ON CONJUGATIONS FOR BANACH SPACES

Muneo Chō and Kôtarô Tanahashi

Received April 18, 2016; revised June 15, 2016

Abstract

In this paper we introduce a conjugation C on a complex Banach space \mathcal{X} and define complex symmetric operators. We show some spectral properties of complex symmetric operators.

1 Introduction

Let \mathcal{H} be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . An antilinear operator C is said to be *conjugation* if $C^2 = I$ and $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. T. Takagi in [14] studied antilinear eigenvalue problem. V.I. Godic and I.E. Lucenko in [9] showed that U is unitary if and only if there exist conjugations C, J such that U = CJ. S.R. Garcia and M. Putinar showed that, for conjugations C, J on a Hilbert space, CJ is both C-symmetric and Jsymmetric. See Lemma 1 of [7]. Now we have many research about conjugations of Hilbert spaces. For examples, see [6], [7], [10] and [8]. In this paper we introduce a conjugation on a Banach space and show some properties concerning with conjugations.

2 Conjugations on Banach spaces

Let \mathcal{X} be a complex Banach space, $\|\cdot\|$ be the norm of \mathcal{X} and $B(\mathcal{X})$ be the set of all bounded linear operators on \mathcal{X} . For an operator $T \in B(\mathcal{X})$, the spectrum, the point spectrum, the approximate point spectrum and the surjective spectrum of T are denoted by $\sigma(T), \sigma_p(T), \sigma_a(T), \sigma_s(T)$, respectively. It holds $\sigma(T) = \sigma_a(T) \bigcup \sigma_s(T), \sigma_s(T) = \sigma_a(T^*)$ and $\sigma_a(T) = \sigma_s(T^*)$, where T^* is the dual operator T on the dual space \mathcal{X}^* . See [1] for details. ker(T) and R(T) denote the kernel and the range of T, respectively. For a subset M of $\mathbb{C}, M^* = \{\overline{z} : z \in M\}$. For an operator C on \mathcal{X} , we define a conjugation as follows.

⁰2010 Mathematics Subject Classification; Primary 47A05, Secondary 47B25, 47B99.

Keywords; Banach space, linear operator, conjugation.

This is partially supported by Grant-in-Aid Scientific Research No.15K04910.

Definition 2.1 Let \mathcal{X} be a complex Banach space. An operator $C : \mathcal{X} \to \mathcal{X}$ is said to be a conjugation if C satisfies

(1)
$$C^2 = I, \ \|C\| \le 1, \ C(x+y) = Cx + Cy, \ C(\lambda x) = \overline{\lambda} Cx \ (\forall x, y \in \mathcal{X}, \lambda \in \mathbb{C}),$$

where I is the identity operator on \mathcal{X} and $||C|| = \sup_{\|x\| \le 1} \{ ||Cx\| : x \in \mathcal{X} \}.$

Next theorem shows that if the space \mathcal{X} is a Hilbert space and C satisfies condition (1), then C is a conjugation as follows.

Theorem 2.2 If C satisfies condition (1) on a complex Hilbert space \mathcal{H} , then $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$, *i.e.*, C is a conjugation on \mathcal{H} .

Proof. Let $x, y \in \mathcal{H}, \alpha \in \mathbb{R}$ and let Cy = z. Since

$$\begin{aligned} \|Cx + \alpha z\| &= \|C(x + \alpha Cz)\| \\ &\leq \|x + \alpha Cz\| = \|C(Cx + \alpha z)\| \leq \|Cx + \alpha z\|, \end{aligned}$$

we have

$$\|Cx + \alpha z\| = \|x + \alpha Cz\|.$$

By taking square, we have

$$\begin{aligned} \|Cx\|^2 + \alpha \left(\langle Cx, z \rangle + \langle z, Cx \rangle \right) + \alpha^2 \|z\|^2 \\ = \|x\|^2 + \alpha \left(\langle x, Cz \rangle + \langle Cz, x \rangle \right) + \alpha^2 \|Cz\|^2. \end{aligned}$$

