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Abstract. In this paper, we introduce the concepts of centralizer and normalizer of
B-algebras, and we investigate some of their properties. In particular, we prove that if
H is a subalgebra of a B-algebra X, then the centralizer C(H) of H is a subalgebra of
X, which affirms to the result of P.J. Allen, J. Neggers, and H.S. Kim that the center
Z(X) is a subalgebra of X. Moreover, if H is normal in X, then C(H) is normal in
X, which affirms to the result of A. Walendziak that Z(X) is normal in X.

1 Introduction In 2002, J. Neggers and H.S. Kim [6] introduced the notion of B-
algebras. A B-algebra is an algebra (X; ∗, 0) of type (2, 0) (that is, a nonempty set X
with a binary operation ∗ and a constant 0) satisfying the following axioms: (I) x ∗ x = 0,
(II) x ∗ 0 = x, and (III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for all x, y, z ∈ X. A B-algebra
(X; ∗, 0) is commutative [6] if x ∗ (0 ∗ y) = y ∗ (0 ∗ x) for all x, y ∈ X. In [7], J. Neggers and
H.S. Kim introduced the notions of a subalgebra and normality of B-algebras and some of
their properties are established. A nonempty subset N of X is called a subalgebra of X if
x ∗ y ∈ N for any x, y ∈ N . It is called normal in X if for any x ∗ y, a ∗ b ∈ N implies
(x∗a)∗(y∗b) ∈ N . A normal subset of X is a subalgebra of X. Walendziak [9] characterized
normality in a B-algebra. A subalgebra N is normal in X if and only if x∗(x∗y) ∈ N for any
x ∈ X, y ∈ N . Throughout this paper, X means a B-algebra (X; ∗, 0). There are several
properties of B-algebras as established by some researchers [1−9]. The following properties
are used in this paper, for any x, y, z ∈ X, (P1) 0 ∗ (0 ∗ x) = x [6], (P2) x ∗ y = 0 ∗ (y ∗ x)
[8], (P3) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y [6], (P4) x ∗ y = x ∗ z implies y = z [2], and (P5)
(x ∗ y) ∗ (0 ∗ y) = x [6].

2 Centralizer and Normalizer of B-algebras In this section, we introduce centralizer
and normalizer of B-algebras. We start with some examples of B-algebras.

Example 2.1. The algebra (Z; ∗, 0) is a B-algebra, where ∗ is defined by x ∗ y = x − y for
all x, y ∈ Z.

Example 2.2. [6] Let X = {0, 1, 2, 3, 4, 5} be a set with the following table of operation:

∗ 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X; ∗, 0) is a B-algebra.
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Definition 2.3. The centralizer C(x) of x in X is defined by C(x) = {y ∈ X: y ∗ (0 ∗ x) =
x ∗ (0 ∗ y)}.

Example 2.4. Let X be the B-algebra in Example 2.2. Then C(1) = {0, 1, 2} and
C(3) = {0, 3}.

Theorem 2.5. C(x) is a subalgebra of X for all x ∈ X.

Proof. Let x ∈ X. Clearly, 0 ∈ C(x) and so C(x) 6= ∅. Let a, b ∈ C(x). Then a ∗ (0 ∗ x) =
x ∗ (0 ∗ a) and b ∗ (0 ∗ x) = x ∗ (0 ∗ b).
Claim 1: b ∗ x = (0 ∗ x) ∗ (0 ∗ b).
Now, b∗ (0∗x) = x∗ (0∗b) implies that 0∗ (b∗ (0∗x)) = 0∗ (x∗ (0∗b)). By (P2), (0∗x)∗b =
(0 ∗ b) ∗ x. Multiplying both sides by 0 ∗ b, we get (0 ∗ b) ∗ ((0 ∗ x) ∗ b) = (0 ∗ b) ∗ ((0 ∗ b) ∗ x),
and multiplying both sides by b, we get b ∗ [(0 ∗ b) ∗ ((0 ∗ x) ∗ b)] = b ∗ [(0 ∗ b) ∗ ((0 ∗ b) ∗ x)].
By (P3), b ∗ [((0 ∗ b) ∗ (0 ∗ b)) ∗ (0 ∗ x)] = [b ∗ (0 ∗ ((0 ∗ b) ∗ x))] ∗ (0 ∗ b). By (I) and (P2),
b∗(0∗(0∗x)) = [b∗(x∗(0∗b))]∗(0∗b). Applying (P1) and (III), we get b∗x = ((b∗b)∗x)∗(0∗b).
By (I), we have b ∗ x = (0 ∗ x) ∗ (0 ∗ b). This proves claim 1. Now, a ∗ (0 ∗ x) = x ∗ (0 ∗ a),
(P1) (P2), (P3), and claim 1 imply that

