ON CONJUGATIONS FOR BANACH SPACES

Muneo Chō and Kôtarô Tanahashi

Received April 18, 2016 ; revised June 15, 2016

Abstract

In this paper we introduce a conjugation C on a complex Banach space \mathcal{X} and define complex symmetric operators. We show some spectral properties of complex symmetric operators.

1 Introduction

Let \mathcal{H} be a complex Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. An antilinear operator C is said to be conjugation if $C^{2}=I$ and $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$. T. Takagi in [14] studied antilinear eigenvalue problem. V.I. Godic and I.E. Lucenko in [9] showed that U is unitary if and only if there exist conjugations C, J such that $U=C J$. S.R. Garcia and M. Putinar showed that, for conjugations C, J on a Hilbert space, $C J$ is both C-symmetric and J symmetric. See Lemma 1 of [7]. Now we have many research about conjugations of Hilbert spaces. For examples, see [6], [7], [10] and [8]. In this paper we introduce a conjugation on a Banach space and show some properties concerning with conjugations.

2 Conjugations on Banach spaces

Let \mathcal{X} be a complex Banach space, $\|\cdot\|$ be the norm of \mathcal{X} and $B(\mathcal{X})$ be the set of all bounded linear operators on \mathcal{X}. For an operator $T \in B(\mathcal{X})$, the spectrum, the point spectrum, the approximate point spectrum and the surjective spectrum of T are denoted by $\sigma(T), \sigma_{p}(T), \sigma_{a}(T), \sigma_{s}(T)$, respectively. It holds $\sigma(T)=\sigma_{a}(T) \bigcup \sigma_{s}(T), \sigma_{s}(T)=\sigma_{a}\left(T^{*}\right)$ and $\sigma_{a}(T)=\sigma_{s}\left(T^{*}\right)$, where T^{*} is the dual operator T on the dual space \mathcal{X}^{*}. See [1] for details. $\operatorname{ker}(T)$ and $R(T)$ denote the kernel and the range of T, respectively. For a subset M of $\mathbb{C}, M^{*}=\{\bar{z}: z \in M\}$. For an operator C on \mathcal{X}, we define a conjugation as follows.

[^0]Definition 2.1 Let \mathcal{X} be a complex Banach space. An operator $C: \mathcal{X} \rightarrow \mathcal{X}$ is said to be a conjugation if C satisfies

$$
\begin{equation*}
C^{2}=I,\|C\| \leq 1, C(x+y)=C x+C y, C(\lambda x)=\bar{\lambda} C x \quad(\forall x, y \in \mathcal{X}, \lambda \in \mathbb{C}) \tag{1}
\end{equation*}
$$

where I is the identity operator on \mathcal{X} and $\|C\|=\sup _{\|x\| \leq 1}\{\|C x\|: x \in \mathcal{X}\}$.
Next theorem shows that if the space \mathcal{X} is a Hilbert space and C satisfies condition (1), then C is a conjugation as follows.

Theorem 2.2 If C satisfies condition (1) on a complex Hilbert space \mathcal{H}, then $\langle C x, C y\rangle=$ $\langle y, x\rangle$ for all $x, y \in \mathcal{H}$, i.e., C is a conjugation on \mathcal{H}.

Proof. Let $x, y \in \mathcal{H}, \alpha \in \mathbb{R}$ and let $C y=z$. Since

$$
\begin{aligned}
\|C x+\alpha z\| & =\|C(x+\alpha C z)\| \\
& \leq\|x+\alpha C z\|=\|C(C x+\alpha z)\| \leq\|C x+\alpha z\|,
\end{aligned}
$$

we have

$$
\|C x+\alpha z\|=\|x+\alpha C z\| .
$$

By taking square, we have

$$
\begin{aligned}
& \|C x\|^{2}+\alpha(\langle C x, z\rangle+\langle z, C x\rangle)+\alpha^{2}\|z\|^{2} \\
& =\|x\|^{2}+\alpha(\langle x, C z\rangle+\langle C z, x\rangle)+\alpha^{2}\|C z\|^{2} .
\end{aligned}
$$