Hence ||Cx|| = ||x|| and

$$\operatorname{Re} \langle Cx, Cy \rangle = \operatorname{Re} \langle Cx, z \rangle$$
$$= \operatorname{Re} \langle Cz, x \rangle = \operatorname{Re} \langle C^2y, x \rangle = \operatorname{Re} \langle y, x \rangle.$$

By taking ix instead of x, we have

$$\operatorname{Re}\{-i\langle Cx, Cy\rangle\} = \operatorname{Re} \langle Cix, Cy\rangle$$
$$= \operatorname{Re} \langle y, ix\rangle = \operatorname{Re}\{-i\langle y, x\rangle\}.$$

Hence

$$\operatorname{Im} \langle Cx, Cy \rangle = \operatorname{Im} \langle y, x \rangle.$$

Thus $\langle Cx, Cy \rangle = \langle y, x \rangle$. \Box

Theorem 2.3 Let C be a conjugation on a complex Banach space \mathcal{X} . Then ||Cx|| = ||x|| for all $x \in \mathcal{X}$.

Proof. Since $||C|| \le 1$, it holds $||x|| = ||C^2x|| \le ||C|| ||Cx|| \le ||Cx||$. Hence $||x|| \le ||Cx||$. Therefore $||Cx|| \le ||C^2x|| = ||x||$ and ||Cx|| = ||x||. \Box **Example 2.4** For a complex Hilbert space \mathcal{H} , let $\mathcal{X} = B(\mathcal{H})$ and C, J be conjugations on \mathcal{H} . Let M_{CJ} is defined by

$$M_{CJ}(T) = CTJ.$$

Then M_{CJ} is a conjugation on \mathcal{X} .

Proof. It is clear that $M_{CJ}: B(\mathcal{H}) \longrightarrow B(\mathcal{H})$. Since $C^2 = J^2 = I$, it holds $M^2_{CJ}(T) = T$ for all $T \in B(\mathcal{X})$. Next it holds

$$M_{CJ}(\lambda T) = C(\lambda T)J = \overline{\lambda}CTJ = \overline{\lambda}M_{CJ}(T).$$

Since $||M_{CJ}(T)|| \leq ||T||$ for all $T \in B(\mathcal{X})$, $||M_{CJ}|| \leq 1$. Since CJ is in $B(\mathcal{X})$ and ||CJ|| = 1, we have $M_{CJ}(CJ) = I$. Hence, $||M_{CJ}|| = 1$ and M_{CJ} is a conjugation on \mathcal{X} .

For a complex Banach space \mathcal{X} , let \mathcal{X}^* be the dual space of \mathcal{X} and the dual operator of $T \in B(\mathcal{X})$ is denoted by T^* .

Definition 2.5 For a conjugation C on a Banach space \mathcal{X} , the dual operator $C^* : \mathcal{X}^* \to \mathcal{X}^*$ of C is defined by

$$(C^*(f))(x) = \overline{f(Cx)} \quad (x \in \mathcal{X}, f \in \mathcal{X}^*).$$

Then we have following result.

Theorem 2.6 Let C be a conjugation on a complex Banach space \mathcal{X} . Then C^* is a conjugation on \mathcal{X}^* .

Proof. It is clear that $C^{*2} = I^*$, $C^*(f+g) = C^*(f) + C^*(g) \quad (\forall f, g \in \mathcal{X}^*)$. For $\lambda \in \mathbb{C}, x \in \mathcal{X}$, it holds

$$(C^*(\lambda f))(x) = \overline{\lambda} \ \overline{f(Cx)} = \overline{\lambda} \ (C^*f)(x).$$

Hence we say C^* the dual conjugation of C.

First we show spectral properties of complex symmetric operators.

Theorem 2.7 Let C be a conjugation on a complex Banach space \mathcal{X} . Then $\sigma_a(CTC) = \sigma_a(T)^*, \sigma_p(CTC) = \sigma_p(T)^*, \sigma_s(CTC) = \sigma_s(T)^*$ and $\sigma(CTC) = \sigma(T)^*$.