x ∗ (0 ∗ (a ∗ b)) = x ∗ (b ∗ a)
= (x ∗ (0 ∗ a)) ∗ b

= (a ∗ (0 ∗ x)) ∗ b

= a ∗ (b ∗ x)
= a ∗ ((0 ∗ x) ∗ (0 ∗ b))
= [a ∗ (0 ∗ (0 ∗ b))] ∗ (0 ∗ x)
= (a ∗ b) ∗ (0 ∗ x).

Therefore, a ∗ b ∈ C(x) and so C(x) is a subalgebra of X.

In Example 2.4, the set C(1) is normal in X, while C(3) is not normal in X since
2 ∗ (2 ∗ 3) = 4 /∈ C(3). This means that C(x) need not be normal in X.

Definition 2.6. Let H be a nonempty subset of X. The centralizer C(H) of H in X is
defined by C(H) = {y ∈ X: y ∗ (0 ∗ x) = x ∗ (0 ∗ y) for all x ∈ H}.

Example 2.7. Let X be the B-algebra in Example 2.2. If H1 = {0, 1, 2}, H2 = {0, 3},
then C(H1) = H1 and C(H2) = H2.

Remark 2.8. Let H be a nonempty subset of X. Then C(H) =
∩

x∈H

C(x).

In [1], the center Z(X) is a subalgebra of X. The following corollary affirms this fact.

Corollary 2.9. Let H be a nonempty subset of X. Then C(H) is a subalgebra of X.

Proof. A direct consequence of Remark 2.8 and Theorem 2.5.

In Example 2.7, the set C(H1) is normal in X, while C(H2) is not normal in X. This
means that C(H) need not be normal in X even if H is a subalgebra of X. However, if H
is normal in X, then C(H) is normal in X. The proof of this is given in the last part of
this paper.

Remark 2.10. Let H be a nonempty subset of X. Then
∪

x∈H

C(x) need not be a subalgebra

of X.
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To see this remark, consider the B-algebra X in Example 2.2. Let H = {1, 3}. Then
C(1) ∪ C(3) = {0, 1, 2, 3}. Since 1 ∗ 3 = 4 /∈ C(1) ∪ C(3), C(1) ∪ C(3) is not a subalgebra
of X.

Lemma 2.11. For any x, y, z ∈ X,

i. x ∗ (x ∗ y) = z if and only if (0 ∗ x) ∗ ((0 ∗ x) ∗ z) = y,

ii. (x ∗ y) ∗ ((x ∗ y) ∗ z) = x ∗ [x ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ z))].

Proof. By (P2), (P3), (P4), (P5), and (I), we have

x ∗ (x ∗ y) = z ⇔ (0 ∗ x) ∗ (x ∗ (x ∗ y)) = (0 ∗ x) ∗ z

⇔ (0 ∗ x) ∗ [(0 ∗ x) ∗ (x ∗ (x ∗ y))] = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ [(0 ∗ x) ∗ (0 ∗ (x ∗ (x ∗ y)))] ∗ (0 ∗ x) = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ [(0 ∗ x) ∗ ((x ∗ y) ∗ x)] ∗ (0 ∗ x) = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ [((0 ∗ x) ∗ (0 ∗ x)) ∗ (x ∗ y)] ∗ (0 ∗ x) = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ (0 ∗ (x ∗ y)) ∗ (0 ∗ x) = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ (y ∗ x) ∗ (0 ∗ x) = (0 ∗ x) ∗ ((0 ∗ x) ∗ z)
⇔ y = (0 ∗ x) ∗ ((0 ∗ x) ∗ z).

