BIOPERATIONS ON α -SEPARATIONS AXIOMS IN TOPOLOGICAL SPACES

ALIAS B. KHALAF, SAEID JAFARI AND HARIWAN Z. IBRAHIM

Received January 11, 2016; revised April 20, 2016

Abstract

In this paper, we consider the class of $\alpha_{[\gamma,\gamma']}$ -generalized closed set in topological spaces and investigate some of their properties. We also present and study new separation axioms by using the notions of α -open and α -bioperations. Also, we analyze the relations with some well known separation axioms.

1 Introduction

The study of α -open sets was initiated by Njåstad [3]. Maheshwari et al. [8] and Maki et al. [9] introduced and studied a new separation axiom called α separation axiom. Kasahara [2] defined the concept of an operation on topological spaces and introduced α -closed graphs of an operation. Ogata [4] called the operation α as γ operation and introduced the notion of γ -open sets and used it to investigate some new separation axioms. For two operations on τ some bioperation-separation axioms were defined [7], [5]. Moreover, H.Z.Ibrahim [6] defined the concept of an operation on $\alpha O(X, \tau)$ and introduced α_{γ} -open sets and α_{γ} - T_i ($i = 0, \frac{1}{2}, 1, 2$) in topological spaces. In this paper, in Section 3, we introduce the concept of $\alpha_{[\gamma,\gamma']}$ -generalized closed sets and investigate some of its important properties. The notion of new bioperation α -separation axioms is introduced in Section 4. We compare these separation axioms with the separation axioms in [10], [4], [6], [7] and [5].

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let (X, τ) be a topological space and A be a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset Aof a topological space (X, τ) is said to be α -open [3] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is said to be α -closed. The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha Cl(A)$. The family of all α -open (resp. α -closed) sets in a topological space (X, τ) is denoted by $\alpha O(X, \tau)$ (resp. $\alpha C(X, \tau)$). An operation γ [2] on a topology τ is a

^[2010] Primary: 54A05, 54A10; Secondary: 54C05

Bioperation; α -open set; $\alpha_{[\gamma,\gamma']}$ -open set; $\alpha_{[\gamma,\gamma']}$ -g.closed set

mapping from τ in to the power set P(X) of (X, τ) such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. A subset A of (X, τ) with an operation γ on τ is called γ -open [4] if for each $x \in A$, there exists an open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. An operation $\gamma : \alpha O(X, \tau) \to P(X)$ [6] is a mapping satisfying the following property, $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X, \tau)$. A subset A of (X, τ) is called an α_{γ} -open set [6] if for each point $x \in A$, there exists an α -open set U of (X, τ) containing x such that $U^{\gamma} \subseteq A$. We denote the set of all α_{γ} -open sets of (X, τ) by $\alpha O(X,\tau)_{\gamma}$. An operation γ on $\alpha O(X,\tau)$ is said to be α -regular [6] if for each point $x \in X$ and every α -open sets U and V containing x, there exists an α -open set W of (X,τ) containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. An operation γ on $\alpha O(X, \tau)$ is said to be α -open [6] if for every α -open set U of each $x \in X$, there exists an α_{γ} -open set V such that $x \in V$ and $V \subseteq U^{\gamma}$. Let γ and γ' be two operations on $\alpha O(X,\tau)$. A subset A of (X,τ) is said to be $\alpha_{[\gamma,\gamma']}$ -open [1; Definition 3.1] if for each $x \in A$ there exist α -open sets U and V of (X, τ) containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq A$. The set of all $\alpha_{[\gamma, \gamma']}$ -open sets of (X, τ) is denoted by $\alpha O(X,\tau)_{[\gamma,\gamma']}$. A subset F of (X,τ) is said to be $\alpha_{[\gamma,\gamma']}$ -closed if its complement $X \setminus F$ is $\alpha_{[\gamma,\gamma']}$ -open. The intersection of all $\alpha_{[\gamma,\gamma']}$ -closed sets containing A is called the $\alpha_{[\gamma,\gamma']}$ -closure of A and denoted by $\alpha_{[\gamma,\gamma']}$ -Cl(A). The union of all $\alpha_{[\gamma,\gamma']}$ -open sets contained in A is called the $\alpha_{[\gamma,\gamma']}$ -interior of A and denoted by $\alpha_{[\gamma,\gamma']}$ -Int(A). A point $x \in X$ is in $\alpha Cl_{[\gamma,\gamma']}(A)$ [1; Definition 3.33], if $(U^{\gamma} \cap W^{\gamma'}) \cap A \neq \phi$ for each α -open sets U and W containing x.

Proposition 2.1 ([1; Proposition 3.45]) Let A be any subset of a topological space (X, τ) . Then, $X \setminus \alpha_{[\gamma,\gamma']}$ -Int $(A) = \alpha_{[\gamma,\gamma']}$ -Cl $(X \setminus A)$.

Theorem 2.2 ([1; Theorem 3.38]) If γ and γ' are α -open operations and A a subset of (X, τ) . Then, we have $\alpha Cl_{[\gamma, \gamma']}(\alpha Cl_{[\gamma, \gamma']}(A)) = \alpha Cl_{[\gamma, \gamma']}(A)$.

Proposition 2.3 ([1; Proposition 3.14]) Let A be any subset of a topological space (X, τ) . If A is $[\gamma, \gamma']$ -open [5], then A is $\alpha_{[\gamma, \gamma']}$ -open.

Remark 2.4 ([1; Remark 3.5]) If γ and γ' are α -regular operations, then $\alpha O(X, \tau)_{[\gamma, \gamma']}$ forms a topology on X.

Proposition 2.5 ([1; Proposition 3.17]) Let A and B be any subsets of a topological space (X, τ) . If A is α_{γ} -open and B is $\alpha_{\gamma'}$ -open, then $A \cap B$ is $\alpha_{[\gamma, \gamma']}$ -open.

Definition 2.6 ([1; Definition 4.1]) A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -continuous if for each point $x \in X$ and each α -open sets W and S of (Y, σ) containing f(x) there exist α -open sets U and V of (X, τ) containing x such that $f(U^{\gamma} \cap V^{\gamma'}) \subseteq W^{\beta} \cap S^{\beta'}$.

Definition 2.7 ([1; Definition 4.11]) A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -closed if for each $\alpha_{[\gamma,\gamma']}$ -closed set A of (X, τ) , f(A) is $\alpha_{[\beta,\beta']}$ -closed in (Y, σ) .

