CENTRALIZER AND NORMALIZER OF B-ALGEBRAS

Joemar C. Endam

Received January 5, 2016

Abstract

In this paper, we introduce the concepts of centralizer and normalizer of B -algebras, and we investigate some of their properties. In particular, we prove that if H is a subalgebra of a B-algebra X, then the centralizer $C(H)$ of H is a subalgebra of X, which affirms to the result of P.J. Allen, J. Neggers, and H.S. Kim that the center $Z(X)$ is a subalgebra of X. Moreover, if H is normal in X, then $C(H)$ is normal in X, which affirms to the result of A. Walendziak that $Z(X)$ is normal in X.

1 Introduction In 2002, J. Neggers and H.S. Kim [6] introduced the notion of Balgebras. A B-algebra is an algebra $(X ; *, 0)$ of type $(2,0)$ (that is, a nonempty set X with a binary operation $*$ and a constant 0) satisfying the following axioms: (I) $x * x=0$, (II) $x * 0=x$, and (III) $(x * y) * z=x *(z *(0 * y)$), for all $x, y, z \in X$. A B-algebra $(X ; *, 0)$ is commutative [6] if $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$. In [7], J. Neggers and H.S. Kim introduced the notions of a subalgebra and normality of B-algebras and some of their properties are established. A nonempty subset N of X is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. It is called normal in X if for any $x * y, a * b \in N$ implies $(x * a) *(y * b) \in N$. A normal subset of X is a subalgebra of X. Walendziak [9] characterized normality in a B-algebra. A subalgebra N is normal in X if and only if $x *(x * y) \in N$ for any $x \in X, y \in N$. Throughout this paper, X means a B-algebra $(X ; *, 0)$. There are several properties of B-algebras as established by some researchers [1-9]. The following properties are used in this paper, for any $x, y, z \in X,(\mathrm{P} 1) 0 *(0 * x)=x[6]$, (P2) $x * y=0 *(y * x)$ [8], (P3) $x *(y * z)=(x *(0 * z)) * y[6]$, (P4) $x * y=x * z$ implies $y=z[2]$, and (P5) $(x * y) *(0 * y)=x[6]$.

2 Centralizer and Normalizer of B-algebras In this section, we introduce centralizer and normalizer of B-algebras. We start with some examples of B-algebras.

Example 2.1. The algebra $(\mathbb{Z} ; *, 0)$ is a B-algebra, where $*$ is defined by $x * y=x-y$ for all $x, y \in \mathbb{Z}$.

Example 2.2. [6] Let $X=\{0,1,2,3,4,5\}$ be a set with the following table of operation:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a B-algebra.

[^0]Definition 2.3. The centralizer $C(x)$ of x in X is defined by $C(x)=\{y \in X: y *(0 * x)=$ $x *(0 * y)\}$.
Example 2.4. Let X be the B-algebra in Example 2.2. Then $C(1)=\{0,1,2\}$ and $C(3)=\{0,3\}$.
Theorem 2.5. $C(x)$ is a subalgebra of X for all $x \in X$.
Proof. Let $x \in X$. Clearly, $0 \in C(x)$ and so $C(x) \neq \varnothing$. Let $a, b \in C(x)$. Then $a *(0 * x)=$ $x *(0 * a)$ and $b *(0 * x)=x *(0 * b)$.
Claim 1: $b * x=(0 * x) *(0 * b)$.
Now, $b *(0 * x)=x *(0 * b)$ implies that $0 *(b *(0 * x))=0 *(x *(0 * b))$. By (P2), $(0 * x) * b=$ $(0 * b) * x$. Multiplying both sides by $0 * b$, we get $(0 * b) *((0 * x) * b)=(0 * b) *((0 * b) * x)$, and multiplying both sides by b, we get $b *[(0 * b) *((0 * x) * b)]=b *[(0 * b) *((0 * b) * x)]$. By (P3), $b *[((0 * b) *(0 * b)) *(0 * x)]=[b *(0 *((0 * b) * x))] *(0 * b)$. By (I) and (P2), $b *(0 *(0 * x))=[b *(x *(0 * b))] *(0 * b)$. Applying (P1) and (III), we get $b * x=((b * b) * x) *(0 * b)$. By (I), we have $b * x=(0 * x) *(0 * b)$. This proves claim 1. Now, $a *(0 * x)=x *(0 * a)$, (P1) (P2), (P3), and claim 1 imply that

$$
\begin{aligned}
x *(0 *(a * b)) & =x *(b * a) \\
& =(x *(0 * a)) * b \\
& =(a *(0 * x)) * b \\
& =a *(b * x) \\
& =a *((0 * x) *(0 * b)) \\
& =[a *(0 *(0 * b))] *(0 * x) \\
& =(a * b) *(0 * x) .
\end{aligned}
$$

