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Abstract

In this paper we introduce a conjugation C on a complex Banach space X and
define complex symmetric operators. We show some spectral properties of complex
symmetric operators.

1 Introduction

Let H be a complex Hilbert space with the inner product 〈·, ·〉 and B(H) be the set of
all bounded linear operators on H. An antilinear operator C is said to be conjugation
if C2 = I and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H. T. Takagi in [14] studied antilinear
eigenvalue problem. V.I. Godic and I.E. Lucenko in [9] showed that U is unitary if and
only if there exist conjugations C, J such that U = CJ . S.R. Garcia and M. Putinar
showed that, for conjugations C, J on a Hilbert space, CJ is both C-symmetric and J-
symmetric. See Lemma 1 of [7]. Now we have many research about conjugations of Hilbert
spaces. For examples, see [6], [7], [10] and [8]. In this paper we introduce a conjugation
on a Banach space and show some properties concerning with conjugations.

2 Conjugations on Banach spaces

Let X be a complex Banach space, ‖ · ‖ be the norm of X and B(X ) be the set of all
bounded linear operators on X . For an operator T ∈ B(X ), the spectrum, the point
spectrum, the approximate point spectrum and the surjective spectrum of T are denoted
by σ(T ), σp(T ), σa(T ), σs(T ), respectively. It holds σ(T ) = σa(T )

∪
σs(T ), σs(T ) = σa(T

∗)
and σa(T ) = σs(T

∗), where T ∗ is the dual operator T on the dual space X ∗. See [1] for
details. ker(T ) and R(T ) denote the kernel and the range of T , respectively. For a subset
M of C, M∗ = {z : z ∈ M}. For an operator C on X , we define a conjugation as follows.
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Definition 2.1 Let X be a complex Banach space. An operator C : X → X is said to be
a conjugation if C satisfies

(1) C2 = I, ‖C‖ ≤ 1, C(x + y) = Cx + Cy, C(λx) = λCx (∀x, y ∈ X , λ ∈ C),

where I is the identity operator on X and ‖C‖ = sup
‖x‖≤1

{‖Cx‖ : x ∈ X}.

Next theorem shows that if the space X is a Hilbert space and C satisfies condition (1),
then C is a conjugation as follows.

Theorem 2.2 If C satisfies condition (1) on a complex Hilbert space H, then 〈Cx,Cy〉 =
〈y, x〉 for all x, y ∈ H, i.e., C is a conjugation on H.

Proof. Let x, y ∈ H, α ∈ R and let Cy = z. Since

‖Cx + αz‖ = ‖C(x + αCz)‖
≤ ‖x + αCz‖ = ‖C(Cx + αz)‖ ≤ ‖Cx + αz‖,

we have
‖Cx + αz‖ = ‖x + αCz‖.

By taking square, we have

‖Cx‖2 + α (〈Cx, z〉 + 〈z, Cx〉) + α2‖z‖2

= ‖x‖2 + α (〈x,Cz〉 + 〈Cz, x〉) + α2‖Cz‖2.

Hence ‖Cx‖ = ‖x‖ and

Re 〈Cx,Cy〉 = Re 〈Cx, z〉
= Re 〈Cz, x〉 = Re 〈C2y, x〉 = Re 〈y, x〉.

By taking ix instead of x, we have

Re{−i〈Cx,Cy〉} = Re 〈Cix, Cy〉
= Re 〈y, ix〉 = Re{−i〈y, x〉}.

Hence
Im 〈Cx,Cy〉 = Im 〈y, x〉.

Thus 〈Cx,Cy〉 = 〈y, x〉. ¤

Theorem 2.3 Let C be a conjugation on a complex Banach space X . Then ‖Cx‖ = ‖x‖
for all x ∈ X .

Proof. Since ‖C‖ ≤ 1, it holds ‖x‖ = ‖C2x‖ ≤ ‖C‖ ‖Cx‖ ≤ ‖Cx‖. Hence ‖x‖ ≤ ‖Cx‖.
Therefore ‖Cx‖ ≤ ‖C2x‖ = ‖x‖ and ‖Cx‖ = ‖x‖. ¤
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Example 2.4 For a complex Hilbert space H, let X = B(H) and C, J be conjugations
on H. Let MCJ is defined by

MCJ(T ) = CTJ.