3 $\alpha_{[\gamma,\gamma']}$ -g.Closed Sets

In this section, we define and study some properties of $\alpha_{[\gamma,\gamma']}$ -g.closed sets.

Definition 3.1 A subset A of (X, τ) is said to be an $\alpha_{[\gamma,\gamma']}$ -generalized closed (briefly, $\alpha_{[\gamma,\gamma']}$ -g.closed) set if $\alpha_{[\gamma,\gamma']}$ -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is an $\alpha_{[\gamma,\gamma']}$ -open set in (X, τ) .

Remark 3.2 It is clear that every $\alpha_{[\gamma,\gamma']}$ -closed set is $\alpha_{[\gamma,\gamma']}$ -g.closed. But the converse is not true in general as it is shown in the following example.

Example 3.3 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. For each $A \in \alpha O(X, \tau)$, we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$ if $A \in \mathbf{B}$; $A^{\gamma} = A^{\gamma'} = X$ if $A \notin \mathbf{B}$, where $\mathbf{B} = \{\{b\}, \{a, c\}\}$. Now, if we let $A = \{a\}$, since the only $\alpha_{[\gamma, \gamma']}$ -open supersets of A are $\{a, c\}$ and X, then A is $\alpha_{[\gamma, \gamma']}$ -g.closed. But it is easy to see that A is not $\alpha_{[\gamma, \gamma']}$ -closed.

Proposition 3.4 If A is γ -open and $\alpha_{[\gamma,\gamma']}$ -g.closed then A is $\alpha_{[\gamma,\gamma']}$ -closed.

Proof. As every γ -open set is $\alpha_{[\gamma,\gamma']}$ -open and $A \subseteq A$, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq A$, also $A \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(A), therefore $\alpha_{[\gamma,\gamma']}$ -Cl(A) = A. That is, A is $\alpha_{[\gamma,\gamma']}$ -closed.

Remark 3.5 If A is $\alpha_{[\gamma,\gamma']}$ -open and $\alpha_{[\gamma,\gamma']}$ -g.closed then A is $\alpha_{[\gamma,\gamma']}$ -closed.

Proposition 3.6 The intersection of an $\alpha_{[\gamma,\gamma']}$ -g.closed set and an $\alpha_{[\gamma,\gamma']}$ -closed set is always $\alpha_{[\gamma,\gamma']}$ -g.closed.

Proof. Let A be an $\alpha_{[\gamma,\gamma']}$ -g.closed set and F be an $\alpha_{[\gamma,\gamma']}$ -closed set. Assume that U is an $\alpha_{[\gamma,\gamma']}$ -open set such that $A \cap F \subseteq U$. Set $G = X \setminus F$. Then we have $A \subseteq U \cup G$, since G is $\alpha_{[\gamma,\gamma']}$ -open, then $U \cup G$ is $\alpha_{[\gamma,\gamma']}$ -open and since A is $\alpha_{[\gamma,\gamma']}$ -g.closed, then $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U \cup G$. Now, $\alpha_{[\gamma,\gamma']}$ - $Cl(A \cap F) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap \alpha_{[\gamma,\gamma']}$ - $Cl(F) = \alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap F \subseteq (U \cup G) \cap F = (U \cap F) \cup \phi \subseteq U$ (cf. [1; Proposition 3.32]).

Remark 3.7 The intersection of two $\alpha_{[\gamma,\gamma']}$ -g.closed sets need not be $\alpha_{[\gamma,\gamma']}$ -g.closed in general. It is shown by the following example.

Example 3.8 Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$ if $A = \{a\}$; $A^{\gamma} = A^{\gamma'} = X$ if $A \neq \{a\}$. Set $A = \{a, b\}$ and $B = \{a, c\}$. Clearly, A and B are $\alpha_{[\gamma,\gamma']}$ -g.closed sets, since X is their only $\alpha_{[\gamma,\gamma']}$ -open superset. But $C = \{a\} = A \cap B$ is not $\alpha_{[\gamma,\gamma']}$ -g.closed, since $C \subseteq \{a\} \in \alpha O(X, \tau)_{[\gamma,\gamma']}$ and $\alpha_{[\gamma,\gamma']}$ - $Cl(C) = X \not\subseteq \{a\}$.

Proposition 3.9 If γ and γ' are α -regular operations on $\alpha O(X, \tau)$. Then the finite union of $\alpha_{[\gamma,\gamma']}$ -g.closed sets is always an $\alpha_{[\gamma,\gamma']}$ -g.closed set.

Proof. Let A and B be two $\alpha_{[\gamma,\gamma']}$ -g.closed sets, and let $A \cup B \subseteq U$, where U is $\alpha_{[\gamma,\gamma']}$ -open. Since A and B are $\alpha_{[\gamma,\gamma']}$ -g.closed sets, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$ and $\alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq U$; and so $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cup \alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq U$. But, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cup \alpha_{[\gamma,\gamma']}$ - $Cl(B) = \alpha_{[\gamma,\gamma']}$ - $Cl(A \cup B)$ (cf. [1; Proposition 3.32]). Therefore $\alpha_{[\gamma,\gamma']}$ - $Cl(A \cup B) \subseteq U$ and so $A \cup B$ is an $\alpha_{[\gamma,\gamma']}$ -g.closed set.

Remark 3.10 The union of two $\alpha_{[\gamma,\gamma']}$ -g.closed sets need not be $\alpha_{[\gamma,\gamma']}$ -g.closed in general. It is shown by the following example.

Example 3.11 Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A$ if $A \in B$; $A^{\gamma} = X$ if $A \notin B$, where $B = \{\{a, b\}, \{a, c\}, \{b, c\}\}$; and $A^{\gamma'} = X$. Let $A = \{a\}$ and $B = \{b\}$. Here A and B are $\alpha_{[\gamma,\gamma']}$ -g.closed but $A \cup B = \{a, b\}$ is not $\alpha_{[\gamma,\gamma']}$ -g.closed, since $\{a, b\}$ is $\alpha_{[\gamma,\gamma']}$ -open and $\alpha_{[\gamma,\gamma']}$ -Cl($\{a, b\}$) = X.

Proposition 3.12 If a subset A of (X, τ) is $\alpha_{[\gamma, \gamma']}$ -g.closed and $A \subseteq B \subseteq \alpha_{[\gamma, \gamma']}$ -Cl(A), then B is an $\alpha_{[\gamma, \gamma']}$ -g.closed set in (X, τ) .