Hence $\|C x\|=\|x\|$ and

$$
\begin{aligned}
\operatorname{Re}\langle C x, C y\rangle & =\operatorname{Re}\langle C x, z\rangle \\
& =\operatorname{Re}\langle C z, x\rangle=\operatorname{Re}\left\langle C^{2} y, x\right\rangle=\operatorname{Re}\langle y, x\rangle .
\end{aligned}
$$

By taking $i x$ instead of x, we have

$$
\begin{aligned}
\operatorname{Re}\{-i\langle C x, C y\rangle\} & =\operatorname{Re}\langle C i x, C y\rangle \\
& =\operatorname{Re}\langle y, i x\rangle=\operatorname{Re}\{-i\langle y, x\rangle\}
\end{aligned}
$$

Hence

$$
\operatorname{Im}\langle C x, C y\rangle=\operatorname{Im}\langle y, x\rangle .
$$

Thus $\langle C x, C y\rangle=\langle y, x\rangle$.
Theorem 2.3 Let C be a conjugation on a complex Banach space \mathcal{X}. Then $\|C x\|=\|x\|$ for all $x \in \mathcal{X}$.

Proof. Since $\|C\| \leq 1$, it holds $\|x\|=\left\|C^{2} x\right\| \leq\|C\|\|C x\| \leq\|C x\|$. Hence $\|x\| \leq\|C x\|$. Therefore $\|C x\| \leq\left\|C^{2} x\right\|=\|x\|$ and $\|C x\|=\|x\|$.

Example 2.4 For a complex Hilbert space \mathcal{H}, let $\mathcal{X}=B(\mathcal{H})$ and C, J be conjugations on \mathcal{H}. Let $M_{C J}$ is defined by

$$
M_{C J}(T)=C T J .
$$

Then $M_{C J}$ is a conjugation on \mathcal{X}.

Proof. It is clear that $M_{C J}: B(\mathcal{H}) \longrightarrow B(\mathcal{H})$. Since $C^{2}=J^{2}=I$, it holds $M_{C J}^{2}(T)=T$ for all $T \in B(\mathcal{X})$. Next it holds

$$
M_{C J}(\lambda T)=C(\lambda T) J=\bar{\lambda} C T J=\bar{\lambda} M_{C J}(T)
$$

Since $\left\|M_{C J}(T)\right\| \leq\|T\|$ for all $T \in B(\mathcal{X}),\left\|M_{C J}\right\| \leq 1$. Since $C J$ is in $B(\mathcal{X})$ and $\|C J\|=1$, we have $M_{C J}(C J)=I$. Hence, $\left\|M_{C J}\right\|=1$ and $M_{C J}$ is a conjugation on \mathcal{X}.

For a complex Banach space \mathcal{X}, let \mathcal{X}^{*} be the dual space of \mathcal{X} and the dual operator of $T \in B(\mathcal{X})$ is denoted by T^{*}.

Definition 2.5 For a conjugation C on a Banach space \mathcal{X}, the dual operator $C^{*}: \mathcal{X}^{*} \rightarrow$ \mathcal{X}^{*} of C is defined by

$$
\left(C^{*}(f)\right)(x)=\overline{f(C x)} \quad\left(x \in \mathcal{X}, f \in \mathcal{X}^{*}\right)
$$

Then we have following result.
Theorem 2.6 Let C be a conjugation on a complex Banach space \mathcal{X}. Then C^{*} is a conjugation on \mathcal{X}^{*}.