This proves (i). By (III) and (P2), we have

(x ∗ y) ∗ ((x ∗ y) ∗ z) = x ∗ [((x ∗ y) ∗ z) ∗ (0 ∗ y)]
= x ∗ {[x ∗ (z ∗ (0 ∗ y))] ∗ (0 ∗ y)}
= x ∗ {x ∗ {(0 ∗ y) ∗ [0 ∗ (z ∗ (0 ∗ y))]}}
= x ∗ [x ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ z))].

This proves (ii).

The previous lemma is useful for the succeeding results. We now introduce the concept
of normalizer of B-algebras.

Definition 2.12. Let H and K be nonempty subsets of X. For every x ∈ X, we define
Hx as the set Hx = {x ∗ (x ∗h) : h ∈ H}. The normalizer of H in K, denoted by NK(H), is
defined by NK(H) = {x ∈ K : Hx = H}. If K = X, then NX(H) is called the normalizer
of H, denoted by N(H). If H = {x}, then we write N(x) in place of N({x}).

Theorem 2.13. Let H be a nonempty subset of X and K be a subalgebra of X. Then NK(H)
is a subalgebra of X.

Proof. By (P1), H0 = H. Since K is a subalgebra, 0 ∈ K. Thus, 0 ∈ NK(H) and so
NK(H) 6= ∅. Let x, y ∈ NK(H). Then x, y ∈ K and Hx = H = Hy.
Claim 1: 0 ∗ y ∈ NK(H).
Since K is a subalgebra, 0 ∗ y ∈ K. Let a ∈ H. Since H = Hy, y ∗ (y ∗ a) = h1 for
some h1 ∈ H. By Lemma 2.11(i), a = (0 ∗ y) ∗ ((0 ∗ y) ∗ h1) ∈ H0∗y. Thus, H ⊆ H0∗y.
Let b ∈ H0∗y. Then b = (0 ∗ y) ∗ ((0 ∗ y) ∗ h2) for some h2 ∈ H. By Lemma 2.11(i),
y ∗ (y ∗ b) = h2 ∈ H = Hy. Hence, y ∗ (y ∗ b) = y ∗ (y ∗ h3) for some h3 ∈ H. By (P4),
b = h3 ∈ H. Thus, H0∗y ⊆ H. Therefore, H = H0∗y. This proves claim 1.
Claim 2: x ∗ y ∈ NK(H).
Since K is a subalgebra, x ∗ y ∈ K. Let a ∈ Hx∗y. Then a = (x ∗ y) ∗ ((x ∗ y) ∗ h4)
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for some h4 ∈ H. By Lemma 2.11(ii), a = x ∗ [x ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ h4))]. By claim 1,
(0 ∗ y) ∗ ((0 ∗ y) ∗h4) ∈ H0∗y = H. Hence, a ∈ Hx = H. Thus, Hx∗y ⊆ H. Let b ∈ H. Then
b ∈ Hx, that is, b = x∗ (x∗h5) for some h5 ∈ H. Since H = H0∗y, h5 = (0∗y)∗ ((0∗y)∗h6)
for some h6 ∈ H. Hence, b = x ∗ [x ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ h6))]. By Lemma 2.11(ii),
b = (x ∗ y) ∗ ((x ∗ y) ∗ h6) ∈ Hx∗y. Thus, H ⊆ Hx∗y. Hence, H = Hx∗y. This proves claim
2. Therefore, NK(H) is a subalgebra of X.

Corollary 2.14. Let H be a nonempty subset of X. Then N(H) is a subalgebra of X.

Proposition 2.15. C(x) = N(x) for all x ∈ X.

In view of Remark 2.10 and Proposition 2.15,
∪

x∈H

N(x) need not be a subalgebra of X.

Theorem 2.16. Let H be a subalgebra of X.

i. H is normal in X if and only if N(H) = X,

ii. H is normal in N(H),

iii. N(H) is the largest subalgebra of X in which H is normal.