Then MCJ is a conjugation on X .

Proof. It is clear that MCJ : B(H) −→ B(H). Since C2 = J2 = I, it holds M2
CJ(T ) = T

for all T ∈ B(X ). Next it holds

MCJ(λT ) = C(λT )J = λCTJ = λMCJ(T ).

Since ‖MCJ(T )‖ ≤ ‖T‖ for all T ∈ B(X ), ‖MCJ‖ ≤ 1. Since CJ is in B(X ) and
‖CJ‖ = 1, we have MCJ(CJ) = I. Hence, ‖MCJ‖ = 1 and MCJ is a conjugation on X .
¤

For a complex Banach space X , let X ∗ be the dual space of X and the dual operator of
T ∈ B(X ) is denoted by T ∗.

Definition 2.5 For a conjugation C on a Banach space X , the dual operator C∗ : X ∗ →
X ∗ of C is defined by

(C∗(f))(x) = f(Cx) (x ∈ X , f ∈ X ∗).

Then we have following result.

Theorem 2.6 Let C be a conjugation on a complex Banach space X . Then C∗ is a
conjugation on X ∗.

Proof. It is clear that C∗2 = I∗, C∗(f + g) = C∗(f) +C∗(g) (∀f, g ∈ X ∗). For λ ∈ C, x ∈
X , it holds

(C∗(λf))(x) = λ f(Cx) = λ (C∗f)(x).

Hence C∗(λf) = λ C∗(f). Let f ∈ X ∗. Then |(C∗f)(x)| = |f(Cx)| ≤ ‖f‖‖Cx‖ ≤
‖f‖‖x‖. Hence ‖C∗f‖ ≤ ‖f‖ and ‖C∗‖ ≤ 1. ¤

Hence we say C∗ the dual conjugation of C.

First we show spectral properties of complex symmetric operators.

Theorem 2.7 Let C be a conjugation on a complex Banach space X . Then σa(CTC) =
σa(T )∗, σp(CTC) = σp(T )∗, σs(CTC) = σs(T )∗ and σ(CTC) = σ(T )∗.
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Proof. Let z ∈ σa(CTC) and {xn} be a sequence of unit vectors such that (CTC −
z)xn → 0. Then since C(T − z)Cxn → 0 and ‖Cxn‖ = 1, we have z ∈ σa(T ).
Hence σa(CTC) ⊂ σa(T )∗. Therefore, σa(T ) = σa(C

2TC2) ⊂ σa(CTC)∗ and σa(CTC) =
σa(T )∗. Similarly, we have σp(CTC) = σp(T )∗. Let z 6∈ σs(CTC) and x ∈ X . Then there
exists y ∈ X such that (CTC − z)y = Cx. Hence (T − z)Cy = C(CTC − z)y = C2x = x.
Hence σs(CTC) ⊂ σs(T )∗ The converse is similar. Hence σs(CTC) = σs(T )∗. Also,
σ(CTC) = σa(CTC) ∪ σs(CTC) = σa(T )∗ ∪ σs(T )∗ = σ(T )∗. ¤

Next we introduce numerical range of Banach space operator.

Definition 2.8 Let Π be the set

Π := {(x, f) ∈ X × X ∗ : ‖f‖ = f(x) = ‖x‖ = 1 }.

For an operator T ∈ B(X ), the numerical range V (T ) of T is given by

V (T ) = {f(Tx) : (x, f) ∈ Π }.

Hence, normal and hyponormal are defined as follows.
(1) T is called Hermitian and positive (denoted by T ≥ 0) if V (T ) ⊂ R and V (T ) ⊂ [0,∞),

respectively.
(2) T is called normal if there exist Hermitian operators H,K such that HK = KH,

T = H + iK.
(3) T is called hyponormal if there exist Hermitian operators H,K such that

T = H + iK, i(HK − KH) ≥ 0.