Proof. It is clear that $C^{* 2}=I^{*}, C^{*}(f+g)=C^{*}(f)+C^{*}(g)\left(\forall f, g \in \mathcal{X}^{*}\right)$. For $\lambda \in \mathbb{C}, x \in$ \mathcal{X}, it holds

$$
\left(C^{*}(\lambda f)\right)(x)=\bar{\lambda} \overline{f(C x)}=\bar{\lambda}\left(C^{*} f\right)(x)
$$

Hence $C^{*}(\lambda f)=\bar{\lambda} C^{*}(f)$. Let $f \in \mathcal{X}^{*}$. Then $\left|\left(C^{*} f\right)(x)\right|=|\overline{f(C x)}| \leq\|f\|\|C x\| \leq$ $\|f\|\|x\|$. Hence $\left\|C^{*} f\right\| \leq\|f\|$ and $\left\|C^{*}\right\| \leq 1$.

Hence we say C^{*} the dual conjugation of C.
First we show spectral properties of complex symmetric operators.
Theorem 2.7 Let C be a conjugation on a complex Banach space \mathcal{X}. Then $\sigma_{a}(C T C)=$ $\sigma_{a}(T)^{*}, \sigma_{p}(C T C)=\sigma_{p}(T)^{*}, \sigma_{s}(C T C)=\sigma_{s}(T)^{*}$ and $\sigma(C T C)=\sigma(T)^{*}$.

Proof. Let $z \in \sigma_{a}(C T C)$ and $\left\{x_{n}\right\}$ be a sequence of unit vectors such that (CTC $z) x_{n} \rightarrow 0$. Then since $C(T-\bar{z}) C x_{n} \quad \rightarrow \quad 0$ and $\left\|C x_{n}\right\|=1$, we have $\bar{z} \in \sigma_{a}(T)$. Hence $\sigma_{a}(C T C) \subset \sigma_{a}(T)^{*}$. Therefore, $\sigma_{a}(T)=\sigma_{a}\left(C^{2} T C^{2}\right) \subset \sigma_{a}(C T C)^{*}$ and $\sigma_{a}(C T C)=$ $\sigma_{a}(T)^{*}$. Similarly, we have $\sigma_{p}(C T C)=\sigma_{p}(T)^{*}$. Let $z \notin \sigma_{s}(C T C)$ and $x \in \mathcal{X}$. Then there exists $y \in \mathcal{X}$ such that $(C T C-z) y=C x$. Hence $(T-\bar{z}) C y=C(C T C-z) y=C^{2} x=x$. Hence $\sigma_{s}(C T C) \subset \sigma_{s}(T)^{*}$ The converse is similar. Hence $\sigma_{s}(C T C)=\sigma_{s}(T)^{*}$. Also, $\sigma(C T C)=\sigma_{a}(C T C) \cup \sigma_{s}(C T C)=\sigma_{a}(T)^{*} \cup \sigma_{s}(T)^{*}=\sigma(T)^{*}$.

Next we introduce numerical range of Banach space operator.
Definition 2.8 Let Π be the set

$$
\Pi:=\left\{(x, f) \in \mathcal{X} \times \mathcal{X}^{*}:\|f\|=f(x)=\|x\|=1\right\}
$$

For an operator $T \in B(\mathcal{X})$, the numerical range $V(T)$ of T is given by

$$
V(T)=\{f(T x):(x, f) \in \Pi\} .
$$

Hence, normal and hyponormal are defined as follows.
(1) T is called Hermitian and positive (denoted by $T \geq 0$) if $V(T) \subset \mathbb{R}$ and $V(T) \subset[0, \infty)$, respectively.
(2) T is called normal if there exist Hermitian operators H, K such that $H K=K H$, $T=H+i K$.
(3) T is called hyponormal if there exist Hermitian operators H, K such that $T=H+i K, i(H K-K H) \geq 0$.

Let $T \in B(\mathcal{X})$. If $T=H+i K$ for some Hermitian H and K, then H and K are unique. Hence we denote $H-i K$ by \bar{T}. Let $T^{*} \in B\left(\mathcal{X}^{*}\right)$ be the dual operator of T. Hence if $T=H+i K$, then $T^{*}=H^{*}+i K^{*}$.