Therefore, $a * b \in C(x)$ and so $C(x)$ is a subalgebra of X.
In Example 2.4, the set $C(1)$ is normal in X, while $C(3)$ is not normal in X since $2 *(2 * 3)=4 \notin C(3)$. This means that $C(x)$ need not be normal in X.
Definition 2.6. Let H be a nonempty subset of X. The centralizer $C(H)$ of H in X is defined by $C(H)=\{y \in X: y *(0 * x)=x *(0 * y)$ for all $x \in H\}$.
Example 2.7. Let X be the B-algebra in Example 2.2. If $H_{1}=\{0,1,2\}, H_{2}=\{0,3\}$, then $C\left(H_{1}\right)=H_{1}$ and $C\left(H_{2}\right)=H_{2}$.
Remark 2.8. Let H be a nonempty subset of X. Then $C(H)=\bigcap_{x \in H} C(x)$.
In [1], the center $Z(X)$ is a subalgebra of X. The following corollary affirms this fact.
Corollary 2.9. Let H be a nonempty subset of X. Then $C(H)$ is a subalgebra of X.
Proof. A direct consequence of Remark 2.8 and Theorem 2.5.
In Example 2.7, the set $C\left(H_{1}\right)$ is normal in X, while $C\left(H_{2}\right)$ is not normal in X. This means that $C(H)$ need not be normal in X even if H is a subalgebra of X. However, if H is normal in X, then $C(H)$ is normal in X. The proof of this is given in the last part of this paper.
Remark 2.10. Let H be a nonempty subset of X. Then $\bigcup_{x \in H} C(x)$ need not be a subalgebra of X.

To see this remark, consider the B-algebra X in Example 2.2. Let $H=\{1,3\}$. Then $C(1) \cup C(3)=\{0,1,2,3\}$. Since $1 * 3=4 \notin C(1) \cup C(3), C(1) \cup C(3)$ is not a subalgebra of X.

Lemma 2.11. For any $x, y, z \in X$,
i. $x *(x * y)=z$ if and only if $(0 * x) *((0 * x) * z)=y$,
ii. $(x * y) *((x * y) * z)=x *[x *((0 * y) *((0 * y) * z))]$.

Proof. By (P2), (P3), (P4), (P5), and (I), we have

$$
\begin{aligned}
x *(x * y)=z & \Leftrightarrow(0 * x) *(x *(x * y))=(0 * x) * z \\
& \Leftrightarrow(0 * x) *[(0 * x) *(x *(x * y))]=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow[(0 * x) *(0 *(x *(x * y)))](0 * x)=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow[(0 * x) *((x * y) * x)] *(0 * x)=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow[((0 * x) *(0 * x)) *(x * y)] *(0 * x)=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow(0 *(x * y)) *(0 * x)=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow(y * x) *(0 * x)=(0 * x) *((0 * x) * z) \\
& \Leftrightarrow y=(0 * x) *((0 * x) * z) .
\end{aligned}
$$

This proves (i). By (III) and (P2), we have

$$
\begin{aligned}
(x * y) *((x * y) * z) & =x *[((x * y) * z) *(0 * y)] \\
& =x *\{[x *(z *(0 * y))] *(0 * y)\} \\
& =x *\{x *\{(0 * y) *[0 *(z *(0 * y))]\}\} \\
& =x *[x *((0 * y) *((0 * y) * z))]
\end{aligned}
$$

This proves (ii).
The previous lemma is useful for the succeeding results. We now introduce the concept of normalizer of B-algebras.

Definition 2.12. Let H and K be nonempty subsets of X. For every $x \in X$, we define H_{x} as the set $H_{x}=\{x *(x * h): h \in H\}$. The normalizer of H in K, denoted by $N_{K}(H)$, is defined by $N_{K}(H)=\left\{x \in K: H_{x}=H\right\}$. If $K=X$, then $N_{X}(H)$ is called the normalizer of H, denoted by $N(H)$. If $H=\{x\}$, then we write $N(x)$ in place of $N(\{x\})$.

Theorem 2.13. Let H be a nonempty subset of X and K be a subalgebra of X. Then $N_{K}(H)$ is a subalgebra of X.