Proof. Let H be a subalgebra of X.

i. Suppose H is normal in X. Clearly, N(H) ⊆ X. Let x ∈ X. Then x ∗ (x ∗ h) ∈ H
for all h ∈ H. Hence, Hx ⊆ H. Let h ∈ H. Then (0 ∗ x) ∗ ((0 ∗ x) ∗ h) ∈ H. Thus,
(0 ∗ x) ∗ ((0 ∗ x) ∗ h) = h′ for some h′ ∈ H. By Lemma 2.11(i), h = x ∗ (x ∗ h′) ∈ Hx.
Hence, H ⊆ Hx. Thus, H = Hx, that is, x ∈ N(H). Therefore, N(H) = X.
Conversely, let h ∈ H and x ∈ X. Since N(H) = X, x ∗ (x ∗ h) ∈ H. Therefore, H is
normal in X.

ii. Let x ∈ H. Since H is a subalgebra of X, Hx ⊆ H. Let h ∈ H. Since H is a subalgebra
of X, 0 ∗ x ∈ H and so (0 ∗ x) ∗ ((0 ∗ x) ∗ h) ∈ H. Thus, (0 ∗ x) ∗ ((0 ∗ x) ∗ h) = h′

for some h′ ∈ H. By Lemma 2.11(i), h = x ∗ (x ∗ h′) ∈ Hx. Hence, H ⊆ Hx. Thus,
H = Hx, that is, x ∈ N(H). Therefore, H ⊆ N(H). By Corollary 2.14, N(H) is a
subalgebra of X. Since H ⊆ N(H), H is a subalgebra of N(H). In view of Definition
2.12, H is normal in N(H).

iii. Let H be normal in a subalgebra K of X. Let k ∈ K. Since H is normal in K,
k ∗ (k ∗ h) ∈ H for all h ∈ H. Hence, Hk ⊆ H. Let h ∈ H. Since H is normal in K
and K is a subalgebra, (0 ∗ k) ∗ ((0 ∗ k) ∗ h) ∈ H. Thus, (0 ∗ k) ∗ ((0 ∗ k) ∗ h) = h′

for some h′ ∈ H. By Lemma 2.11(i), h = k ∗ (k ∗ h′) ∈ Hk. Hence, H ⊆ Hk. Thus,
H = Hk, that is, k ∈ N(H). Therefore, K ⊆ N(H).

Corollary 2.17. C(0) = N(0) = X.

Corollary 2.18. Let H and K be subalgebras of X. Then H is normal in K if and only if
H ⊆ K ⊆ N(H).

Corollary 2.19. Let H be a nonempty subset of X. Then C(H) ⊆ N(H).

Let H = {0, 1, 2} be the subset of the B-algebra X in Example 2.2. Then C(H) = H 6=
X = N(H).
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3 Some Properties of Automorphisms of B-algebras In this section, we consider all
B-isomorphisms of X onto itself. A mapping ϕ : X → Y is called a B-homomorphism [7] if
ϕ(x∗y) = ϕ(x)∗ϕ(y) for any x, y ∈ X. A B-homomorphism ϕ is called a B-monomorphism,
B-epimorphism, or B-isomorphism if ϕ is one-to-one, onto, or a bijection, respectively. A
B-isomorphism ϕ : X → X is called a B-automorphism. We define Aut(X) as the set of
all B-automorphisms of X. We recall from [6] that if (X; ◦, e) is a group with identity e,
then (X; ∗, 0 = e) is a B-algebra, where ∗ is defined by x ∗ y = x ◦ y−1. Since Aut(X) is a
group under composition of functions, (Aut(X);}, idX) is a B-algebra, where } is defined
by f } g = f ◦ g−1 for all f, g ∈ Aut(X), where ◦ denotes the composition of functions.