Definition 2.9 Let $T \in B(\mathcal{X})$ be $T=H+i K$ for some Hermitian H and K. Let C be a conjugation on \mathcal{X}. Then T is said to be C-symmetric if $C T C=T$.

Theorem 2.10 Let $T=H+i K$ for some Hermitian H and K. Let C be a conjugation on \mathcal{X} and T is C-symmetric. Then T is invertible if and only if T is invertible.

Proof. Let, for a conjugation $C, C \bar{T} C=T$ and \underline{T} be invertible. Then we have $\bar{T} C T^{-1} C=$ $C T C C T{ }^{-1} C=C T T^{-1} C=C^{2}=I=C T^{-1} C T$. Hence T is invertible. Converse is clear.

Theorem 2.11 Let \mathcal{X} be a complex Banach space. If an operator $T=H+i K$ is complex symmetric, then $\sigma_{p}(T)=\sigma_{p}(\bar{T})^{*}, \sigma_{a}(T)=\sigma_{a}(\bar{T})^{*}, \sigma_{s}(T)=\sigma_{s}(\bar{T})^{*}$ and $\sigma(T)=\sigma(\bar{T})^{*}$.

Proof. By Theorem 2.7, we have $\sigma_{p}(C \bar{T} C)=\sigma_{p}(\bar{T})^{*}$. Since $C \bar{T} C=T$ for some conjugation, we have $\sigma_{p}(T)=\sigma_{p}(T)^{*}$. Others are similar.

Definition 2.12 An operator $T=H+i K \in B(\mathcal{X})$ is said to be an ExB-operator if there exists $M>0$ such that

$$
\left\|e^{z \bar{T}} \cdot e^{-\bar{z} T}\right\| \leq M \quad \text { for all } z \in \mathbb{C}
$$

We have $\left\|e^{\bar{T}} \cdot e^{-\bar{z} T}\right\| \leq M(\forall z \in \mathbb{C})$ if and only if $\left\|e^{\bar{T}} x\right\| \leq M\left\|e^{\bar{z} T} x\right\|(\forall x \in \mathcal{X}, \forall z \in \mathbb{C})$. For $T=H+i K \in B(\mathcal{H})$ (Hilbert space operator case), T is an ExB-operator if and only if $\left\|\left(e^{z T}\right)^{*} x\right\| \leq M\left\|e^{z T} x\right\|(\forall x \in \mathcal{H}, \forall z \in \mathbb{C})$. It is easy to see that if T is an ExB-operator, then so is $a T+b$ for all $a, b \in \mathbb{C}$. When $M=1, \mathrm{~K}$. Mattila in [13] called ${ }^{*}$-hyponormal.

Proposition 2.13 (Lemma 2 of [5]).
If $T=H+i K$ is an ExB-operator and $T x=0$, then $\bar{T} x=0$.
Since $\left(e^{z \bar{T}} \cdot e^{-\bar{z} T}\right)^{*}=e^{-\bar{z} T^{*}} \cdot e^{z \bar{T}^{*}}$, if T is an ExB-operator, then so is \bar{T}^{*}.
Theorem 2.14 Let \mathcal{X} be a complex Banach space and C be a conjugation on \mathcal{X}. If T is an ExB-operator on \mathcal{X} and C-symmetric, then $\operatorname{ker}(T-\lambda)=C \operatorname{ker}(T-\lambda)$ for all $\lambda \in \mathbb{C}$.