Proof. Let $z \in \sigma_a(CTC)$ and $\{x_n\}$ be a sequence of unit vectors such that $(CTC - z)x_n \to 0$. Then since $C(T - \overline{z})Cx_n \to 0$ and $||Cx_n|| = 1$, we have $\overline{z} \in \sigma_a(T)$. Hence $\sigma_a(CTC) \subset \sigma_a(T)^*$. Therefore, $\sigma_a(T) = \sigma_a(C^2TC^2) \subset \sigma_a(CTC)^*$ and $\sigma_a(CTC) = \sigma_a(T)^*$. Similarly, we have $\sigma_p(CTC) = \sigma_p(T)^*$. Let $z \notin \sigma_s(CTC)$ and $x \in \mathcal{X}$. Then there exists $y \in \mathcal{X}$ such that (CTC - z)y = Cx. Hence $(T - \overline{z})Cy = C(CTC - z)y = C^2x = x$. Hence $\sigma_s(CTC) \subset \sigma_s(T)^*$ The converse is similar. Hence $\sigma_s(CTC) = \sigma_s(T)^*$. Also, $\sigma(CTC) = \sigma_a(CTC) \cup \sigma_s(CTC) = \sigma_a(T)^* \cup \sigma_s(T)^* = \sigma(T)^*$.

Next we introduce numerical range of Banach space operator.

Definition 2.8 Let Π be the set

$$\Pi := \{ (x, f) \in \mathcal{X} \times \mathcal{X}^* : \|f\| = f(x) = \|x\| = 1 \}.$$

For an operator $T \in B(\mathcal{X})$, the numerical range V(T) of T is given by

 $V(T) = \{ f(Tx) : (x, f) \in \Pi \}.$

Hence, *normal* and *hyponormal* are defined as follows.

- (1) T is called *Hermitian* and *positive* (denoted by $T \ge 0$) if $V(T) \subset \mathbb{R}$ and $V(T) \subset [0, \infty)$, respectively.
- (2) T is called *normal* if there exist Hermitian operators H, K such that HK = KH, T = H + iK.
- (3) T is called *hyponormal* if there exist Hermitian operators H, K such that $T = H + iK, i(HK KH) \ge 0.$

Let $T \in B(\mathcal{X})$. If T = H + iK for some Hermitian H and K, then H and K are unique. Hence we denote H - iK by \overline{T} . Let $T^* \in B(\mathcal{X}^*)$ be the dual operator of T. Hence if T = H + iK, then $T^* = H^* + iK^*$.

Definition 2.9 Let $T \in B(\mathcal{X})$ be T = H + iK for some Hermitian H and K. Let C be a conjugation on \mathcal{X} . Then T is said to be C-symmetric if CTC = T.

Theorem 2.10 Let T = H + iK for some Hermitian H and K. Let C be a conjugation on \mathcal{X} and T is C-symmetric. Then T is invertible if and only if T is invertible.

Proof. Let, for a conjugation C, $C\overline{T}C = T$ and \underline{T} be invertible. Then we have $\overline{T}CT^{-1}C = CTC CT^{-1}C = CTT^{-1}C = C^2 = I = CT^{-1}CT$. Hence T is invertible. Converse is clear. \Box

Theorem 2.11 Let \mathcal{X} be a complex Banach space. If an operator T = H + iK is complex symmetric, then $\sigma_p(T) = \sigma_p(\overline{T})^*$, $\sigma_a(T) = \sigma_a(\overline{T})^*$, $\sigma_s(T) = \sigma_s(\overline{T})^*$ and $\sigma(T) = \sigma(\overline{T})^*$.