Proof. By (P1), $H_{0}=H$. Since K is a subalgebra, $0 \in K$. Thus, $0 \in N_{K}(H)$ and so $N_{K}(H) \neq \varnothing$. Let $x, y \in N_{K}(H)$. Then $x, y \in K$ and $H_{x}=H=H_{y}$.
Claim 1: $0 * y \in N_{K}(H)$.
Since K is a subalgebra, $0 * y \in K$. Let $a \in H$. Since $H=H_{y}, y *(y * a)=h_{1}$ for some $h_{1} \in H$. By Lemma 2.11(i), $a=(0 * y) *\left((0 * y) * h_{1}\right) \in H_{0 * y}$. Thus, $H \subseteq H_{0 * y}$. Let $b \in H_{0 * y}$. Then $b=(0 * y) *\left((0 * y) * h_{2}\right)$ for some $h_{2} \in H$. By Lemma 2.11(i), $y *(y * b)=h_{2} \in H=H_{y}$. Hence, $y *(y * b)=y *\left(y * h_{3}\right)$ for some $h_{3} \in H$. By (P4), $b=h_{3} \in H$. Thus, $H_{0 * y} \subseteq H$. Therefore, $H=H_{0 * y}$. This proves claim 1.
Claim 2: $x * y \in N_{K}(H)$.
Since K is a subalgebra, $x * y \in K$. Let $a \in H_{x * y}$. Then $a=(x * y) *\left((x * y) * h_{4}\right)$
for some $h_{4} \in H$. By Lemma 2.11(ii), $a=x *\left[x *\left((0 * y) *\left((0 * y) * h_{4}\right)\right)\right]$. By claim 1, $(0 * y) *\left((0 * y) * h_{4}\right) \in H_{0 * y}=H$. Hence, $a \in H_{x}=H$. Thus, $H_{x * y} \subseteq H$. Let $b \in H$. Then $b \in H_{x}$, that is, $b=x *\left(x * h_{5}\right)$ for some $h_{5} \in H$. Since $H=H_{0 * y}, h_{5}=(0 * y) *\left((0 * y) * h_{6}\right)$ for some $h_{6} \in H$. Hence, $b=x *\left[x *\left((0 * y) *\left((0 * y) * h_{6}\right)\right)\right]$. By Lemma 2.11(ii), $b=(x * y) *\left((x * y) * h_{6}\right) \in H_{x * y}$. Thus, $H \subseteq H_{x * y}$. Hence, $H=H_{x * y}$. This proves claim 2. Therefore, $N_{K}(H)$ is a subalgebra of X.

Corollary 2.14. Let H be a nonempty subset of X. Then $N(H)$ is a subalgebra of X.
Proposition 2.15. $C(x)=N(x)$ for all $x \in X$.
In view of Remark 2.10 and Proposition 2.15, $\bigcup_{x \in H} N(x)$ need not be a subalgebra of X.
Theorem 2.16. Let H be a subalgebra of X.
i. H is normal in X if and only if $N(H)=X$,
ii. H is normal in $N(H)$,
iii. $N(H)$ is the largest subalgebra of X in which H is normal.

Proof. Let H be a subalgebra of X.
i. Suppose H is normal in X. Clearly, $N(H) \subseteq X$. Let $x \in X$. Then $x *(x * h) \in H$ for all $h \in H$. Hence, $H_{x} \subseteq H$. Let $h \in H$. Then $(0 * x) *((0 * x) * h) \in H$. Thus, $(0 * x) *((0 * x) * h)=h^{\prime}$ for some $h^{\prime} \in H$. By Lemma 2.11(i), $h=x *\left(x * h^{\prime}\right) \in H_{x}$. Hence, $H \subseteq H_{x}$. Thus, $H=H_{x}$, that is, $x \in N(H)$. Therefore, $N(H)=X$. Conversely, let $h \in H$ and $x \in X$. Since $N(H)=X, x *(x * h) \in H$. Therefore, H is normal in X.
ii. Let $x \in H$. Since H is a subalgebra of $X, H_{x} \subseteq H$. Let $h \in H$. Since H is a subalgebra of $X, 0 * x \in H$ and so $(0 * x) *((0 * x) * h) \in H$. Thus, $(0 * x) *((0 * x) * h)=h^{\prime}$ for some $h^{\prime} \in H$. By Lemma 2.11(i), $h=x *\left(x * h^{\prime}\right) \in H_{x}$. Hence, $H \subseteq H_{x}$. Thus, $H=H_{x}$, that is, $x \in N(H)$. Therefore, $H \subseteq N(H)$. By Corollary 2.14, $N(H)$ is a subalgebra of X. Since $H \subseteq N(H), H$ is a subalgebra of $N(H)$. In view of Definition 2.12, H is normal in $N(H)$.
iii. Let H be normal in a subalgebra K of X. Let $k \in K$. Since H is normal in K, $k *(k * h) \in H$ for all $h \in H$. Hence, $H_{k} \subseteq H$. Let $h \in H$. Since H is normal in K and K is a subalgebra, $(0 * k) *((0 * k) * h) \in H$. Thus, $(0 * k) *((0 * k) * h)=h^{\prime}$ for some $h^{\prime} \in H$. By Lemma 2.11(i), $h=k *\left(k * h^{\prime}\right) \in H_{k}$. Hence, $H \subseteq H_{k}$. Thus, $H=H_{k}$, that is, $k \in N(H)$. Therefore, $K \subseteq N(H)$.