Proof. Let $T x=\lambda x$. Since $a T+b$ is an ExB-operator for all $a, b \in \mathbb{C}$ and $(T-\lambda) x=0$, by Proposition 2.13 it holds $\bar{T} x=\bar{\lambda} x$. Hence $\bar{\lambda} x=\bar{T} x=(C T C) x=C(T C x)$ and it holds $T(C x)=C^{2} T(C x)=C(\bar{\lambda} x)=\lambda C x$. Hence $C \operatorname{ker}(T-\lambda) \subset \operatorname{ker}(T-\lambda)$. Also, we have $\operatorname{ker}(T-\lambda)=C^{2} \operatorname{ker}(T-\lambda) \subset C \operatorname{ker}(T-\lambda)$. Hence $\operatorname{ker}(T-\lambda)=C \operatorname{ker}(T-\lambda)$.

For a study of properties of a complex symmetric ExB-operator, we recall from [2] and [3] the construction of a larger space \mathcal{X}° from a given Banach space \mathcal{X}. Then the mapping $T \rightarrow T^{\circ}$ is an isometric isomorphism of $B(\mathcal{X})$ onto a closed subalgebra of $B\left(\mathcal{X}^{\circ}\right)$ as follows: Let Lim be fixed Banach limit on the space of all bounded sequences of complex numbers with the norm $\left\|\left\{\lambda_{n}\right\}\right\|=\sup \left\{\left|\lambda_{n}\right|: n \in \mathbb{N}\right\}$. Let $\tilde{\mathcal{X}}$ be the space of all bounded sequences $\left\{x_{n}\right\}$ of \mathcal{X}. Let N be the subspace of \mathcal{X} consisting of all bounded sequences $\left\{x_{n}\right\}$ with Lim $\left\|x_{n}\right\|^{2}=0$. The space \mathcal{X}° is defined as the completion of the quotient space $\tilde{\mathcal{X}} / N$ with respect to the norm $\left\|\left\{x_{n}\right\}+N\right\|=\left(\operatorname{Lim}\left\|x_{n}\right\|^{2}\right)^{\frac{1}{2}}$. Operator T^{\prime} is defined by $T^{\prime}\left(\left\{x_{n}\right\}+N\right)=\left\{T x_{n}\right\}+N$ on \mathcal{X} / N. The operator T° is defined by the unique extension of T^{\prime} on \mathcal{X}°. Then the following results hold:

$$
\sigma(T)=\sigma\left(T^{\circ}\right), \sigma_{a}(T)=\sigma_{a}\left(T^{\circ}\right)=\sigma_{p}\left(T^{\circ}\right) \text { and } \overline{\operatorname{co}} V(T)=V\left(T^{\circ}\right),
$$

where $\overline{\operatorname{co}} V(T)$ is the closed convex hull of $V(T)$. See [2] and [3] for details. Therefore, if T is Hermitian, normal or hyponormal, then so is T°, respectively. Since the mapping $T \rightarrow T^{\circ}$ is an isometric isomorphism of $B(\mathcal{X})$ onto a closed subalgebra of $B\left(\mathcal{X}^{\circ}\right)$, if T is an ExB-operator, then so is T°.

Let C be a conjugation on \mathcal{X}. The operator C^{\prime} is defined by $C^{\prime}\left(\left\{x_{n}\right\}+N\right)=\left\{C x_{n}\right\}+N$ on $\tilde{\mathcal{X}} / N$ and we define C° as the unique extension of C^{\prime} on \mathcal{X}°. Then it is easy to see that
$C^{\circ 2}=I^{\circ},\left\|C^{\circ}\right\|=1, C^{\circ}\left(x^{\circ}+y^{\circ}\right)=C^{\circ} x^{\circ}+C^{\circ} y^{\circ}, C^{\circ}\left(\lambda x^{\circ}\right)=\bar{\lambda} C^{\circ} x^{\circ}\left(\forall x^{\circ}, y^{\circ} \in \mathcal{X}^{\circ}, \lambda \in \mathbb{C}\right)$.