Proof. By Theorem 2.7, we have $\sigma_p(C\overline{T}C) = \sigma_p(\overline{T})^*$. Since $C\overline{T}C = T$ for some conjugation, we have $\sigma_p(T) = \sigma_p(T)^*$. Others are similar. \Box

Definition 2.12 An operator $T = H + iK \in B(\mathcal{X})$ is said to be an ExB-operator if there exists M > 0 such that _____

 $||e^{z\overline{T}} \cdot e^{-\overline{z}T}|| \le M \quad for \ all \ z \in \mathbb{C}.$

We have $||e^{z\overline{T}} \cdot e^{-\overline{z}T}|| \leq M$ ($\forall z \in \mathbb{C}$) if and only if $||e^{z\overline{T}}x|| \leq M ||e^{\overline{z}T}x||$ ($\forall x \in \mathcal{X}, \forall z \in \mathbb{C}$). For $T = H + iK \in B(\mathcal{H})$ (Hilbert space operator case), T is an ExB-operator if and only if $||(e^{zT})^*x|| \leq M ||e^{zT}x||$ ($\forall x \in \mathcal{H}, \forall z \in \mathbb{C}$). It is easy to see that if T is an ExB-operator, then so is aT + b for all $a, b \in \mathbb{C}$. When M = 1, K. Mattila in [13] called *-hyponormal.

Proposition 2.13 (Lemma 2 of [5]). If T = H + iK is an ExB-operator and Tx = 0, then $\overline{T}x = 0$.

Since $(e^{z\overline{T}} \cdot e^{-\overline{z}T})^* = e^{-\overline{z}T^*} \cdot e^{z\overline{T}^*}$, if T is an ExB-operator, then so is \overline{T}^* .

Theorem 2.14 Let \mathcal{X} be a complex Banach space and C be a conjugation on \mathcal{X} . If T is an ExB-operator on \mathcal{X} and C-symmetric, then $\ker(T - \lambda) = C \ker(T - \lambda)$ for all $\lambda \in \mathbb{C}$.

Proof. Let $Tx = \lambda x$. Since aT + b is an ExB-operator for all $a, b \in \mathbb{C}$ and $(T - \lambda)x = 0$, by Proposition 2.13 it holds $\overline{T}x = \overline{\lambda}x$. Hence $\overline{\lambda}x = \overline{T}x = (CTC)x = C(TCx)$ and it holds $T(Cx) = C^2T(Cx) = C(\overline{\lambda}x) = \lambda Cx$. Hence $C \ker(T - \lambda) \subset \ker(T - \lambda)$. Also, we have $\ker(T - \lambda) = C^2 \ker(T - \lambda) \subset C \ker(T - \lambda)$. Hence $\ker(T - \lambda) = C \ker(T - \lambda)$. \Box

For a study of properties of a complex symmetric ExB-operator, we recall from [2] and [3] the construction of a larger space \mathcal{X}° from a given Banach space \mathcal{X} . Then the mapping $T \to T^{\circ}$ is an isometric isomorphism of $B(\mathcal{X})$ onto a closed subalgebra of $B(\mathcal{X}^{\circ})$ as follows: Let Lim be fixed Banach limit on the space of all bounded sequences of complex numbers with the norm $\|\{\lambda_n\}\| = \sup\{|\lambda_n| : n \in \mathbb{N}\}$. Let $\tilde{\mathcal{X}}$ be the space of all bounded sequences $\{x_n\}$ of \mathcal{X} . Let N be the subspace of $\tilde{\mathcal{X}}$ consisting of all bounded sequences $\{x_n\}$ with $\lim \|x_n\|^2 = 0$. The space \mathcal{X}° is defined as the completion of the quotient space $\tilde{\mathcal{X}}/N$ with respect to the norm $\|\{x_n\} + N\| = (\lim \|x_n\|^2)^{\frac{1}{2}}$. Operator T' is defined by $T'(\{x_n\} + N) = \{Tx_n\} + N$ on $\tilde{\mathcal{X}}/N$. The operator T° is defined by the unique extension of T' on \mathcal{X}° . Then the following results hold:

