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Abstract

In this paper we introduce a conjugation C' on a complex Banach space X and
define complex symmetric operators. We show some spectral properties of complex
symmetric operators.

1 Introduction

Let 'H be a complex Hilbert space with the inner product (-,-) and B(H) be the set of
all bounded linear operators on H. An antilinear operator C' is said to be conjugation
if C* = I and (Cz,Cy) = (y,z) for all x,y € H. T. Takagi in [14] studied antilinear
eigenvalue problem. V.I. Godic and L.E. Lucenko in [9] showed that U is unitary if and
only if there exist conjugations C,J such that U = C'J. S.R. Garcia and M. Putinar
showed that, for conjugations C, J on a Hilbert space, C'J is both C-symmetric and J-
symmetric. See Lemma 1 of [7]. Now we have many research about conjugations of Hilbert
spaces. For examples, see [6], [7], [10] and [8]. In this paper we introduce a conjugation
on a Banach space and show some properties concerning with conjugations.

2 Conjugations on Banach spaces

Let X be a complex Banach space, || - || be the norm of X and B(X) be the set of all
bounded linear operators on X. For an operator " € B(X), the spectrum, the point
spectrum, the approximate point spectrum and the surjective spectrum of T" are denoted
by o(T'),0,(T),04(T),05(T), respectively. It holds o(T") = o, (T) J 0s(T), 0s(T) = 04(T™)
and o,(T) = o4(T*), where T* is the dual operator T" on the dual space X*. See [1] for
details. ker(T") and R(T) denote the kernel and the range of T', respectively. For a subset
M of C, M* ={Z: 2z € M}. For an operator C' on X, we define a conjugation as follows.
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Definition 2.1 Let X be a complex Banach space. An operator C : X — X is said to be
a conjugation if C' satisfies

(1) C*=1, |C||<1, Clz+y)=Cz+Cy, C(\x) =\Cz (Vo,y € X, )€ C),

where I is the identity operator on X and ||C|| = sup {||Cz| : = € X}.
[l=]I<1

Next theorem shows that if the space X is a Hilbert space and C' satisfies condition (1),
then C' is a conjugation as follows.

Theorem 2.2 [f C satisfies condition (1) on a complex Hilbert space H, then (Cx,Cy) =
(y,x) for all x,y € H, i.e., C is a conjugation on H.

Proof. Let z,y € H,a € R and let Cy = 2. Since

|Cz + az|| = [|C(x + aC2)||
<|lz+aCz| = ||C(Cz + az)|| < ||Cx + az||,

we have
|Cx + az|| = ||z + aCZ||.

By taking square, we have

ICz[* + a ((Cz, 2) + (2, Cx)) + a?| 2|
= [lzl* + o ({z,C2) + (Cz,2)) + || C2|*.

Hence ||Cx| = ||z]| and

Re (Cz,Cy) = Re (Cz, z)
= Re (Cz,2) = Re (C*y,z) = Re (y, ).

By taking ix instead of x, we have
Re{—i(Cz,Cy)} = Re (Cixz,Cy)
= Re (y,iz) = Re{—i{y, z)}.
Hence
Im (Cz,Cy) =Im (y, x).
Thus (Cz,Cy) = (y,z). O

Theorem 2.3 Let C be a conjugation on a complex Banach space X. Then ||Cx| = ||z|
forallz € X.

Proof. Since ||C]] < 1, it holds ||z|| = ||C?%z| < ||C]| ||Cz]|| < ||Cz|. Hence ||z|| < ||Cx]|.
Therefore ||Cz|| < ||C?z| = ||z|| and ||Cz|| = ||z]|. O
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Example 2.4 For a complex Hilbert space H, let X = B(H) and C,J be conjugations
on H. Let Mcy is defined by
Mcy(T)=CTJ.

Then Mecy is a conjugation on X.

Proof. Tt is clear that Moy : B(H) — B(H). Since C? = J?> = I, it holds MZ,(T) =T
for all T' € B(X). Next it holds

Moy(A\T) = C(\T)J = ANCTJ = AMc;(T).

Since ||Mcs(T)| < ||T|| for all T € B(X), ||Mcy|| < 1. Since CJ is in B(X) and
|CJ|| = 1, we have Mc;(CJ) = I. Hence, ||Mcy|| =1 and Mgy is a conjugation on X.
L]

For a complex Banach space X', let X'* be the dual space of X and the dual operator of
T € B(X) is denoted by T*.