Theorem 2.15 With the above assertion, if C is a conjugation, then so is C° on \mathcal{X}°.
Since $(C T C)^{\prime}\left(\left\{x_{n}\right\}+N\right)=\left\{C T C x_{n}\right\}+N=C^{\prime}\left(\left\{T C x_{n}\right\}+N\right)=C^{\prime} T^{\prime} C^{\prime}\left(\left\{x_{n}\right\}+N\right)$, it holds $(C T C)^{\circ}=C^{\circ} T^{\circ} C^{\circ}$. Hence the following result holds.

Theorem 2.16 With the above assertion, if T is C-symmetric on \mathcal{X}, then T° is C° symmetric on \mathcal{X}°.

For the final result, we introduce orthogonality of Banach space as follows.

Definition 2.17 Let M be a subspace of \mathcal{X}. A vector x is orthogonal to M if

$$
\|m\| \leq\|m+x\| \quad(\text { for all } m \in M)
$$

Then we denote by $M \perp x$.
For a subspace $M \subset \mathcal{X}$, let M^{\perp} be the set $\{x \in \mathcal{X}: M \perp x\}$. Let M, N be subspaces of \mathcal{X}. If, for all $n \in N, M \perp n$, then we denote $M \perp N$.

Theorem 2.18 If a subspace M is invariant for a conjugation C, then M^{\perp} is invariant for C.

Proof. Let $x \in M^{\perp}$ and $m \in M$ be arbitrary. Then

$$
\|m\|=\|C m\| \leq\|C m+x\|=\|C(C m+x)\|=\|m+C x\| .
$$

Hence $C x \in M^{\perp}$.
Hence we have following corollary.
Corollary 2.19 Let $T=H+i K$ be an ExB-operator. If T is C-symmetric, then $\operatorname{ker}(T)^{\perp}$ is invariant for C.

Proposition 2.20 (Theorem 20.7, [4]).
Let \mathcal{X} be a reflexive Banach space and $x \in \mathcal{X}$ be $\|x\|=1$. Then there exists $f \in \mathcal{X}^{*}$ such that $\|f\|=f(x)=1$ and $H^{*} f=0$ for all Hermitian operators H for which $H x=0$.

Proposition 2.21 (Lemma 20.3, [4]).
It holds that $\operatorname{ker}(T) \perp R(T)$ if and only if for any unit vector $x \in \operatorname{ker}(T)$ there exists $f \in \mathcal{X}^{*}$ such that $\|f\|=f(x)=1$ and $T^{*} f=0$.

Theorem 2.22 Let Let \mathcal{X} be a reflexive Banach space and $T=H+i K$ be an ExBoperator. Then $\operatorname{ker}(T) \perp R(T)$.

Proof. Let $x \in \operatorname{ker}(T)$ be a unit vector. Since $T=H+i K$ is an ExB-operator, by Proposition 2.13 we have $H x=K x=0$. Since \mathcal{X} is reflexive, by Proposition 2.20 there exists $f \in \mathcal{X}^{*}$ such that $\|f\|=f(x)=1$ and $T^{*} f=0$. Hence by Proposition 2.21 it holds $\operatorname{ker}(T) \perp R(T)$.

In [11], K. Mattila proved the following result for a normal operator.
Proposition 2.23 (Propositions 3.7 and 3.9, Corollary 3.8, [11]).
Let T be normal and $\lambda, \mu \in \mathbb{C}$ be $\lambda \neq \mu$.
(1) If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $T x_{n} \rightarrow 0$, then $1 \leq \lim \inf \left\|x_{n}+T y_{n}\right\|$, for any bounded sequence $\left\{y_{n}\right\}$ of \mathcal{X}.
(2) If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $(T-\lambda) x_{n} \rightarrow 0$, then $1 \leq \liminf \left\|x_{n}+y_{n}\right\|$, for any bounded sequence $\left\{y_{n}\right\}$ such that $(T-\mu) y_{n} \rightarrow 0$. In particular, $\operatorname{ker}(T-\lambda) \perp \operatorname{ker}(T-\mu)$.
(3) For a bounded sequence $\left\{x_{n}\right\}$, if $T^{2} x_{n} \rightarrow 0$, then $T x_{n} \rightarrow 0$.