$$\sigma(T) = \sigma(T^{\circ}), \ \sigma_a(T) = \sigma_a(T^{\circ}) = \sigma_p(T^{\circ}) \ \text{ and } \ \overline{\operatorname{co}} V(T) = V(T^{\circ}),$$

where $\overline{\operatorname{co}} V(T)$ is the closed convex hull of V(T). See [2] and [3] for details. Therefore, if T is Hermitian, normal or hyponormal, then so is T° , respectively. Since the mapping $T \to T^{\circ}$ is an isometric isomorphism of $B(\mathcal{X})$ onto a closed subalgebra of $B(\mathcal{X}^{\circ})$, if T is an ExB-operator, then so is T° .

Let C be a conjugation on \mathcal{X} . The operator C' is defined by $C'(\{x_n\} + N) = \{Cx_n\} + N$ on $\tilde{\mathcal{X}}/N$ and we define C° as the unique extension of C' on \mathcal{X}° . Then it is easy to see that

$$C^{\circ 2} = I^{\circ}, \ \|C^{\circ}\| = 1, \ C^{\circ}(x^{\circ} + y^{\circ}) = C^{\circ}x^{\circ} + C^{\circ}y^{\circ}, \ C^{\circ}(\lambda x^{\circ}) = \overline{\lambda} C^{\circ}x^{\circ} \ (\forall x^{\circ}, y^{\circ} \in \mathcal{X}^{\circ}, \lambda \in \mathbb{C}).$$

Theorem 2.15 With the above assertion, if C is a conjugation, then so is C° on \mathcal{X}° .

Since $(CTC)'(\{x_n\} + N) = \{CTCx_n\} + N = C'(\{TCx_n\} + N) = C'T'C'(\{x_n\} + N)$, it holds $(CTC)^\circ = C^\circ T^\circ C^\circ$. Hence the following result holds.

Theorem 2.16 With the above assertion, if T is C-symmetric on \mathcal{X} , then T° is C° -symmetric on \mathcal{X}° .

For the final result, we introduce *orthogonality* of Banach space as follows.

Definition 2.17 Let M be a subspace of \mathcal{X} . A vector x is orthogonal to M if

 $||m|| \le ||m+x|| \quad (for all \ m \in M).$

Then we denote by $M \perp x$.

For a subspace $M \subset \mathcal{X}$, let M^{\perp} be the set $\{x \in \mathcal{X} : M \perp x\}$. Let M, N be subspaces of \mathcal{X} . If, for all $n \in N, M \perp n$, then we denote $M \perp N$.

Theorem 2.18 If a subspace M is invariant for a conjugation C, then M^{\perp} is invariant for C.

Proof. Let $x \in M^{\perp}$ and $m \in M$ be arbitrary. Then

 $||m|| = ||Cm|| \le ||Cm + x|| = ||C(Cm + x)|| = ||m + Cx||.$

Hence $Cx \in M^{\perp}$. \Box

Hence we have following corollary.

Corollary 2.19 Let T = H + iK be an ExB-operator. If T is C-symmetric, then $\ker(T)^{\perp}$ is invariant for C.

Proposition 2.20 (Theorem 20.7, [4]).

Let \mathcal{X} be a reflexive Banach space and $x \in \mathcal{X}$ be ||x|| = 1. Then there exists $f \in \mathcal{X}^*$ such that ||f|| = f(x) = 1 and $H^*f = 0$ for all Hermitian operators H for which Hx = 0.

Proposition 2.21 (Lemma 20.3, [4]).

It holds that $\ker(T) \perp R(T)$ if and only if for any unit vector $x \in \ker(T)$ there exists $f \in \mathcal{X}^*$ such that ||f|| = f(x) = 1 and $T^*f = 0$.

