX(a, b) = b ◦ a. Putting a · b = ηX(a, b), we have the following properties:

1. (a · b) · c = a · (b · c) holds for every elements a, b, c ∈ HX ;

2. for all element a ∈ HX , there exists an element e ∈ HX such that a · e =
e · a = a hold in HX ;

3. for each element a ∈ HX , there exists an element a1 ∈ HX such that
a · a1 = a1 · a = e hold in HX .

Indeed, (1) is obtained obviously; (2) is obtained by taking e = 1X and using
the fact that 1X ∈ HX , where 1X : X → X is the identity function; (3) is
obtained by taking a1 = a−1 for each a ∈ HX . Then, by definition of groups,
the pair (HX , ηX) forms a group under the composition of functions.

(iii) The required group isomorphism f∗ : HX → HY is well defined by
f∗(a) = f ◦ (a ◦ f−1) for every element a ∈ HX . Indeed, f∗(a) ∈ HY holds
for every a ∈ HX (cf. [1; Theorem 4.10]); f∗(a · b) = f ◦ (b ◦ a) ◦ f−1 =
f ◦ b ◦ f−1 ◦ f ◦ a ◦ f−1 = (f∗(b)) ◦ (f∗(a)) = f∗(a) · f∗(b) hold for every elements
a, b ∈ HX and so f∗ : HX → HY is a homomorphism. Hence f∗ : HX → HY is
the required isomorphism.
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