We show the similar result. For the completeness, we give a proof. We need the following definition and result.

Definition 2.24 A Banach space \mathcal{X} is said to be uniformly convex if, for every $\epsilon>0$, there exists a number $\delta>0$ such that, for all $x, y \in \mathcal{X}$, the conditions

$$
\|x\|=\|y\|=1, \quad\|x-y\| \geq \epsilon \quad \text { imply } \quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta .
$$

It's well known that \mathcal{X} is uniformly convex, then \mathcal{X} is reflexive, i.e., $\mathcal{X}^{* *}=\mathcal{X}$. Then we have the following result.

Proposition 2.25 (Theorem 4, [3]).
\mathcal{X} is uniformly convex if and only if \mathcal{X}° is uniformly convex.
Theorem 2.26 Let T be an ExB-operator on a uniformly convex Banach space \mathcal{X} and $\lambda, \mu \in \mathbb{C}$ be $\lambda \neq \mu$.
(1) If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $T x_{n} \rightarrow 0$, then $1 \leq \liminf \left\|x_{n}+T y_{n}\right\|$, for any bounded sequence $\left\{y_{n}\right\}$ of \mathcal{X}.
(2) If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $(T-\lambda) x_{n} \rightarrow 0$, then $1 \leq \liminf \left\|x_{n}+y_{n}\right\|$, for any bounded sequence $\left\{y_{n}\right\}$ such that $(T-\mu) y_{n} \rightarrow 0$.
In particular, $\operatorname{ker}(T-\lambda) \perp \operatorname{ker}(T-\mu)$.
(3) For a bounded sequence $\left\{x_{n}\right\}$, if $T^{2} x_{n} \rightarrow 0$, then $T x_{n} \rightarrow 0$.

Proof. Let \mathcal{X}° be the larger Banach space of \mathcal{X} and T° be the extension of T on \mathcal{X}° as a previous way. Then \mathcal{X}° is uniformly convex and T° is an ExB-operator. And by Theorem 2.22 it holds $\operatorname{ker}\left(T^{\circ}\right) \perp R\left(T^{\circ}\right)$. We may assume that all vectors x_{n} and y_{n} of (1), (2) and
(3) are unit. Put $x^{\circ}=\left\{x_{n}\right\}+N$. Then $\left\|x^{\circ}\right\|=1$ and $x^{\circ} \in \operatorname{ker}\left(T^{\circ}\right)$.
(1) Since it holds $\operatorname{ker}\left(T^{\circ}\right) \perp R\left(T^{\circ}\right)$ by Theorem 2.22, we have $1=\left\|x^{\circ}\right\| \leq\left\|x^{\circ}+T^{\circ} y^{\circ}\right\|$.

Assume that $\lim \inf \left\|x_{n}+T y_{n}\right\|<1$. Then there exist subsequences $\left\{x_{n_{j}}\right\},\left\{y_{n_{j}}\right\}$ such that $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}+T y_{n_{j}}\right\|=\alpha<1$. Let $x_{1}^{\circ}=\left\{x_{n_{j}}\right\}+N, y_{1}^{\circ}=\left\{y_{n_{j}}\right\}+N$. Then we have $\left\|x_{1}^{\circ}\right\|=1, T^{\circ}\left(x_{1}^{\circ}\right)=0$ and $\left\|x_{1}^{\circ}+T^{\circ} y_{1}^{\circ}\right\|=\alpha<1=\left\|x_{1}^{\circ}\right\|$. It's a contradiction. Hence $\lim \inf \left\|x_{n}+T y_{n}\right\| \geq 1$ and it completes (1).
(2) Since $\lambda \neq \mu,\left\{(\mu-\lambda)^{-1} y_{n}\right\}$ is a bounded sequence, by (1) we have

$$
\begin{gathered}
1 \leq \liminf \left\|x_{n}+(\mu-\lambda)^{-1}(T-\lambda) y_{n}\right\| \\
=\liminf \left\|x_{n}+y_{n}+(\mu-\lambda)^{-1}(T-\mu) y_{n}\right\|=\liminf \left\|x_{n}+y_{n}\right\| .
\end{gathered}
$$