Let T ∈ B(X ). If T = H + iK for some Hermitian H and K, then H and K are unique.
Hence we denote H − iK by T . Let T ∗ ∈ B(X ∗) be the dual operator of T . Hence if
T = H + iK, then T ∗ = H∗ + iK∗.

Definition 2.9 Let T ∈ B(X ) be T = H + iK for some Hermitian H and K. Let C be
a conjugation on X . Then T is said to be C-symmetric if CTC = T .

Theorem 2.10 Let T = H + iK for some Hermitian H and K. Let C be a conjugation
on X and T is C-symmetric. Then T is invertible if and only if T is invertible.

Proof. Let, for a conjugation C, CTC = T and T be invertible. Then we have TCT−1C =
CTC CT−1C = CTT−1C = C2 = I = CT−1CT . Hence T is invertible. Converse is clear.
¤

Theorem 2.11 Let X be a complex Banach space. If an operator T = H + iK is complex
symmetric, then σp(T ) = σp(T )∗, σa(T ) = σa(T )∗, σs(T ) = σs(T )∗ and σ(T ) = σ(T )∗.

Proof. By Theorem 2.7, we have σp(CTC) = σp(T )∗. Since CTC = T for some conjuga-
tion, we have σp(T ) = σp(T )∗. Others are similar. ¤
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Definition 2.12 An operator T = H +iK ∈ B(X ) is said to be an ExB-operator if there
exists M > 0 such that

‖ezT · e−zT‖ ≤ M for all z ∈ C.

We have ‖ezT · e−zT‖ ≤ M (∀z ∈ C) if and only if ‖ezT x‖ ≤ M‖ezT x‖ (∀x ∈ X ,∀z ∈ C).
For T = H + iK ∈ B(H) (Hilbert space operator case), T is an ExB-operator if and only
if ‖(ezT )∗x‖ ≤ M‖ezT x‖ (∀x ∈ H,∀z ∈ C). It is easy to see that if T is an ExB-operator,
then so is aT + b for all a, b ∈ C. When M = 1, K. Mattila in [13] called *-hyponormal.

Proposition 2.13 (Lemma 2 of [5]).
If T = H + iK is an ExB-operator and Tx = 0, then Tx = 0.

Since (ezT · e−zT )∗ = e−zT ∗ · ezT
∗
, if T is an ExB-operator, then so is T

∗
.

Theorem 2.14 Let X be a complex Banach space and C be a conjugation on X . If T is
an ExB-operator on X and C-symmetric, then ker(T − λ) = C ker(T − λ) for all λ ∈ C.

Proof. Let Tx = λx. Since aT + b is an ExB-operator for all a, b ∈ C and (T − λ)x = 0,
by Proposition 2.13 it holds Tx = λx. Hence λx = Tx = (CTC)x = C(TCx) and it
holds T (Cx) = C2T (Cx) = C(λx) = λCx. Hence C ker(T − λ) ⊂ ker(T − λ). Also, we
have ker(T − λ) = C2 ker(T − λ) ⊂ C ker(T − λ). Hence ker(T − λ) = C ker(T − λ). ¤

For a study of properties of a complex symmetric ExB-operator, we recall from [2] and [3]
the construction of a larger space X ◦ from a given Banach space X . Then the mapping
T → T ◦ is an isometric isomorphism of B(X ) onto a closed subalgebra of B(X ◦) as
follows: Let Lim be fixed Banach limit on the space of all bounded sequences of complex
numbers with the norm ‖{λn}‖ = sup{|λn| : n ∈ N}. Let X̃ be the space of all bounded
sequences {xn} of X . Let N be the subspace of X̃ consisting of all bounded sequences
{xn} with Lim ‖xn‖2 = 0. The space X ◦ is defined as the completion of the quotient space

X̃/N with respect to the norm ‖{xn} + N‖ = (Lim ‖xn‖2)
1
2 . Operator T ′ is defined by

T ′({xn}+N) = {Txn}+N on X̃/N . The operator T ◦ is defined by the unique extension
of T ′ on X ◦. Then the following results hold:

σ(T ) = σ(T ◦), σa(T ) = σa(T
◦) = σp(T

◦) and co V (T ) = V (T ◦),

where co V (T ) is the closed convex hull of V (T ). See [2] and [3] for details. Therefore,
if T is Hermitian, normal or hyponormal, then so is T ◦, respectively. Since the mapping
T → T ◦ is an isometric isomorphism of B(X ) onto a closed subalgebra of B(X ◦), if T is
an ExB-operator, then so is T ◦.