Corollary 2.17. $C(0)=N(0)=X$.
Corollary 2.18. Let H and K be subalgebras of X. Then H is normal in K if and only if $H \subseteq K \subseteq N(H)$.

Corollary 2.19. Let H be a nonempty subset of X. Then $C(H) \subseteq N(H)$.
Let $H=\{0,1,2\}$ be the subset of the B-algebra X in Example 2.2. Then $C(H)=H \neq$ $X=N(H)$.

3 Some Properties of Automorphisms of B-algebras In this section, we consider all B-isomorphisms of X onto itself. A mapping $\varphi: X \rightarrow Y$ is called a B-homomorphism [7] if $\varphi(x * y)=\varphi(x) * \varphi(y)$ for any $x, y \in X$. A B-homomorphism φ is called a B-monomorphism, B-epimorphism, or B-isomorphism if φ is one-to-one, onto, or a bijection, respectively. A B-isomorphism $\varphi: X \rightarrow X$ is called a B-automorphism. We define $\operatorname{Aut}(X)$ as the set of all B-automorphisms of X. We recall from [6] that if $(X ; \circ, e)$ is a group with identity e, then $(X ; *, 0=e)$ is a B-algebra, where $*$ is defined by $x * y=x \circ y^{-1}$. Since $\operatorname{Aut}(X)$ is a group under composition of functions, $\left(\operatorname{Aut}(X) ; \odot, i d_{X}\right)$ is a B-algebra, where \odot is defined by $f \odot g=f \circ g^{-1}$ for all $f, g \in \operatorname{Aut}(X)$, where \circ denotes the composition of functions.
Theorem 3.1. Let $x \in X$. Define $\varphi_{x}: X \rightarrow X$ by $\varphi_{x}(y)=x *(x * y)$ for all $y \in X$. Then
i. $\varphi_{x} \in \operatorname{Aut}(X)$,
ii. $\varphi_{x} \circ \varphi_{0 * y}=\varphi_{x * y}$ and $\varphi_{x} \circ \varphi_{y}=\varphi_{x *(0 * y)}$ for all $x, y \in X$,
iii. $\varphi_{0}=i d_{X}$,
iv. $\left(\varphi_{x}\right)^{-1}=\varphi_{0 * x}$,
v. for all $\psi \in \operatorname{Aut}(X), \psi \circ \varphi_{x} \circ \psi^{-1}=\varphi_{\psi(x)}$.

Proof. i. Clearly, φ_{x} is well-defined. Let $a, b \in X$. Now, by (P1), (P3), (I), (II), and (III), we have

$$
\begin{aligned}
\varphi_{x}(a * b) & =x *(x *(a * b)) \\
& =x *[(x *(0 * b)) * a] \\
& =(x *(0 * a)) *(x *(0 * b) \\
& =[(x *(0 * a)) *((0 * x) *(0 * x))] *(x *(0 * b)) \\
& =[((x *(0 * a)) * x) *(0 * x)] *(x *(0 * b)) \\
& =\{[x *(x *(0 *(0 * a)))] *(0 * x)\} *(x *(0 * b)) \\
& =((x *(x * a)) *(0 * x)) *(x *(0 * b)) \\
& =(x *(x * a)) *[(x *(0 * b)) *(0 *(0 * x))] \\
& =(x *(x * a)) *((x *(0 * b)) * x) \\
& =(x *(x * a) *[x *(x *(0 *(0 * b)))] \\
& =(x *(x * a) *(x *(x * b)) \\
& =\varphi_{x}(a) * \varphi_{x}(b) .
\end{aligned}
$$