Proof. Let U be an $\alpha_{[\gamma,\gamma']}$ -open set of (X,τ) such that $B \subseteq U$. Since A is $\alpha_{[\gamma,\gamma']}$ -g.closed, we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$. Now, by [1; Proposition 3.32] and assumptions, it is shown that $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl[\alpha_{[\gamma,\gamma']}$ - $Cl(A)] = \alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq U$; and so $\alpha_{[\gamma,\gamma']}$ - $Cl(B) \subseteq U$. Therefore, B is an $\alpha_{[\gamma,\gamma']}$ -g.closed set of (X,τ) .

Proposition 3.13 For each $x \in X$, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed or $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed in (X, τ) .

Proof. Suppose that $\{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed. Then $X \setminus \{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -open. Let U be any $\alpha_{[\gamma,\gamma']}$ -open set such that $X \setminus \{x\} \subseteq U$. Then this implies U = X; and so $\alpha_{[\gamma,\gamma']}$ - $Cl(X \setminus \{x\}) \subseteq U$. Hence $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Proposition 3.14 The following statements (1), (2) and (3) are equivalent for a subset A of (X, τ) .

- 1. A is $\alpha_{[\gamma,\gamma']}$ -g.closed in (X,τ) .
- 2. $\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\}) \cap A \neq \phi$ holds for every $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A).
- 3. $\alpha_{[\gamma,\gamma']}$ -Cl(A) \ A does not contain any non-empty $\alpha_{[\gamma,\gamma']}$ -closed set.

Proof. (1) \Rightarrow (2). Suppose that there exists a point $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A) such that $\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\}) \cap A = \phi$. Since $\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ is $\alpha_{[\gamma,\gamma']}$ -closed (cf. [1; Proposition 3.32]), $X \setminus \alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ is an $\alpha_{[\gamma,\gamma']}$ -open set of (X,τ) . Since $A \subseteq X \setminus (\alpha_{[\gamma,\gamma']}$ - $Cl(\{x\}))$ and A is $\alpha_{[\gamma,\gamma']}$ -g.closed, this implies $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq X \setminus \alpha_{[\gamma,\gamma']}$ - $Cl(\{x\})$ holds; and hence $x \notin \alpha_{[\gamma,\gamma']}$ -Cl(A). This is a contradiction.

Therefore, we conclude that $\alpha_{[\gamma,\gamma']} - Cl(\{x\}) \cap A \neq \phi$ holds for every $x \in \alpha_{[\gamma,\gamma']} - Cl(A)$.

(2) \Rightarrow (3). Suppose that there exists a non-empty $\alpha_{[\gamma,\gamma']}$ -closed set F such that $F \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$; and so $A \cap F = \phi$. Let $y \in F$. Then, $y \in \alpha_{[\gamma,\gamma']}$ -Cl(A) and $y \notin A$. By (2), it is obtained that $\phi \neq \alpha_{[\gamma,\gamma']}$ - $Cl(\{y\}) \cap A \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(F) \cap A = F \cap A$; and so $F \cap A \neq \phi$. This is a contradiction; and so (3) is claimed.

(3) \Rightarrow (1). Let $A \subseteq U$, where U is $\alpha_{[\gamma,\gamma']}$ -open in (X,τ) . If $\alpha_{[\gamma,\gamma']}$ -Cl(A) is not contained in U, then $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap (X \setminus U) \neq \phi$. Now, since $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap (X \setminus U) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$ and $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \cap (X \setminus U)$ is a non-empty $\alpha_{[\gamma,\gamma']}$ -closed set, we obtain a contradiction and therefore A is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Proposition 3.15 If A is an $\alpha_{[\gamma,\gamma']}$ -g.closed set of a space X, then the following are equivalent:

- 1. A is $\alpha_{[\gamma,\gamma']}$ -closed.
- 2. $\alpha_{[\gamma,\gamma']}$ -Cl(A) \ A is $\alpha_{[\gamma,\gamma']}$ -closed.

Proof. (1) \Rightarrow (2). Since A is $\alpha_{[\gamma,\gamma']}$ -closed, then $\alpha_{[\gamma,\gamma']}$ -Cl(A) = A holds (cf. [1; Proposition 3.32 (3)]); and so $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A = \phi$ and the set ϕ is $\alpha_{[\gamma,\gamma']}$ -closed.

(2) \Rightarrow (1). Since A is $\alpha_{[\gamma,\gamma']}$ -g.closed, $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$ does not contain any nonempty $\alpha_{[\gamma,\gamma']}$ -closed subset (cf. Proposition 3.14); and so $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A = \phi$. This shows that A is $\alpha_{[\gamma,\gamma']}$ -closed.

Proposition 3.16 For a space (X, τ) , the following are equivalent:

- 1. Every subset of X is $\alpha_{[\gamma,\gamma']}$ -g.closed.
- 2. $\alpha O(X,\tau)_{[\gamma,\gamma']} = \alpha C(X,\tau)_{[\gamma,\gamma']}.$

Proof. (1) \Rightarrow (2). Let $U \in \alpha O(X, \tau)_{[\gamma, \gamma']}$. Then, by hypothesis, U is $\alpha_{[\gamma, \gamma']}$ g.closed which implies that $\alpha_{[\gamma, \gamma']}$ - $Cl(U) \subseteq U$, so, $\alpha_{[\gamma, \gamma']}$ -Cl(U) = U. Thus, we have $U \in \alpha C(X, \tau)_{[\gamma, \gamma']}$; and so $\alpha O(X, \tau)_{[\gamma, \gamma']} \subseteq \alpha C(X, \tau)_{[\gamma, \gamma']}$. Conversely, let $V \in \alpha C(X, \tau)_{[\gamma, \gamma']}$. Then, $X \setminus V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$. By using the above result, it is shown that $V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$; and so $\alpha C(X, \tau)_{[\gamma, \gamma']} \subseteq \alpha O(X, \tau)_{[\gamma, \gamma']}$. Therefore, we have the proof of (2).

(2) \Rightarrow (1). If A is a subset of a space (X, τ) such that $A \subseteq U$ where $U \in \alpha O(X, \tau)_{[\gamma, \gamma']}$, then $U \in \alpha C(X, \tau)_{[\gamma, \gamma']}$. Therefore $\alpha_{[\gamma, \gamma']} - Cl(A) \subseteq \alpha_{[\gamma, \gamma']} - Cl(U) = U$ which shows that A is $\alpha_{[\gamma, \gamma']}$ -g.closed.