Theorem 3.1. Let x ∈ X. Define ϕx: X → X by ϕx(y) = x ∗ (x ∗ y) for all y ∈ X. Then

i. ϕx ∈ Aut(X),

ii. ϕx ◦ ϕ0∗y = ϕx∗y and ϕx ◦ ϕy = ϕx∗(0∗y) for all x, y ∈ X,

iii. ϕ0 = idX ,

iv. (ϕx)−1 = ϕ0∗x,

v. for all ψ ∈ Aut(X), ψ ◦ ϕx ◦ ψ−1 = ϕψ(x).

Proof. i. Clearly, ϕx is well-defined. Let a, b ∈ X. Now, by (P1), (P3), (I), (II), and
(III), we have

ϕx(a ∗ b) = x ∗ (x ∗ (a ∗ b))
= x ∗ [(x ∗ (0 ∗ b)) ∗ a]
= (x ∗ (0 ∗ a)) ∗ (x ∗ (0 ∗ b)
= [(x ∗ (0 ∗ a)) ∗ ((0 ∗ x) ∗ (0 ∗ x))] ∗ (x ∗ (0 ∗ b))
= [((x ∗ (0 ∗ a)) ∗ x) ∗ (0 ∗ x)] ∗ (x ∗ (0 ∗ b))
= {[x ∗ (x ∗ (0 ∗ (0 ∗ a)))] ∗ (0 ∗ x)} ∗ (x ∗ (0 ∗ b))
= ((x ∗ (x ∗ a)) ∗ (0 ∗ x)) ∗ (x ∗ (0 ∗ b))
= (x ∗ (x ∗ a)) ∗ [(x ∗ (0 ∗ b)) ∗ (0 ∗ (0 ∗ x))]
= (x ∗ (x ∗ a)) ∗ ((x ∗ (0 ∗ b)) ∗ x)
= (x ∗ (x ∗ a) ∗ [x ∗ (x ∗ (0 ∗ (0 ∗ b)))]
= (x ∗ (x ∗ a) ∗ (x ∗ (x ∗ b))
= ϕx(a) ∗ ϕx(b).

Hence, ϕx is a B-homomorphism.
Also, ϕx is onto since by (P1), (P2), (P3), (I), and (III), we get

ϕx((0 ∗ x) ∗ ((0 ∗ x) ∗ a)) = x ∗ [x ∗ ((0 ∗ x) ∗ ((0 ∗ x) ∗ a))]
= x ∗ [x ∗ (((0 ∗ x) ∗ (0 ∗ a)) ∗ (0 ∗ x))]
= x ∗ [(x ∗ (0 ∗ (0 ∗ x))) ∗ ((0 ∗ x) ∗ (0 ∗ a))]
= x ∗ [0 ∗ ((0 ∗ x) ∗ (0 ∗ a))]
= x ∗ ((0 ∗ a) ∗ (0 ∗ x))
= (x ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ a)
= 0 ∗ (0 ∗ a)
= a.
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Suppose ϕx(a) = ϕx(b). Then x ∗ (x ∗ a) = x ∗ (x ∗ b). By (P4), a = b. Hence, ϕx is
one-to-one. Therefore, ϕx ∈ Aut(X).

ii. Let a ∈ X. Then by (III) and (P2), we have

ϕx∗y(a) = (x ∗ y) ∗ ((x ∗ y) ∗ a)
= x ∗ [((x ∗ y) ∗ a) ∗ (0 ∗ y)]
= x ∗ {[x ∗ (a ∗ (0 ∗ y))] ∗ (0 ∗ y)}
= x ∗ {x ∗ {(0 ∗ y) ∗ [0 ∗ (a ∗ (0 ∗ y))]}}
= x ∗ [x ∗ ((0 ∗ y) ∗ ((0 ∗ y) ∗ a))]
= x ∗ (x ∗ ϕ0∗y(a))
= ϕx(ϕ0∗y(a))
= (ϕx ◦ ϕ0∗y)(a).

Hence, ϕx∗y = ϕx ◦ ϕ0∗y. By (P1), ϕx ◦ ϕy = ϕx ◦ ϕ0∗(0∗y). Since ϕx∗y = ϕx ◦ ϕ0∗y,
we have ϕx ◦ ϕ0∗(0∗y) = ϕx∗(0∗y).

iii-v Straightforward.