Hence, φ_{x} is a B-homomorphism.
Also, φ_{x} is onto since by (P1), (P2), (P3), (I), and (III), we get

$$
\begin{aligned}
\varphi_{x}((0 * x) *((0 * x) * a)) & =x *[x *((0 * x) *((0 * x) * a))] \\
& =x *[x *(((0 * x) *(0 * a)) *(0 * x))] \\
& =x *[(x *(0 *(0 * x))) *((0 * x) *(0 * a))] \\
& =x *[0 *((0 * x) *(0 * a))] \\
& =x *((0 * a) *(0 * x)) \\
& =(x *(0 *(0 * x))) *(0 * a) \\
& =0 *(0 * a) \\
& =a
\end{aligned}
$$

Suppose $\varphi_{x}(a)=\varphi_{x}(b)$. Then $x *(x * a)=x *(x * b)$. By (P4), $a=b$. Hence, φ_{x} is one-to-one. Therefore, $\varphi_{x} \in \operatorname{Aut}(X)$.
ii. Let $a \in X$. Then by (III) and (P2), we have

$$
\begin{aligned}
\varphi_{x * y}(a) & =(x * y) *((x * y) * a) \\
& =x *[((x * y) * a) *(0 * y)] \\
& =x *\{[x *(a *(0 * y))](0 * y)\} \\
& =x *\{x *\{(0 * y) *[0 *(a *(0 * y))]\}\} \\
& =x *[x *((0 * y) *((0 * y) * a))] \\
& =x *\left(x * \varphi_{0 * y}(a)\right) \\
& =\varphi_{x}\left(\varphi_{0 * y}(a)\right) \\
& =\left(\varphi_{x} \circ \varphi_{0 * y}\right)(a) .
\end{aligned}
$$

Hence, $\varphi_{x * y}=\varphi_{x} \circ \varphi_{0 * y}$. By (P1), $\varphi_{x} \circ \varphi_{y}=\varphi_{x} \circ \varphi_{0 *(0 * y)}$. Since $\varphi_{x * y}=\varphi_{x} \circ \varphi_{0 * y}$, we have $\varphi_{x} \circ \varphi_{0 *(0 * y)}=\varphi_{x *(0 * y)}$.
iii-v Straightforward.

The φ_{x} of Theorem 3.1 is called an inner B-automorphism of X. We define $\operatorname{Inn}(X)$ as the set of all inner B-automorphisms of X.

Theorem 3.2. $\operatorname{Inn}(X)$ is a normal subalgebra of $\operatorname{Aut}(X)$.
Proof. By Theorem 3.1(iii), $i d_{X}=\varphi_{0} \in \operatorname{Inn}(X)$ and so $\operatorname{Inn}(X) \neq \varnothing$. By Theorem 3.1(i), $\operatorname{Inn}(X) \subseteq \operatorname{Aut}(X)$. Let $\varphi_{x}, \varphi_{y} \in \operatorname{Inn}(X)$. Then by Theorem 3.1(iv, ii), $\varphi_{x} \odot \varphi_{y}=$ $\varphi_{x} \circ \varphi_{y}^{-1}=\varphi_{x} \circ \varphi_{0 * y}=\varphi_{x * y} \in \operatorname{Inn}(X)$. Thus, $\operatorname{Inn}(X)$ is a subalgebra of $\operatorname{Aut}(X)$. Let $\psi \in \operatorname{Aut}(X)$ and $\varphi_{x} \in \operatorname{Inn}(X)$. Then by Theorem 3.1(v), we have $\psi \odot\left(\psi \odot \varphi_{x}\right)=$ $\psi \circ\left(\psi \circ \varphi_{x}^{-1}\right)=\psi \circ\left(\psi \circ \varphi_{x}^{-1}\right)^{-1}=\psi \circ\left(\varphi_{x} \circ \psi^{-1}\right)=\varphi_{\psi(x)} \in \operatorname{Inn}(X)$. Therefore, $\operatorname{Inn}(X)$ is a normal subalgebra of $\operatorname{Aut}(X)$.

The following theorem is labeled as the First Isomorphism Theorem for B-algebras and can be found in [7]. We also note that the kernel of a B-homomorphism is normal [7].