Definition 3.17 A subset A of X is $\alpha_{[\gamma,\gamma']}$ -g.open if its complement $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ -g.closed in (X,τ) .

Remark 3.18 It is clear that every $\alpha_{[\gamma,\gamma']}$ -open set is $\alpha_{[\gamma,\gamma']}$ -g.open. But the converse is not true in general as it is shown in the following example.

Example 3.19 Consider Example 3.3, if $A = \{b, c\}$ then A is $\alpha_{[\gamma, \gamma']}$ -g.open but not $\alpha_{[\gamma, \gamma']}$ -open.

Proposition 3.20 A subset A of (X, τ) is $\alpha_{[\gamma,\gamma']}$ -g.open if and only if $F \subseteq \alpha_{[\gamma,\gamma']}$ -Int(A) whenever $F \subseteq A$ and F is $\alpha_{[\gamma,\gamma']}$ -closed in (X, τ) .

Proof. By Definition 3.17 and Proposition 2.1, the proof is obtained.

Remark 3.21 The union of two $\alpha_{[\gamma,\gamma']}$ -g.open sets need not be $\alpha_{[\gamma,\gamma']}$ -g.open in general. It is shown by the following example.

Example 3.22 Consider Example 3.8, if $A = \{b\}$ and $B = \{c\}$ then A and B are $\alpha_{[\gamma,\gamma']}$ -g.open sets in X, but $A \cup B = \{b,c\}$ is not an $\alpha_{[\gamma,\gamma']}$ -g.open set in X.

Proposition 3.23 Let γ and γ' be an α -regular operations on $\alpha O(X, \tau)$, and let A and B be two $\alpha_{[\gamma,\gamma']}$ -g.open sets in a space (X, τ) . Then $A \cap B$ is also $\alpha_{[\gamma,\gamma']}$ -g.open.

Proof. By Definition 3.17 and Proposition 3.9, it is proved.

Proposition 3.24 Every singleton point set in a space (X, τ) is either $\alpha_{[\gamma,\gamma']}$ -g.open or $\alpha_{[\gamma,\gamma']}$ -closed.

Proof. By Definition 3.17 and Proposition 3.13, it is proved.

Proposition 3.25 If $\alpha_{[\gamma,\gamma']}$ -Int $(A) \subseteq B \subseteq A$ and A is $\alpha_{[\gamma,\gamma']}$ -g.open, then B is $\alpha_{[\gamma,\gamma']}$ -g.open.

Proof. By Definition 3.17 and Propositions 2.1, 3.12, the proof is obtained.

4 $\alpha_{[\gamma,\gamma']}$ -Separations Spaces

In this section we introduce $\alpha_{[\gamma,\gamma']} T_i$ spaces $(i = 0, \frac{1}{2}, 1, 2)$ and investigate relations among these spaces.

Definition 4.1 A topological space (X, τ) is said to be $\alpha_{[\gamma, \gamma']} - T_{\frac{1}{2}}$ if every $\alpha_{[\gamma, \gamma']} - g.$ closed set is $\alpha_{[\gamma, \gamma']}$ -closed.

Remark 4.2 It follows from Remark 3.2 that (X, τ) is $\alpha_{[\gamma,\gamma']} - T_{\frac{1}{2}}$ if and only if the $\alpha_{[\gamma,\gamma']}$ -g.closedness coincides with the $\alpha_{[\gamma,\gamma']}$ -closedness.

Definition 4.3 A topological space (X, τ) is said to be $\alpha_{[\gamma,\gamma']}$ - T_0 if for each pair of distinct points x, y in X, there exist α -open sets U and V such that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$, or $y \in U \cap V$ and $x \notin U^{\gamma} \cap V^{\gamma'}$.

Definition 4.4 A topological space (X, τ) is said to be $\alpha_{[\gamma,\gamma']}$ - T_1 if for each pair of distinct points x, y in X, there exist α -open sets U and V containing x and α -open sets W and S containing y such that $y \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.

Definition 4.5 A topological space (X, τ) is said to be $\alpha_{[\gamma,\gamma']}$ - T_2 if for each pair of distinct points x, y in X, there exist α -open sets U and V containing x and α -open sets W and S containing y such that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$.

Remark 4.6 For given two distinct points x and y, the $\alpha_{[\gamma,\gamma']}$ - T_0 -axiom requires that there exist α -open sets U, V, W and S satisfying one of conditions (1), (2), (3) and (4):

1. $x \in U \cap V, y \in W \cap S, y \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$. 2. $x \in U \cap V, x \in W \cap S, y \notin U^{\gamma} \cap V^{\gamma'}$ and $y \notin W^{\gamma} \cap S^{\gamma'}$. 3. $y \in U \cap V, y \in W \cap S, x \notin U^{\gamma} \cap V^{\gamma'}$ and $x \notin W^{\gamma} \cap S^{\gamma'}$. 4. $y \in U \cap V, x \in W \cap S, x \notin U^{\gamma} \cap V^{\gamma'}$ and $y \notin W^{\gamma} \cap S^{\gamma'}$.

Remark 4.7 (1) A topological space (X, τ) is $\alpha_{[\gamma, \gamma']} T_0$ if and only if (2) for each distinct points x, y in X, there exists an α -open set W such that $x \in W$ and $y \notin W^{\gamma} \cap W^{\gamma'}$, or $y \in W$ and $x \notin W^{\gamma} \cap W^{\gamma'}$.

Proposition 4.8 A topological space (X, τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$ if and only if for each $x \in X$, $\{x\}$ is either $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open.

Proof. (Necessity) Suppose $\{x\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed. Then by Proposition 3.13, $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -g.closed. Since (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$, $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed, that is $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open.

(Sufficiency) Let A be any $\alpha_{[\gamma,\gamma']}$ -g.closed set in (X,τ) and $x \in \alpha_{[\gamma,\gamma']}$ -Cl(A). It suffices to prove that $x \in A$ for the following two cases:

Case 1. $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed: for this case, by Proposition 3.14, it is shown that $\{x\} \not\subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(A) \setminus A$; and so $x \in A$.

Case 2. $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open: for this case, we have that $\{x\} \cap A \neq \phi$ (cf. [1; Proposition 3.31]); and so $x \in A$.

Hence, A is $\alpha_{[\gamma,\gamma']}$ -closed; and so (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$.