Theorem 2.22 Let Let \mathcal{X} be a reflexive Banach space and T = H + iK be an ExBoperator. Then ker $(T) \perp R(T)$. *Proof.* Let $x \in \ker(T)$ be a unit vector. Since T = H + iK is an ExB-operator, by Proposition 2.13 we have Hx = Kx = 0. Since \mathcal{X} is reflexive, by Proposition 2.20 there exists $f \in \mathcal{X}^*$ such that ||f|| = f(x) = 1 and $T^*f = 0$. Hence by Proposition 2.21 it holds $\ker(T) \perp R(T)$. \Box

In [11], K. Mattila proved the following result for a normal operator.

Proposition 2.23 (Propositions 3.7 and 3.9, Corollary 3.8, [11]).

Let T be normal and $\lambda, \mu \in \mathbb{C}$ be $\lambda \neq \mu$.

- (1) If $\{x_n\}$ is a sequence of unit vectors such that $Tx_n \to 0$, then $1 \leq \liminf ||x_n + Ty_n||$, for any bounded sequence $\{y_n\}$ of \mathcal{X} .
- (2) If $\{x_n\}$ is a sequence of unit vectors such that $(T-\lambda)x_n \to 0$, then $1 \leq \liminf ||x_n+y_n||$, for any bounded sequence $\{y_n\}$ such that $(T-\mu)y_n \to 0$. In particular, $\ker(T-\lambda) \perp \ker(T-\mu)$.
- (3) For a bounded sequence $\{x_n\}$, if $T^2x_n \to 0$, then $Tx_n \to 0$.

We show the similar result. For the completeness, we give a proof. We need the following definition and result.

Definition 2.24 A Banach space \mathcal{X} is said to be uniformly convex if, for every $\epsilon > 0$, there exists a number $\delta > 0$ such that, for all $x, y \in \mathcal{X}$, the conditions

$$||x|| = ||y|| = 1, ||x - y|| \ge \epsilon \quad imply \quad ||\frac{x + y}{2}|| \le 1 - \delta.$$

It's well known that \mathcal{X} is uniformly convex, then \mathcal{X} is reflexive, i.e., $\mathcal{X}^{**} = \mathcal{X}$. Then we have the following result.

Proposition 2.25 (Theorem 4, [3]).

 \mathcal{X} is uniformly convex if and only if \mathcal{X}° is uniformly convex.

Theorem 2.26 Let T be an ExB-operator on a uniformly convex Banach space \mathcal{X} and $\lambda, \mu \in \mathbb{C}$ be $\lambda \neq \mu$.

- (1) If $\{x_n\}$ is a sequence of unit vectors such that $Tx_n \to 0$, then $1 \leq \liminf ||x_n + Ty_n||$, for any bounded sequence $\{y_n\}$ of \mathcal{X} .
- (2) If $\{x_n\}$ is a sequence of unit vectors such that $(T-\lambda)x_n \to 0$, then $1 \leq \liminf ||x_n+y_n||$, for any bounded sequence $\{y_n\}$ such that $(T-\mu)y_n \to 0$. In particular, $\ker(T-\lambda) \perp \ker(T-\mu)$.
- (3) For a bounded sequence $\{x_n\}$, if $T^2x_n \to 0$, then $Tx_n \to 0$.

Proof. Let \mathcal{X}° be the larger Banach space of \mathcal{X} and T° be the extension of T on \mathcal{X}° as a previous way. Then \mathcal{X}° is uniformly convex and T° is an ExB-operator. And by Theorem 2.22 it holds ker $(T^{\circ}) \perp R(T^{\circ})$. We may assume that all vectors x_n and y_n of (1), (2) and (3) are unit. Put $x^{\circ} = \{x_n\} + N$. Then $||x^{\circ}|| = 1$ and $x^{\circ} \in \text{ker}(T^{\circ})$.

(1) Since it holds $\ker(T^{\circ}) \perp R(T^{\circ})$ by Theorem 2.22, we have $1 = ||x^{\circ}|| \le ||x^{\circ} + T^{\circ}y^{\circ}||$.