Definition 2.5 For a conjugation C' on a Banach space X, the dual operator C* : X* —
X* of C is defined by

(C () = f(Cx) (zeX, fex”).
Then we have following result.

Theorem 2.6 Let C be a conjugation on a complex Banach space X. Then C* is a
conjugation on X*.

Proof. 1t is clear that C** = I*, C*(f +g) = C*(f)+ C*(g) (Vf,g € X*). For A € C,x €
X, it holds

(C*(AN) (@) = A f(Cz) = X (C*f)().

Hence C*(A\f) = X C*(f). Let f € &*. Then |[(C*f)(x)| = [F(Ca)| < flICall <
I£lle]l. Hence [IC*£]| < [|f]| and |C*]| < 1. O

Hence we say C* the dual conjugation of C'.

First we show spectral properties of complex symmetric operators.

Theorem 2.7 Let C' be a conjugation on a complexr Banach space X. Then o,(CTC) =
0.(T)*,0,(CTC) = 0,(T)",0,(CTC) = 04(T)" and o(CTC) = o(T)*.
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Proof. Let z € 0,(CTC) and {z,} be a sequence of unit vectors such that (CTC —
2)x, — 0. Then since C(T — z)Cz,, — 0 and ||Cx,| = 1, we have Z € o,(T).
Hence 0,(CTC) C 0,(T)*. Therefore, o,(T) = 0,(C*TC?) C 6,(CTC)* and o,(CTC) =
0.(T)*. Similarly, we have 0,(CTC) = 0,(T)*. Let 2 € 0,(CTC) and x € X. Then there
exists y € X such that (CTC — 2)y = Cx. Hence (T —z)Cy = C(CTC — 2)y = C%x = .
Hence o4(CTC) C 04(T)* The converse is similar. Hence o4(CTC) = o4(T)*. Also,
o(CTC) =0,(CTC)U 0 (CTC) =0,(T)*Uos(T) =0o(T). O

Next we introduce numerical range of Banach space operator.

Definition 2.8 Let II be the set

M= {(e,f) € X x X" : |[f]| = f(2) = [l = 1}.

For an operator T € B(X), the numerical range V(T') of T is given by
V(T) ={fTz) : (z,f) e}

Hence, normal and hyponormal are defined as follows.

(1) T'is called Hermitian and positive (denoted by 7' > 0) if V/(T') C R and V(T") C [0, c0),
respectively.

(2) T is called normal if there exist Hermitian operators H, K such that HK = KH,
T=H+1iK.

(3) T is called hyponormal if there exist Hermitian operators H, K such that
T=H+iK, i(HK — KH) > 0.

Let T'€ B(X). If T = H + iK for some Hermitian H and K, then H and K are unique.
Hence we denote H — iK by T. Let T* € B(X™*) be the dual operator of 7. Hence if
T=H+iK, then T" = H* +iK*.

Definition 2.9 Let T € B(X) be T = H + iK for some Hermitian H and K. Let C' be
a conjugation on X. Then T is said to be C'-symmetric if CTC =T.

Theorem 2.10 Let T'= H + iK for some Hermitian H and K. Let C' be a conjugation
on X and T is C-symmetric. Then T is invertible if and only if T is invertible.

Proof. Let, for a conjugation C', CTC = T and T be invertible. Then we have TCT~'C =
CTCCOT'C=CTT'C =C?=1=CT'CT. Hence T is invertible. Converse is clear.
O

Theorem 2.11 Let X be a complex Banach space. If an operator T' = H +iK 1is complex

symmetric, then o,(T) = 0,(T)*, 0,(T) = 0,(1)*,05(T) = 05(T)* and o(T) = o(T)*.

Proof. By Theorem 2.7, we have 0,(CTC) = 0,(T)*. Since CTC =T for some conjuga-
tion, we have 0,(T') = 0,(T")*. Others are similar. O
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Definition 2.12 An operator T' = H+iK € B(X) is said to be an ExB-operator if there
exists M > 0 such that _
le” - e || < M forall z € C.

We have ||e*T - e #T|| < M (Vz € C) if and only if ||e*Tz| < M|le*z|| (Vz € X,Vz € C).
For T'= H +iK € B(H) (Hilbert space operator case), 1" is an ExB-operator if and only
if |[(e*T)* x| < M||e*Tx|| (Vo € H,Vz € C). It is easy to see that if T is an ExB-operator,
then so is aT + b for all a,b € C. When M = 1, K. Mattila in [13] called *-hyponormal.