Proposition 4.9 Let γ and γ' be α -open operations. Then, a topological space (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_0 if and only if for each pair of distinct points x, y of X, $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \neq \alpha Cl_{[\gamma,\gamma']}(\{y\}).$

Proof. (Necessity) Let x, y be any two distinct points of X. Then, there exist α -open sets U and V such that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$, or $x \notin U^{\gamma} \cap V^{\gamma'}$ and $y \in U \cap V$. For the first case, we have that $(U^{\gamma} \cap V^{\gamma'}) \cap \{y\} = \phi$ and this implies that $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. For the final case, we have that $y \notin \alpha Cl_{[\gamma,\gamma']}(\{x\})$.

Consequently, for the distinct points x and y, $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \neq \alpha Cl_{[\gamma,\gamma']}(\{y\})$. (Sufficiency) By hypothesis, there exists a point $z \in X$ satisfying the following two cases:

Case 1. $z \in \alpha Cl_{[\gamma,\gamma']}(\{x\})$ but $z \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$: we claim that $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. Indeed, suppose that $x \in \alpha Cl_{[\gamma,\gamma']}(\{y\})$ holds; then, by Theorem 2.2, it is shown that $\alpha Cl_{[\gamma,\gamma']}(\{x\}) \subseteq \alpha Cl_{[\gamma,\gamma']}(\{y\})$; this contradicts the fact that $z \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$. Thus, $x \notin \alpha Cl_{[\gamma,\gamma']}(\{y\})$; and so there exist α -open sets U and V such that $x \in U \cap V$ and $(U^{\gamma} \cap V^{\gamma'}) \cap \{y\} = \phi$.

Case 2. $z \in \alpha Cl_{[\gamma,\gamma']}(\{y\})$ but $z \notin \alpha Cl_{[\gamma,\gamma']}(\{x\})$: for this case, by similar way to Case 1 above, it is shown that $y \notin \alpha Cl_{[\gamma,\gamma']}(\{x\})$; and so there exist U' and V' such that $y \in U' \cap V'$ and $(U'^{\gamma} \cap V'^{\gamma'}) \cap \{x\} = \phi$.

Therefore, by Case 1 and Case 2, it is proved that (X, τ) is $\alpha_{[\gamma, \gamma']} T_0$.

Proposition 4.10 A topological space (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 if and only if for each $x \in X$, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed.

Proof. (Necessity) Let x be a point of X. Suppose $y \in X \setminus \{x\}$. Then, there exist α -open sets W and S containing y and $x \notin W^{\gamma} \cap S^{\gamma'}$. Consequently $y \in W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$, that is $X \setminus \{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open.

(Sufficiency) Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$ and $x \in X \setminus \{y\}$. Hence $X \setminus \{y\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set containing x, so there exist α -open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq X \setminus \{y\}$. Similarly $X \setminus \{x\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set containing y, so there exist α -open sets W and S containing y such that $W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$. Accordingly X is an $\alpha_{[\gamma,\gamma']}$ - T_1 space.

Proposition 4.11 The following statements are equivalent for a topological space (X, τ) with an operations γ and γ' on $\alpha O(X, \tau)$.

- 1. (X, τ) is $\alpha_{[\gamma, \gamma']} T_2$.
- 2. Let $x \in X$. For each $y \neq x$, there exist α -open sets U and V containing x such that $y \notin \alpha Cl_{[\gamma, \gamma']}(U^{\gamma} \cap V^{\gamma'})$.
- 3. For each $x \in X$, $\cap \{ \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'}) : U, V \in \alpha O(X, \tau) \text{ and } x \in U \cap V \} = \{x\}.$

Proof. (1) \Rightarrow (2). Let $x \in X$. For each $y \neq x$, it follows from (1) that there exist α -open sets U and V containing x and α -open sets W and S containing y such that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$. This implies that $y \notin \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$. (2) \Rightarrow (3). Set $B(z) = \cap \{\alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'}) : U, V \in \alpha O(X, \tau) \text{ and } z \in U \cap V\}$, where $z \in X$. Let $x \in X$. We claim that $B(x) = \{x\}$. Indeed, y be any point of X with $x \neq y$. It follows from (2) that there exist α -open sets U and V such that $x \in U \cap V$ and $y \notin \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$. Thus, we have that $y \notin B(x)$ and so $\{x\} = B(x)$, because $\{x\} \subseteq B(x) \subseteq \alpha Cl_{t-\gamma}(U^{\gamma} \cap V^{\gamma'})$ hold.

so $\{x\} = B(x)$, because $\{x\} \subseteq B(x) \subseteq \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$ hold. (3) \Rightarrow (1). Let $x, y \in X$ with $x \neq y$. By (3), it is assumed that $B(x) = \{x\}$ where B(x) is defined in the proof of (2) \Rightarrow (3) above. Then, there exist α -open sets U and V such that $y \notin \alpha Cl_{[\gamma,\gamma']}(U^{\gamma} \cap V^{\gamma'})$; and hence $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) = \phi$ for some α -open sets W and S containing y. Therefore, (X, τ) is $\alpha_{[\gamma,\gamma']}^{-T_2}$.

Proposition 4.12 (i) If (X, τ) is $\alpha_{[\gamma, \gamma']} - T_2$, then it is $\alpha_{[\gamma, \gamma']} - T_1$.

- (ii) If (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_1 , then it is $\alpha_{[\gamma, \gamma']}$ - $T_{\frac{1}{2}}$.
- (iii) If (X, τ) is $\alpha_{[\gamma, \gamma']} T_{\frac{1}{2}}$, then it is $\alpha_{[\gamma, \gamma']} T_0$.

Proof. (i) The proof is straightforward from Definitions 4.4 and 4.5.

(ii) The proof is obvious by Propositions 4.8 and 4.10.

(iii) Let x and y be any two distinct points of (X, τ) . By Proposition 4.8, the singleton $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open.

Case 1. $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed: for this case, $X \setminus \{x\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set containing y; and so there exist α -open sets W and S containing y such that $W^{\gamma} \cap S^{\gamma'} \subseteq X \setminus \{x\}$. Thus we have that $y \in W \cap S$ and $x \notin W^{\gamma} \cap S^{\gamma'}$.

Case 2. $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open: for this case, there exist α -open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq \{x\}$. This implies that $x \in U \cap V$ and $y \notin U^{\gamma} \cap V^{\gamma'}$.

Therefore, we have X is $\alpha_{[\gamma,\gamma']}$ -T₀.

Remark 4.13 The following series of examples show that all converses of Proposition 4.12 can not be reserved.