Theorem 3.3. Let $\varphi: X \rightarrow Y$ be a B-homomorphism of X into Y. Then $X / \operatorname{Ker} \varphi \cong \operatorname{Im}$ φ.

Theorem 3.4. Let H be a subalgebra of X. Then $C(H)$ is normal in $N(H)$ and $N(H) / C(H)$ $\cong a$ subalgebra of $\operatorname{Aut}(H)$.

Proof. Define $f: N(H) \rightarrow \operatorname{Aut}(H)$ by $f(x)=\varphi_{x}$ for all $x \in N(H)$, where $\varphi_{x}: H \rightarrow H$ is defined by $\varphi_{x}(h)=x *(x * h)$ for all $h \in H$. Clearly, f is well-defined. Let $x, y \in N(H)$. Then $f(x * y)=\varphi_{x * y}=\varphi_{x} \circ \varphi_{0 * y}=\varphi_{x} \circ \varphi_{y}^{-1}=\varphi_{x} \odot \varphi_{y}=f(x) \odot f(y)$. Therefore, f is a B-homomorphism. By the First Isomorphism Theorem for B-algebras, $N(H) /$ Ker $f \cong \operatorname{Im}$ f.
Claim: If $x *(x * h)=h$ for all $h \in H$, then $x \in C(H)$.
Suppose $x *(x * h)=h$ for all $h \in H$. Multiplying both sides by $0 * x$, we get $(x *(x * h)) *$ $(0 * x)=h *(0 * x)$. By (III), $x *((0 * x) *(0 *(x * h)))=h *(0 * x)$. Applying (P2), we obtain $x *((0 * x) *(h * x))=h *(0 * x)$. Hence, by (P3), $x *[((0 * x) *(0 * x)) * h]=h *(0 * x)$.

Thus, by (I), $x *(0 * h)=h *(0 * x)$, that is, $x \in C(H)$. This proves the claim. Now, by Corollary 2.19 and the claim,

$$
\text { Ker } \begin{aligned}
f & =\left\{x \in N(H): f(x)=i d_{H}\right\} \\
& =\left\{x \in N(H): \varphi_{x}(h)=i d_{H}(h) \text { for all } h \in H\right\} \\
& =\{x \in N(H): x *(x * h)=h \text { for all } h \in H\} \\
& =\{x \in N(H): x \in C(H)\} \\
& =C(H) .
\end{aligned}
$$

Therefore, $C(H)$ is a normal in $N(H)$ and $N(H) / C(H) \cong$ a subalgebra of $A u t(H)$.
In [9], the center $Z(X)$ is normal in X. The following corollaries affirm this fact.
Corollary 3.5. $Z(X)$ is normal in X and $X / Z(X) \cong \operatorname{Inn}(X)$.
Proof. Let $H=X$ in Theorem 3.4. Then $N(X)=X$ and $C(X)=Z(X)$ and so $Z(X)$ is normal in X. Since $\operatorname{Im} f=\operatorname{Inn}(X), X / Z(X) \cong \operatorname{Inn}(X)$.
Corollary 3.6. If H is normal in X, then so is $C(H)$.
Proof. This follows from Theorems 3.4 and 2.16(i).
Acknowledgement. The author would like to thank the referee for the remarks and suggestions which were incorporated into this revised version.

References

[1] P.J. Allen, J. Neggers, and H.S. Kim, B-algebras and groups, Scientiae Mathematicae Japonicae Online, 9 (2003), 159-165.
[2] J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems, 8 (2001), 1-6.
[3] J.C. Endam and J.P. Vilela, The Second Isomorphism Theorem for B-algebras, Applied Mathematical Sciences, 8(38) (2014), 1865-1872.
[4] H.S. Kim and H.G. Park On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online (2005), 31-36.
[5] M. Kondo and Y.B. Jun, The Class of B-algebras Coincides with the Class of Groups, Scientiae Mathematicae Japonicae Online, 7 (2002), 175-177.
[6] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik, 54 (2002), 21-29.
[7] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J., 2(3) (2002), 207-214.
[8] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca, 56(3) (2006), 301-306.
[9] A. Walendziak, A note on normal subalgebras in B-algebras, Scientiae Mathematicae Japonicae Online, (2005), 49-53.

Communicated by Klaus Denecke
Joemar C. Endam
Department of Mathematics
Negros Oriental State University
Kagawasan Ave., Dumaguete City 6200, PHILIPPINES
jc endam@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 08A05, 06F35.
 Key words and phrases. B-algebras, centralizer, normalizer, normal subalgebra.