By previous result, it is easy to see $\operatorname{ker}(T-\lambda) \perp \operatorname{ker}(T-\mu)$ and it completes (2).
(3) Let $T^{2} x_{n} \rightarrow 0$. Assume $T x_{n} \nrightarrow 0$. Then there exist $\epsilon>0$ and a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\|T x_{n_{k}}\right\| \geq \epsilon(k \in \mathbb{N})$. Let $w_{k}=\left\|T x_{n_{k}}\right\|^{-1} T x_{n_{k}}$. Then $\left\|T w_{k}\right\| \leq \epsilon^{-1}\left\|T^{2} x_{n_{k}}\right\|$. Hence $T w_{k} \rightarrow 0$ and by (1) it holds $1 \leq \liminf \left\|w_{k}+T u_{k}\right\|$ for any bounded sequence $\left\{u_{k}\right\}$. Taking $u_{k}=-\left\|T x_{n_{k}}\right\|^{-1} x_{n_{k}}$, it's a contradiction. Hence we have $T x_{n} \rightarrow 0$ and it completes (3).

Remark 2.27 In the case of conjugations C, J on a Hilbert space $\mathcal{H}, U=C J$ is a unitary operator. Hence $U^{*}=U^{-1}$ and it holds $C U C=J C=U^{-1}=U^{*}=J U J$. In the case of conjugations C, J on a Banach space \mathcal{X}, we have only $C U C=J C=U^{-1}=J U J$.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Academic, 2004.
[2] G. de Barra, Some algebras of operators with closed convex numerical range, Proc. Roy. Irish Acad. Sect. A 72 (1972), 149-154.
[3] G. de Barra, Generalized limits and uniform convexity, Proc. Roy. Irish Acad. Sect. A 74 (1974), 73-77.
[4] F.F. Bonsal and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series. 10, 1973.
[5] M. Chō, Invariant subspace problem for ExB-operators, Functional Analysis, Approximation and Computation, 6(2) (2014), 61-64.
[6] S.R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358, (2005), 1285-1315.
[7] S.R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359, (2007), 3913-3931.
[8] S.R. Garcia and W.R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257, (2009), 1251-1260.
[9] V.I. Godic and I.E. Lucenko, On representation of a unitary operator as a product of two involutions, Uspehi Mat. Nauk 20, (1965), 64-65.
[10] S. Jung, E. Ko and J. E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl., 406, (2013), 373-385.
[11] K. Mattila, Normal operators and proper boundary points of operators on Banach space, Ann. Acad. Sci. Fenn. Ser. A ID Math. Dissertationes 19, 1978.
[12] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc. 96, (1984), 483-493.
[13] K. Mattila, A class of hyponormal operators weak*-continuity of hermitian operators, Arkiv Mat. 25, (1987), 265-274.
[14] T. Takagi, On an algebraic problem related to an analytic theorem of Caratheodry and Fejer and on an allied theorem of Landau, Japan J. Math. 1, (1925), 83-93.

Communicated by Masatoshi Fujii

Muneo Chō
Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Kôtarô Tanahashi
Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
e-mail: tanahasi@tohoku-pharm.ac.jp

[^0]: ${ }^{0} 2010$ Mathematics Subject Classification; Primary 47A05, Secondary 47B25, 47B99.
 Keywords; Banach space, linear operator, conjugation.
 This is partially supported by Grant-in-Aid Scientific Research No.15K04910.