Example 4.14 Let (X, τ) , γ and γ' be the same space and the same operations as in Example 3.11. Then, it is shown directly that each singleton is $\alpha_{[\gamma,\gamma']}$ closed in (X, τ) . By Proposition 4.10, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 . But, we can show that $(U^{\gamma} \cap V^{\gamma'}) \cap (W^{\gamma} \cap S^{\gamma'}) \neq \phi$ holds for any α -open sets U, V, W and S. This implies (X, τ) is not $\alpha_{[\gamma,\gamma']}$ - T_2

Example 4.15 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$. Then, it is shown directly that each singleton is $\alpha_{[\gamma,\gamma']}$ -closed or $\alpha_{[\gamma,\gamma']}$ -open in (X, τ) . By Proposition 4.8, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$. However, by Proposition 4.10, (X, τ) is not $\alpha_{[\gamma,\gamma']}$ - T_1 , in fact, a singleton $\{a\}$ is not $\alpha_{[\gamma,\gamma']}$ -closed.

Example 4.16 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$ if $b \notin A$; $A^{\gamma} = A^{\gamma'} = X$ if $b \in A$. Then, (X, τ) is not $\alpha_{[\gamma, \gamma']} - T_{\frac{1}{2}}$ because a singleton $\{c\}$ is neither $\alpha_{[\gamma, \gamma']}$ -open nor $\alpha_{[\gamma, \gamma']}$ -closed. It is shown directly that (X, τ) is $\alpha_{[\gamma, \gamma']}$ -T₀.

Remark 4.17 From Proposition 4.12 and Examples 4.14, 4.15 and 4.16, the following implications hold and none of the implications is reversible:

$$\alpha_{[\gamma,\gamma']} - T_2 \longrightarrow \alpha_{[\gamma,\gamma']} - T_1 \longrightarrow \alpha_{[\gamma,\gamma']} - T_{\frac{1}{2}} \longrightarrow \alpha_{[\gamma,\gamma']} - T_0$$

where $A \to B$ represents that A implies B.

Proposition 4.18 If (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i , then it is α - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 2 follow from definitions. The proof for i = 1 (resp. $i = \frac{1}{2}$) follows from [1; Proposition 3.7] and Proposition 4.10 (resp. Proposition 4.8).

Remark 4.19 The following example shows that all converses of Proposition 4.18 can not be reserved.

Example 4.20 Let $X = \{a, b, c\}$ and τ be a discrete topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = X$. Then, (X, τ) is α - T_i but it is not $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proposition 4.21 If (X, τ) is $\alpha_{\gamma} - T_i$, then it is $\alpha_{[\gamma, \gamma']} - T_i$, where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 1, 2 follow from Definitions 4.3, 4.4, 4.5 and [6; Definition 3.6]. The proof for $i = \frac{1}{2}$ is obtained as follows: Let $x \in X$. Then, $\{x\}$ is α_{γ} -open or α_{γ} -closed by [6; Theorem 3.2]. So, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -open or $\alpha_{[\gamma,\gamma']}$ -closed because every α_{γ} -open is $\alpha_{[\gamma,\gamma']}$ -open (cf. [1; Proposition 3.18]). The proof is completed from Proposition 4.8.

Remark 4.22 The following series of examples show that all converses of Proposition 4.21 can not be reserved.

Example 4.23 Let $X = \{a, b, c\}$ and τ be a discrete topology on X.

(i) For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$ if $A \in \mathbf{B}$; $A^{\gamma} = A^{\gamma'} = X$ if $A \notin \mathbf{B}$, where $\mathbf{B} = \{\{a, b\}, \{a, c\}, \{b, c\}\}$. Then, (X, τ) is $\alpha_{[\gamma, \gamma']} \cdot T_2$ but not $\alpha_{\gamma} \cdot T_2$.

(ii) For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A$ if $A \in \mathbf{B}$; $A^{\gamma} = X$ if $A \notin \mathbf{B}$, where $\mathbf{B} = \{\{a, b\}, \{a, c\}\}$; and $A^{\gamma'} = A$ if $A = \{b, c\}$; $A^{\gamma'} = X$ if $A \neq \{b, c\}$. Then, (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i but not α_{γ} - T_i , where $i = \frac{1}{2}, 1$.

(iii) For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A$ if $A = \{a\}$; $A^{\gamma} = X$ if $A \neq \{a\}$; and $A^{\gamma'} = A$ if $A = \{b\}$; $A^{\gamma'} = X$ if $A \neq \{b\}$. Then, (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_0 but not α_{γ} - T_0 .

Proposition 4.24 If (X, τ) is $[\gamma, \gamma']$ - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs for i = 0, 2 follow from Proposition 2.3, Definitions 4.3, 4.5 and [5; Definitions 5.2, 5.4]. The proof for i = 1 (resp. $i = \frac{1}{2}$) follows from [5; Proposition 5.8] (resp. [5; Proposition 5.7]) and Proposition 2.3.

Remark 4.25 The following example show that the converses of Proposition 4.24 can not be reserved, for $i = 0, \frac{1}{2}$. We propose the following two questions since we could not find counter examples:

Are the spaces $\alpha_{[\gamma,\gamma']}$ - T_1 and $[\gamma,\gamma']$ - T_1 equivalent or not? What about $\alpha_{[\gamma,\gamma']}$ - T_2 and $[\gamma,\gamma']$ - T_2 ?

[7,7] 2 [7,7] 2

Example 4.26 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$ we define two operations γ and γ' , respectively, by $A^{\gamma} = A^{\gamma'} = A$. Then, (X, τ) is $\alpha_{[\gamma, \gamma']} \cdot T_i$ but not $[\gamma, \gamma'] \cdot T_i$, where $i = 0, \frac{1}{2}$.

Proposition 4.27 If (X, τ) is (γ, γ') - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs follow from [5; Proposition 6.12] and Proposition 4.24.

Remark 4.28 The converse of Proposition 4.27 can not reversible by [[5]; Remark 6.13, Examples 6.14 and 6.15] and Proposition 4.24.

Proposition 4.29 If (X, τ) is γ - T_i , then it is $\alpha_{[\gamma, \gamma']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

Proof. The proofs follow from [5; Proposition 6.1] and Proposition 4.24.

Remark 4.30 The converse of Proposition 4.29 can not reversible by [5; Remark 6.2] and Proposition 4.24.

Remark 4.31 From Propositions 4.12, 4.18, 4.21, 4.24, 4.27, 4.29, [10; Remark 2.1], and [4; p.180], for distinct operations γ and γ' we have the following diagram. We note that some implications in the following diagram are not reversible by Remarks 4.13, 4.19, 4.22, 4.25, 4.28 and 4.30:

where $A \to B$ represents that A implies B.