Proposition 2.13 (Lemma 2 of [5]). B
If T'= H + 1K is an FExB-operator and Tx =0, then Tx = 0.

Since (e*T - e 1)* = ¢~ *" . ¢*T" | if T is an ExB-operator, then so is 1"
Theorem 2.14 Let X be a complex Banach space and C' be a conjugation on X. If T is
an ExB-operator on X and C-symmetric, then ker(T — \) = C'ker(T — X) for all X € C.

Proof. Let Tx = \x. Since aT + b is an ExB-operator for all a,b € C and (T'— \)z = 0,
by Proposition 2.13 it holds Tz = Az. Hence \x = Tz = (CTC)r = C(TCx) and it
holds T(Cz) = C?*T(Cz) = C(Ax) = ACx. Hence Cker(T — \) C ker(T — \). Also, we
have ker(T — \) = C?ker(T — \) C Cker(T — \). Hence ker(T — \) = Cker(T — ). O

For a study of properties of a complex symmetric ExB-operator, we recall from [2] and [3]
the construction of a larger space X° from a given Banach space X. Then the mapping
T — T° is an isometric isomorphism of B(X) onto a closed subalgebra of B(X°) as
follows: Let Lim be fixed Banach limit on the space of all bounded sequences of complex
numbers with the norm [[{\,}|| = sup{|\,| : » € N}. Let X be the space of all bounded
sequences {z,} of X. Let N be the subspace of X consisting of all bounded sequences
{z,} with Lim ||z, ||* = 0. The space X° is defined as the completion of the quotient space
X /N with respect to the norm ||[{z,} + N|| = (Lim ||z, ]|?)2. Operator T” is defined by
T'({x,}+ N) = {Tx,} + N on X/N. The operator T° is defined by the unique extension
of 7" on X°. Then the following results hold:

o(T)=0(T°), 0,(T) = 0,(T°) = 0,(T°) and eV (T) =V (T°),

where €0 V/(T) is the closed convex hull of V(T'). See [2] and [3] for details. Therefore,
if T is Hermitian, normal or hyponormal, then so is 7°, respectively. Since the mapping
T — T° is an isometric isomorphism of B(X') onto a closed subalgebra of B(X°), if T is
an ExB-operator, then so is 7°.

Let C be a conjugation on X. The operator C" is defined by C'({z,,} + N) = {Cx,,} + N
on X'/N and we define C° as the unique extension of C’ on X°. Then it is easy to see
that

COQ — [o’ HCOH — 17 Co(xo+yo) — C«oxo_'_coyo’ Co()\xo) :XCOZCO (V.xo’yo c Xo’)\ c (C)
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Theorem 2.15 With the above assertion, if C is a conjugation, then so is C° on X°.

Since (CTC)({zn} + N) ={CTCx,} + N =C'{TCx,} + N) = C'"T'C'({z,} + N), it
holds (CT'C)° = C°T°C”. Hence the following result holds.

Theorem 2.16 With the above assertion, if T is C-symmetric on X, then T° is C°-
symmetric on X°.

For the final result, we introduce orthogonality of Banach space as follows.

Definition 2.17 Let M be a subspace of X. A vector x is orthogonal to M if
|lm| < ||m+zx| (for allm € M).
Then we denote by M 1 x.

For a subspace M C X, let M+ be the set {x € X : M L x}. Let M, N be subspaces of
X. If, for all n € N, M 1L n, then we denote M | N.

Theorem 2.18 If a subspace M is invariant for a conjugation C, then M~ is invariant

for C.
Proof. Let x € M+ and m € M be arbitrary. Then
[m]| = |Cm| < |Cm + z]| = |C(Cm + )| = [[m + C].
Hence Cz € M+. O
Hence we have following corollary.

Corollary 2.19 LetT = H+iK be an ExB-operator. If T is C-symmetric, then ker(T)*
is invariant for C.

Proposition 2.20 (Theorem 20.7, [4]).
Let X be a reflexive Banach space and v € X be ||x|| = 1. Then there exists f € X* such
that || f|| = f(z) =1 and H*f = 0 for all Hermitian operators H for which Hx = 0.

Proposition 2.21 (Lemma 20.3, [4]).
It holds that ker(T) LR(T) if and only if for any unit vector x € ker(T') there ezists
f € X* such that ||f|| = f(z) =1 and T*f = 0.