Assume that $\liminf ||x_n + Ty_n|| < 1$. Then there exist subsequences $\{x_{n_j}\}, \{y_{n_j}\}$ such that $\lim_{j \to \infty} ||x_{n_j} + Ty_{n_j}|| = \alpha < 1$. Let $x_1^\circ = \{x_{n_j}\} + N$, $y_1^\circ = \{y_{n_j}\} + N$. Then we have $||x_1^\circ|| = 1$, $T^\circ(x_1^\circ) = 0$ and $||x_1^\circ + T^\circ y_1^\circ|| = \alpha < 1 = ||x_1^\circ||$. It's a contradiction. Hence $\liminf ||x_n + Ty_n|| \ge 1$ and it completes (1).

(2) Since $\lambda \neq \mu$, $\{(\mu - \lambda)^{-1}y_n\}$ is a bounded sequence, by (1) we have

$$1 \le \liminf \|x_n + (\mu - \lambda)^{-1} (T - \lambda) y_n\|$$

$$= \liminf \|x_n + y_n + (\mu - \lambda)^{-1} (T - \mu) y_n\| = \liminf \|x_n + y_n\|.$$

By previous result, it is easy to see $\ker(T-\lambda) \perp \ker(T-\mu)$ and it completes (2). (3) Let $T^2x_n \to 0$. Assume $Tx_n \neq 0$. Then there exist $\epsilon > 0$ and a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\|Tx_{n_k}\| \ge \epsilon$ $(k \in \mathbb{N})$. Let $w_k = \|Tx_{n_k}\|^{-1}Tx_{n_k}$. Then $\|Tw_k\| \le \epsilon^{-1}\|T^2x_{n_k}\|$. Hence $Tw_k \to 0$ and by (1) it holds $1 \le \liminf \|w_k + Tu_k\|$ for any bounded sequence $\{u_k\}$. Taking $u_k = -\|Tx_{n_k}\|^{-1}x_{n_k}$, it's a contradiction. Hence we have $Tx_n \to 0$ and it completes (3). \Box

Remark 2.27 In the case of conjugations C, J on a Hilbert space $\mathcal{H}, U = CJ$ is a unitary operator. Hence $U^* = U^{-1}$ and it holds $CUC = JC = U^{-1} = U^* = JUJ$. In the case of conjugations C, J on a Banach space \mathcal{X} , we have only $CUC = JC = U^{-1} = JUJ$.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Academic, 2004.
- G. de Barra, Some algebras of operators with closed convex numerical range, Proc. Roy. Irish Acad. Sect. A 72 (1972), 149-154.
- [3] G. de Barra, Generalized limits and uniform convexity, Proc. Roy. Irish Acad. Sect. A 74 (1974), 73-77.
- [4] F.F. Bonsal and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series. 10, 1973.
- [5] M. Chō, Invariant subspace problem for ExB-operators, Functional Analysis, Approximation and Computation, 6(2) (2014), 61-64.
- [6] S.R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358, (2005), 1285-1315.
- S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359, (2007), 3913-3931.
- [8] S.R. Garcia and W.R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257, (2009), 1251-1260.

- [9] V.I. Godic and I.E. Lucenko, On representation of a unitary operator as a product of two involutions, Uspehi Mat. Nauk **20**, (1965), 64-65.
- [10] S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl., 406, (2013), 373-385.
- [11] K. Mattila, Normal operators and proper boundary points of operators on Banach space, Ann. Acad. Sci. Fenn. Ser. A ID Math. Dissertationes 19, 1978.
- [12] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc. 96, (1984), 483-493.
- K. Mattila, A class of hyponormal operators weak*-continuity of hermitian operators, Arkiv Mat. 25, (1987), 265-274.
- [14] T. Takagi, On an algebraic problem related to an analytic theorem of Caratheodry and Fejer and on an allied theorem of Landau, Japan J. Math. 1, (1925), 83-93.

Communicated by Masatoshi Fujii

Muneo Chō

Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Kôtarô Tanahashi

Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan e-mail: tanahasi@tohoku-pharm.ac.jp