Proposition 4.32 Suppose that γ and γ' are α -regular operations on $\alpha O(X, \tau)$. A space (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i if and only if an associated space $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_i , where i = 1, 1/2.

Proof. It follows from Remark 2.4 that a subset A is $\alpha_{[\gamma,\gamma']}$ -open in (X,τ) if and only if A is open in $(X, \alpha O(X, \tau)_{[\gamma,\gamma']})$. Therefore, the proof for $i = \frac{1}{2}$ (resp. i = 1) follows from Propositions 4.8 (resp. Proposition 4.10).

Proposition 4.33 Let γ and γ' be α -regular operations on $\alpha O(X, \tau)$. (i) If $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_i , then (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i , where i = 0, 2. (ii) Moreover, suppose that γ and γ' are α -open operations on $\alpha O(X, \tau)$. If (X, τ) is $\alpha_{[\gamma, \gamma']}$ - T_i , then $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_i , where i = 0, 2.

Proof. (i) The proof for i = 0 (resp. i = 2) follows from the T_0 -separation property (resp. Hausdorffness) of $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$, the concept of $\alpha_{[\gamma, \gamma']}$ -open sets (cf. [1; Definition 3.1]) and Definton 4.3 (resp. Definition 4.5).

(ii) Let x and y be distinct points of X. For i = 2, since (X, τ) is $\alpha_{[\gamma, \gamma']}^{-}$ T_2 , there exist α -open sets U_1 and V_1 containing x and α -open sets W_1 and S_1 containing y such that $(U_1^{\gamma} \cap V_1^{\gamma'}) \cap (W_1^{\gamma} \cap S_1^{\gamma'}) = \phi$. Since γ and γ' are α -open operations on $\alpha O(X, \tau)$, so there exist α_{γ} -open sets U, W and $\alpha_{\gamma'}$ -open sets V, S such that $x \in U \cap V \subseteq U_1^{\gamma} \cap V_1^{\gamma'}, y \in W \cap S \subseteq W_1^{\gamma} \cap S_1^{\gamma'}$ and $(U \cap V) \cap (W \cap S) \subseteq (U_1^{\gamma} \cap V_1^{\gamma'}) \cap (W_1^{\gamma} \cap S_1^{\gamma'}) = \phi$. It follows from Proposition 2.5, that $U \cap V \in \alpha O(X, \tau)_{[\gamma, \gamma']}$ and $W \cap S \in \alpha O(X, \tau)_{[\gamma, \gamma']}$. This implies that $(X, \alpha O(X, \tau)_{[\gamma, \gamma']})$ is T_2 . The proof for i = 0 follows from Definition 4.3, and Proposition 2.5.

Proposition 4.34 If $f : (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous and $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -closed, then

- (i) f(A) is $\alpha_{[\beta,\beta']}$ -g.closed for every $\alpha_{[\gamma,\gamma']}$ -g.closed set A of (X,τ) ; and
- (ii) $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -g.closed for every $\alpha_{[\beta,\beta']}$ -g.closed set B of (Y,σ) .

Proof. (i) Let V be an $\alpha_{[\beta,\beta']}$ -open set containing f(A). Then, $f^{-1}(V)$ is an $\alpha_{[\gamma,\gamma']}$ -open set containing A (cf. [1; Theorem 4.2]) and so $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq f^{-1}(V)$. It follows that $f(\alpha_{[\gamma,\gamma']}-Cl(A))$ is an $\alpha_{[\beta,\beta']}$ -closed set (cf. Definition 2.7) and hence $\alpha_{[\beta,\beta']}$ - $Cl(f(A)) \subseteq \alpha_{[\beta,\beta']}$ - $Cl(f(\alpha_{[\gamma,\gamma']}-Cl(A))) = f(\alpha_{[\gamma,\gamma']}-Cl(A)) \subseteq V$. This implies that f(A) is $\alpha_{[\beta,\beta']}$ -g.closed.

(ii) Let U be any $\alpha_{[\gamma,\gamma']}$ -open set such that $f^{-1}(B) \subseteq U$. Let $F = \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(B)) \cap (X \setminus U)$, then F is $\alpha_{[\gamma,\gamma']}$ -closed in (X,τ) . This implies f(F)is $\alpha_{[\beta,\beta']}$ -closed set in (Y,σ) (cf. Definition 2.7). Since $f(F) = f(\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(B)) \cap (X \setminus U)) \subseteq \alpha_{[\beta,\beta']} - Cl(B) \cap f(X \setminus U) \subseteq \alpha_{[\beta,\beta']} - Cl(B) \cap (Y \setminus B)$ (cf. [1; Theorem 4.2]), it is shown that $\alpha_{[\beta,\beta']} - Cl(B) \setminus B$ contains an $\alpha_{[\beta,\beta']}$ -closed set f(F). It follows from Proposition 3.14 that $f(F) = \phi$ and hence $F = \phi$. Therefore $\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(B)) \subseteq U$. This shows that $f^{-1}(B)$ is $\alpha_{[\gamma,\gamma']}$ -g.closed.

Theorem 4.35 Suppose that there exists an $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -continuous and $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -closed function, say $f : (X, \tau) \to (Y, \sigma)$.

- (i) If f is injective and (Y, σ) is $\alpha_{[\beta,\beta']} T_{\frac{1}{2}}$, then (X, τ) is $\alpha_{[\gamma,\gamma']} T_{\frac{1}{2}}$.
- (ii) If f is surjective and (X,τ) is $\alpha_{[\gamma,\gamma']} T_{\frac{1}{2}}$, then (Y,σ) is $\alpha_{[\beta,\beta']} T_{\frac{1}{2}}$.

Proof. (i) Let A be an $\alpha_{[\gamma,\gamma']}$ -g.closed set of (X,τ) . We claim that A is $\alpha_{[\gamma,\gamma']}$ closed in (X,τ) . By Proposition 4.34 (i), f(A) is $\alpha_{[\beta,\beta']}$ -g.closed. Since (Y,σ) is $\alpha_{[\beta,\beta']}$ - $T_{\frac{1}{2}}$, this implies that f(A) is $\alpha_{[\beta,\beta']}$ -closed. Since f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ continuous and injective, then, we have $A = f^{-1}(f(A))$ is $\alpha_{[\gamma,\gamma']}$ -closed (cf. [1; Theorem 4.2]). Hence (X,τ) is $\alpha_{[\gamma,\gamma']}$ - $T_{\frac{1}{2}}$.