Let C be a conjugation on X . The operator C ′ is defined by C ′({xn}+ N) = {Cxn}+ N
on X̃/N and we define C◦ as the unique extension of C ′ on X ◦. Then it is easy to see
that

C◦2 = I◦, ‖C◦‖ = 1, C◦(x◦+y◦) = C◦x◦+C◦y◦, C◦(λx◦) = λC◦x◦ (∀x◦, y◦ ∈ X ◦, λ ∈ C).
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Theorem 2.15 With the above assertion, if C is a conjugation, then so is C◦ on X ◦.

Since (CTC)′({xn} + N) = {CTCxn} + N = C ′({TCxn} + N) = C ′T ′C ′({xn} + N), it
holds (CTC)◦ = C◦T ◦C◦. Hence the following result holds.

Theorem 2.16 With the above assertion, if T is C-symmetric on X , then T ◦ is C◦-
symmetric on X ◦.

For the final result, we introduce orthogonality of Banach space as follows.

Definition 2.17 Let M be a subspace of X . A vector x is orthogonal to M if

‖m‖ ≤ ‖m + x‖ (for all m ∈ M).

Then we denote by M ⊥ x.

For a subspace M ⊂ X , let M⊥ be the set {x ∈ X : M ⊥x}. Let M,N be subspaces of
X . If, for all n ∈ N , M ⊥n, then we denote M ⊥N .

Theorem 2.18 If a subspace M is invariant for a conjugation C, then M⊥ is invariant
for C.

Proof. Let x ∈ M⊥ and m ∈ M be arbitrary. Then

‖m‖ = ‖Cm‖ ≤ ‖Cm + x‖ = ‖C(Cm + x)‖ = ‖m + Cx‖.

Hence Cx ∈ M⊥. ¤

Hence we have following corollary.

Corollary 2.19 Let T = H +iK be an ExB-operator. If T is C-symmetric, then ker(T )⊥

is invariant for C.

Proposition 2.20 (Theorem 20.7, [4]).
Let X be a reflexive Banach space and x ∈ X be ‖x‖ = 1. Then there exists f ∈ X ∗ such
that ‖f‖ = f(x) = 1 and H∗f = 0 for all Hermitian operators H for which Hx = 0.

Proposition 2.21 (Lemma 20.3, [4]).
It holds that ker(T )⊥R(T ) if and only if for any unit vector x ∈ ker(T ) there exists
f ∈ X ∗ such that ‖f‖ = f(x) = 1 and T ∗f = 0.

Theorem 2.22 Let Let X be a reflexive Banach space and T = H + iK be an ExB-
operator. Then ker(T )⊥R(T ).
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Proof. Let x ∈ ker(T ) be a unit vector. Since T = H + iK is an ExB-operator, by
Proposition 2.13 we have Hx = Kx = 0. Since X is reflexive, by Proposition 2.20 there
exists f ∈ X ∗ such that ‖f‖ = f(x) = 1 and T ∗f = 0. Hence by Proposition 2.21 it holds
ker(T )⊥R(T ). ¤

In [11], K. Mattila proved the following result for a normal operator.

Proposition 2.23 (Propositions 3.7 and 3.9, Corollary 3.8, [11]).
Let T be normal and λ, µ ∈ C be λ 6= µ.
(1) If {xn} is a sequence of unit vectors such that Txn → 0, then 1 ≤ lim inf ‖xn + Tyn‖,

for any bounded sequence {yn} of X .
(2) If {xn} is a sequence of unit vectors such that (T−λ)xn → 0, then 1 ≤ lim inf ‖xn+yn‖,

for any bounded sequence {yn} such that (T − µ)yn → 0.
In particular, ker(T − λ)⊥ ker(T − µ).