The ϕx of Theorem 3.1 is called an inner B-automorphism of X. We define Inn(X) as
the set of all inner B-automorphisms of X.

Theorem 3.2. Inn(X) is a normal subalgebra of Aut(X).

Proof. By Theorem 3.1(iii), idX = ϕ0 ∈ Inn(X) and so Inn(X) 6= ∅. By Theorem 3.1(i),
Inn(X) ⊆ Aut(X). Let ϕx, ϕy ∈ Inn(X). Then by Theorem 3.1(iv, ii), ϕx } ϕy =
ϕx ◦ ϕ−1

y = ϕx ◦ ϕ0∗y = ϕx∗y ∈ Inn(X). Thus, Inn(X) is a subalgebra of Aut(X).
Let ψ ∈ Aut(X) and ϕx ∈ Inn(X). Then by Theorem 3.1(v), we have ψ } (ψ } ϕx) =
ψ } (ψ ◦ϕ−1

x ) = ψ ◦ (ψ ◦ϕ−1
x )−1 = ψ ◦ (ϕx ◦ψ−1) = ϕψ(x) ∈ Inn(X). Therefore, Inn(X) is

a normal subalgebra of Aut(X).

The following theorem is labeled as the First Isomorphism Theorem for B-algebras and
can be found in [7]. We also note that the kernel of a B-homomorphism is normal [7].

Theorem 3.3. Let ϕ: X → Y be a B-homomorphism of X into Y. Then X/Ker ϕ ∼= Im
ϕ.

Theorem 3.4. Let H be a subalgebra of X. Then C(H) is normal in N(H) and N(H)/C(H)
∼= a subalgebra of Aut(H).

Proof. Define f : N(H) → Aut(H) by f(x) = ϕx for all x ∈ N(H), where ϕx: H → H is
defined by ϕx(h) = x ∗ (x ∗ h) for all h ∈ H. Clearly, f is well-defined. Let x, y ∈ N(H).
Then f(x ∗ y) = ϕx∗y = ϕx ◦ ϕ0∗y = ϕx ◦ ϕ−1

y = ϕx } ϕy = f(x) } f(y). Therefore, f is a
B-homomorphism. By the First Isomorphism Theorem for B-algebras, N(H)/Ker f ∼= Im
f .
Claim: If x ∗ (x ∗ h) = h for all h ∈ H, then x ∈ C(H).
Suppose x ∗ (x ∗ h) = h for all h ∈ H. Multiplying both sides by 0 ∗ x, we get (x ∗ (x ∗ h)) ∗
(0∗x) = h∗ (0∗x). By (III), x∗ ((0∗x)∗ (0∗ (x∗h))) = h∗ (0∗x). Applying (P2), we obtain
x ∗ ((0 ∗ x) ∗ (h ∗ x)) = h ∗ (0 ∗ x). Hence, by (P3), x ∗ [((0 ∗ x) ∗ (0 ∗ x)) ∗ h] = h ∗ (0 ∗ x).
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Thus, by (I), x ∗ (0 ∗ h) = h ∗ (0 ∗ x), that is, x ∈ C(H). This proves the claim. Now, by
Corollary 2.19 and the claim,

Ker f = {x ∈ N(H) : f(x) = idH}
= {x ∈ N(H) : ϕx(h) = idH(h) for all h ∈ H}
= {x ∈ N(H) : x ∗ (x ∗ h) = h for all h ∈ H}
= {x ∈ N(H) : x ∈ C(H)}
= C(H).

Therefore, C(H) is a normal in N(H) and N(H)/C(H) ∼= a subalgebra of Aut(H).

In [9], the center Z(X) is normal in X. The following corollaries affirm this fact.

Corollary 3.5. Z(X) is normal in X and X/Z(X) ∼= Inn(X).

Proof. Let H = X in Theorem 3.4. Then N(X) = X and C(X) = Z(X) and so Z(X) is
normal in X. Since Im f = Inn(X), X/Z(X) ∼= Inn(X).

Corollary 3.6. If H is normal in X, then so is C(H).

Proof. This follows from Theorems 3.4 and 2.16(i).
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