(ii) Let B be an $\alpha_{[\beta,\beta']}$ -g.closed set in (Y,σ) . By Proposition 4.34 (ii) and assumptions, it is shown that $B = f(f^{-1}(B))$ is $\alpha_{[\gamma,\gamma']}$ -closed; and hence (Y,σ) is $\alpha_{[\beta,\beta']}$ - $T_{\frac{1}{2}}$.

Theorem 4.36 Suppose that there exists an $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -continuous injection. If (Y, σ) is $\alpha_{[\beta,\beta']}$ - T_i , then (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_i , where i = 0, 1, 2.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be the $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous injection. The proof for i = 1 is as follows: Let $x \in X$. Then, by Proposition 4.10, $\{f(x)\}$ is $\alpha_{[\beta,\beta']}$ -closed in (Y, σ) . By [1; Theorem 4.2] and Proposition 4.10, $\{x\}$ is $\alpha_{[\gamma,\gamma']}$ -closed and hence (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_1 . The proofs for i = 0, 2 follow from Definitions 4.3, 4.5 and [1; Theorem 4.2].

Definition 4.37 A function $f: (X, \tau) \to (Y, \sigma)$ is called an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ homeomorphism if f is an $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ -continuous bijection and $f^{-1}: (Y, \sigma) \to (X, \tau)$ is $(\alpha_{[\beta, \beta']}, \alpha_{[\gamma, \gamma']})$ -continuous. The collection of all $(\alpha_{[\gamma, \gamma']}, \alpha_{[\gamma, \gamma']})$ homeomorphisms from (X, τ) onto itself is denoted by $\alpha_{[\gamma, \gamma']}$ -h (X, τ) .

Theorem 4.38 (i) Suppose that there exists an $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -homeomorphism between topological spaces (X, τ) and (Y, σ) . Then, (X, τ) is $\alpha_{[\gamma,\gamma']}$ - T_i if and only if (Y, σ) is $\alpha_{[\beta,\beta']}$ - T_i , where $i = 0, \frac{1}{2}, 1, 2$.

(ii) For each topological space (X, τ) , the collection $\alpha_{[\gamma, \gamma']} - h(X, \tau)$ forms a group under the composition of functions.

(iii) For an $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ -homeomorphism $f : (X, \tau) \to (Y, \sigma)$, there exists a group isomorphism, say $f_* : \alpha_{[\gamma,\gamma']} - h(X, \tau) \to \alpha_{[\beta,\beta']} - h(Y, \sigma)$.

Proof. Put $H_X = \alpha_{[\gamma,\gamma']} h(X,\tau)$.

(i) This follows from Theorems 4.35, 4.36 and Definition 4.37.

(ii) First we prove that: if $a \in H_X$ and $b \in H_X$, then $b \circ a \in H_X$. Indeed, since a and b (resp. a^{-1} and b^{-1}) are $\alpha_{[\gamma,\gamma']}$ -continuous bijectons, $b \circ a$ (resp. $a^{-1} \circ b^{-1} = (b \circ a)^{-1}$) is also an $\alpha_{[\gamma,\gamma']}$ -continuous bijection (cf. [1; Theorem 4.10]); and so $b \circ a \in H_X$, where $b \circ a : X \to X$ is the composite functions of $a : X \to X$ and $b : X \to X$ such that $(b \circ a)(x) = b(a(x))$ for every point $x \in X$. Thus, the following binary operation $\eta_X : H_X \times H_X \to H_X$ is well defined by $\eta_X(a, b) = b \circ a$. Putting $a \cdot b = \eta_X(a, b)$, we have the following properties:

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ holds for every elements $a, b, c \in H_X$;
- 2. for all element $a \in H_X$, there exists an element $e \in H_X$ such that $a \cdot e = e \cdot a = a$ hold in H_X ;
- 3. for each element $a \in H_X$, there exists an element $a_1 \in H_X$ such that $a \cdot a_1 = a_1 \cdot a = e$ hold in H_X .

Indeed, (1) is obtained obviously; (2) is obtained by taking $e = 1_X$ and using the fact that $1_X \in H_X$, where $1_X : X \to X$ is the identity function; (3) is obtained by taking $a_1 = a^{-1}$ for each $a \in H_X$. Then, by definition of groups, the pair (H_X, η_X) forms a group under the composition of functions.

(iii) The required group isomorphism $f_* : H_X \to H_Y$ is well defined by $f_*(a) = f \circ (a \circ f^{-1})$ for every element $a \in H_X$. Indeed, $f_*(a) \in H_Y$ holds for every $a \in H_X$ (cf. [1; Theorem 4.10]); $f_*(a \cdot b) = f \circ (b \circ a) \circ f^{-1} = f \circ b \circ f^{-1} \circ f \circ a \circ f^{-1} = (f_*(b)) \circ (f_*(a)) = f_*(a) \cdot f_*(b)$ hold for every elements $a, b \in H_X$ and so $f_* : H_X \to H_Y$ is a homomorphism. Hence $f_* : H_X \to H_Y$ is the required isomorphism.

References

 A. B. Khalaf, Saeid Jafari and H. Z. Ibrahim, Bioperations on α-open sets in topological spaces, *International Journal of Pure and Applied Mathematics*, 103 (4) (2015), 653-666.

- [2] S. Kasahara, Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [3] O. Njåstad, On some classes of nearly open sets, *Pacific J. Math.* 15 (1965), 961-970.
- [4] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.
- [5] H. Maki and T. Noiri, Bioperations and some separation axioms, *Scientiae Mathematicae Japonicae Online*, 4 (2001), 165-180.
- [6] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, Acta Scientiarum. Technology, 35 (3) (2013), 539-545.
- [7] J. Umehara, H. Maki and T. Noiri, Bioperations on topological spaces and some separation axioms, *Mem. Fac. Sci. Kochi Univ. Ser. A (Math.)* 13 (1992), 45-59.
- [8] S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209-214.
- [9] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- [10] M. Caldas, D. N. Georgiou and S. Jafari, Characterizations of low separation axioms via α-open sets and α-closure operator, Bol. Soc. Paran. Mat. 21 (2003), 1-14.

Communicated by Kohzo Yamada

Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq aliasbkhalaf@gmail.com

College of Vestsjaelland South, Herrestraed
e $11,\;4200$ Slagelse , Denmark jafari
persia@gmail.com

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq hariwanmath@yahoo.com