(3) For a bounded sequence {xn}, if T 2xn → 0, then Txn → 0.

We show the similar result. For the completeness, we give a proof. We need the following
definition and result.

Definition 2.24 A Banach space X is said to be uniformly convex if, for every ε > 0,
there exists a number δ > 0 such that, for all x, y ∈ X , the conditions

‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε imply ‖x + y

2
‖ ≤ 1 − δ.

It’s well known that X is uniformly convex, then X is reflexive, i.e., X ∗∗ = X . Then we
have the following result.

Proposition 2.25 (Theorem 4, [3]).
X is uniformly convex if and only if X ◦ is uniformly convex.

Theorem 2.26 Let T be an ExB-operator on a uniformly convex Banach space X and
λ, µ ∈ C be λ 6= µ.
(1) If {xn} is a sequence of unit vectors such that Txn → 0, then 1 ≤ lim inf ‖xn + Tyn‖,

for any bounded sequence {yn} of X .
(2) If {xn} is a sequence of unit vectors such that (T−λ)xn → 0, then 1 ≤ lim inf ‖xn+yn‖,

for any bounded sequence {yn} such that (T − µ)yn → 0.
In particular, ker(T − λ)⊥ ker(T − µ).

(3) For a bounded sequence {xn}, if T 2xn → 0, then Txn → 0.

Proof. Let X ◦ be the larger Banach space of X and T ◦ be the extension of T on X ◦ as a
previous way. Then X ◦ is uniformly convex and T ◦ is an ExB-operator. And by Theorem
2.22 it holds ker(T ◦)⊥R(T ◦). We may assume that all vectors xn and yn of (1), (2) and
(3) are unit. Put x◦ = {xn} + N . Then ‖x◦‖ = 1 and x◦ ∈ ker(T ◦).
(1) Since it holds ker(T ◦)⊥R(T ◦) by Theorem 2.22, we have 1 = ‖x◦‖≤ ‖x◦+ T ◦y◦‖.
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Assume that lim inf ‖xn + Tyn‖ < 1. Then there exist subsequences {xnj
}, {ynj

} such
that lim

j→∞
‖xnj

+ Tynj
‖ = α < 1. Let x◦

1 = {xnj
} + N, y◦

1 = {ynj
} + N . Then we have

‖x◦
1‖ = 1, T ◦(x◦

1) = 0 and ‖x◦
1 + T ◦y◦

1‖ = α < 1 = ‖x◦
1‖. It’s a contradiction. Hence

lim inf ‖xn + Tyn‖ ≥ 1 and it completes (1).
(2) Since λ 6= µ, {(µ − λ)−1yn} is a bounded sequence, by (1) we have

1 ≤ lim inf ‖xn + (µ − λ)−1(T − λ)yn‖

= lim inf ‖xn + yn + (µ − λ)−1(T − µ)yn‖ = lim inf ‖xn + yn‖.

By previous result, it is easy to see ker(T − λ)⊥ ker(T − µ) and it completes (2).
(3) Let T 2xn → 0. Assume Txn 6→ 0. Then there exist ε > 0 and a subsequence {xnk

} of
{xn} such that ‖Txnk

‖ ≥ ε (k ∈ N). Let wk = ‖Txnk
‖−1Txnk

. Then ‖Twk‖ ≤ ε−1‖T 2xnk
‖.

Hence Twk → 0 and by (1) it holds 1 ≤ lim inf ‖wk + Tuk‖ for any bounded sequence
{uk}. Taking uk = −‖Txnk

‖−1xnk
, it’s a contradiction. Hence we have Txn → 0 and it

completes (3). ¤

Remark 2.27 In the case of conjugations C, J on a Hilbert space H, U = CJ is a unitary
operator. Hence U∗ = U−1 and it holds CUC = JC = U−1 = U∗ = JUJ . In the case of
conjugations C, J on a Banach space X , we have only CUC = JC = U−1 = JUJ .
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Kôtarô Tanahashi
Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
e-mail: tanahasi@tohoku-pharm.ac.jp

ON CONJUGATIONS FOR BANACH SPACES 9