Theorem 2.22 Let Let X be a reflexive Banach space and T = H + iK be an ExB-
operator. Then ker(T) L R(T).
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Proof. Let x € ker(T) be a unit vector. Since T = H + iK is an ExB-operator, by
Proposition 2.13 we have Hx = Kx = 0. Since X is reflexive, by Proposition 2.20 there
exists f € X* such that ||f|| = f(z) = 1 and T* f = 0. Hence by Proposition 2.21 it holds
ker(T) L R(T). O

In [11], K. Mattila proved the following result for a normal operator.

Proposition 2.23 (Propositions 3.7 and 3.9, Corollary 3.8, [11]).

Let T be normal and A\, u € C be X # p.

(1) If {xn} is a sequence of unit vectors such that Tx, — 0, then 1 < liminf ||z, + Ty,||,
for any bounded sequence {y,} of X.

(2) If {z,} is a sequence of unit vectors such that (T —\)x, — 0, then 1 < liminf ||z, +y,||,
for any bounded sequence {y,} such that (T — pu)y, — 0.
In particular, ker(T — \) L ker(T — p).

(3) For a bounded sequence {z,}, if T*z, — 0, then Tz, — 0.

We show the similar result. For the completeness, we give a proof. We need the following
definition and result.

Definition 2.24 A Banach space X is said to be uniformly convez if, for every e > 0,
there exists a number 0 > 0 such that, for all x,y € X, the conditions

, T+y
lzll =1yl =1, flz =yl = € imply |—=] < 1-0.
It’s well known that X" is uniformly convex, then X is reflexive, i.e., X** = X. Then we
have the following result.

Proposition 2.25 (Theorem 4, [3]).
X is uniformly convex if and only if X° is uniformly convex.

Theorem 2.26 Let T be an ExB-operator on a uniformly convexr Banach space X and

A e Cbe \# p.

(1) If {z,} is a sequence of unit vectors such that Tx, — 0, then 1 < liminf ||z, + Ty,||,
for any bounded sequence {y,} of X.

(2) If {z,} is a sequence of unit vectors such that (T —\)x, — 0, then 1 < liminf ||z, +y,||,
for any bounded sequence {y,} such that (T — )y, — 0.
In particular, ker(T — \) L ker(T — p).

(3) For a bounded sequence {z,}, if T*x, — 0, then Tz, — 0.

Proof. Let X° be the larger Banach space of X and T° be the extension of T on X° as a
previous way. Then X° is uniformly convex and 7° is an ExB-operator. And by Theorem
2.22 it holds ker(7°) L R(7°). We may assume that all vectors z, and y, of (1), (2) and
(3) are unit. Put 2° = {x,} + N. Then ||z°|| = 1 and 2° € ker(T°).

(1) Since it holds ker(7"°) L R(T"°) by Theorem 2.22, we have 1 = ||z°|| < [|x°+ T °y°||.
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Assume that liminf ||, + Ty,|| < 1. Then there exist subsequences {z,,}, {yn,} such
that jlllgo |Zn;, +Tyn;|| = a < 1. Let 25 = {2, } + N, y§ = {yn,} + N. Then we have
|z3]| = 1, T°(25) = 0 and ||z + T°ys|| = @ < 1 = ||z5]]. It’s a contradiction. Hence
liminf ||z, + Ty,|| > 1 and it completes (1).

(2) Since A # u, {(x — A\) "'y, } is a bounded sequence, by (1) we have

1 <liminf |2, + (= N)"HT = Nyl

= liminf ||z, + ¥ + (£ — A\)"HT — p)y,|| = liminf ||z, + y,]|.

By previous result, it is easy to see ker(T' — \) L ker(T — p) and it completes (2).

(3) Let T?z,, — 0. Assume T'x,, /> 0. Then there exist € > 0 and a subsequence {z,, } of
{x,} such that || Tz, || > € (k € N). Let wy, = ||Txp, || Ty, Then [|[Twy| < e T2y, ||.
Hence Twy — 0 and by (1) it holds 1 < liminf ||wg + Tug|| for any bounded sequence
{u}. Taking uj, = —||Tz,, || ' 2n,, it’s a contradiction. Hence we have Tz, — 0 and it
completes (3). O

Remark 2.27 In the case of conjugations C, J on a Hilbert space H, U = C'J is a unitary
operator. Hence U* = U~ and it holds CUC = JC = U~' = U* = JUJ. In the case of
conjugations C,.J on a Banach space X, we have only CUC = JC =U"1 = JUJ.
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