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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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from a lower numbered station to a higher numbered one, or remains in the original station
(as a new class customer). After at most a finite number of such class changes, customers
will eventually leave the network. In this paper, the FCFS (firsr-come, first-served) service
discipline is investigated in our multiclass feedforward queueing networks with abandon-
ments and we establish the diffusion approximation for those networks in heavy traffic.

Related research. Diffusion approximations for (single-class) generalized Jackson queue-
ing networks (GJNs) in heavy-traffic were established in Reiman [22] under typical moment
conditions on primitive variables of the network. However, some counterexamples were
found to the validity of heavy-traffic limit for multiclass queueing networks (MQNs) (cf.
Dai and Wang [9]), which is in contrast with the case of GJNs. So the identification of the
category of the MQNs subject to the heavy-traffic analysis has been one of the main topics
in queueing theory. Due to the feature that a single server processes more than one class
of customers in MQNs and also to the class-transition nature of a customer, the increased
complexity is brought so that the heavy-traffic limit of scaled K-dimensional queue length
vector in an MQN is understood to be difficult to obtain without additional restrictive
conditions not appearing in such limits of GJNs.

In late 1990s, such problem was solved by Bramson [3] and Williams [26] for some types
of MQN with important service disciplines such as FCFS, processor-sharing and buffer-
priority ones. More specifically, Williams [26] established heavy-traffic limit theorems for
MQNs with the limit referred to as a semimartingale reflecting Brownian motion, assuming
the condition of state-space collapse. Loosely speaking, state-space collapse corresponds
to an asymptotic-law version of Little’s formula for MQNs in heavy traffic. Further, [26]
indicated that state-space collapse is also a necessary condition for the heavy-traffic limit
theorem in MQNs with FCFS disciplines. (Cf. Appendix B in [26]). At the same time,
Bramson [3] constructed the framework on state-space collapse for MQNs in which the initial
condition on strong state-space collapse is proved to imply multiplicative strong state-space
collapse (cf. Theorem 1 in [3]), which forms the basis for the use of state-space collapse in
[26]. In addition, [3] showed that state-space collapse is exhibited after a brief period of
time under the relative compactness (tightness) of initial scaled workload (cf. Theorem 3
in [3]), which is used to prove that state-space collapse holds for a multiclass single-server
queue in stationarity (cf. Katsuda [15]).

On the other hand, for the last decade, the study of a many-server queue with abandon-
ment in the so-called Halfin-Whitt heavy-traffic regime has attracted considerable attention,
because it is relevant to practical large-scale service systems such as call centers. (Cf. Dai
and He [8] and references therein). Furthermore, the heavy-traffic analysis of a (single-
class) single-server queue, and more generally, that of a GJN are associated with customer
abandonment. (Cf. Ward and Glynn [23], [24], Reed and Ward [21] for the former study,
and Huang and Zhang [13] for the latter). In particular, the works [24] and [21] identi-
fied a reflected Ornstein-Uhlenbeck process and a more general reflected diffusion process,
respectively, as the heavy-traffic limit of a GI/GI/1(+GI) queue with abandonment. In
all of those works, for the scaling of abandonment (or, patience time) distribution, the
continuous or locally-bounded hazard-rate scaling and more generally, the locally-Lipschitz
hazard-type scaling were employed because of their technical tractability. ¿From a unified
point of view, those scalings are extended to the most general hazard-type one by Katsuda
[17] for a G/Ph/n+GI queue in the Halfin-Whitt regime. According to such general scal-
ing, practical and yet previously intractable examples of abandonment distribution become
subject to the analysis of diffusion approximation. For instance, the Gamma distribution
with scale parameter less than unity is such case. (See the introduction of Katsuda [17]).

Main result. In this paper we will state and prove a diffusion approximation for a
multiclass feedforward queueing network with abandonment under the FCFS service disci-
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pline. Our main result is a generalization of two previous works [24] and [21] cited above.
Specifically, we extend their diffusion approximation results via a one-dimensional Ornstein-
Uhlenbeck type diffusion for a GI/GI/1+GI queue to a multiclass feedforward queueing
network with GI-type abandonment. Furthermore we employ the general hazard-type scal-
ing of abandonment distribution which includes the locally Lipschitz hazard-type scaling
used in [24] and [21]. Our limit process for (scaled) workload is the unique solution to a
multidimensional reflected stochastic differential equation with a nonlinear drift and the
limit for queue length in each class is a constant times the limit of workload at the station
serving the class, which is a consequence of state-space collapse for our queueing network
with abandonment.

Methodology. In addition to the i.i.d. (independent and identically distributed) condition
of primitive model variables with general probability distributions and also their parameters
convergence, we impose the following four main assumptions:
(A.1) Initial condition on the weak convergence of (scaled) workload.
(A.2) Initial condition on strong state-space collapse.
(A.3) Tightness of initial queue length.
(A.4) Completely-S condition of reflection matrix in the limit equation for the workload.

To derive the diffusion approximation result from those assumptions, the following steps
will be taken in our argument:
Step 1. Using assumptions (A.1) and (A.3), we show the stochastic boundedness of scaled
queue length and workload in our queueing network with abandonment. In particular, the
feedforward property of class routing is crucial to this step.
Step 2. For each k ∈ K, the C-tightness of scaled abandonment-count process of class k is
proved, using the stochastic boundedness of scaled workload in Step 1.
Step 3. According to (A.2) and Step 1, the condition corresponding to strong state-space
collapse in a multiclass FCFS queueing network (without abandonment) is shown. Com-
bining it with the condition characterizing the FCFS discipline with abandonment, we have
state-space collapse for our queueing network with abandonment.
Step 4. Using the results of Step 2 and Step 3, we have the C-tightness of the sequence
of scaled workloads satisfying the heavy-traffic condition, and then derive a J-dimensional
reflected stochastic differential equation (SDE) satisfied by any limit process of the sequence.
Step 5. Observe that our limit SDE has a nonlinear drift term as the limit of scaled
abandonment-count process due to the general hazard-type scaling of abandonment dis-
tribution. (The solution to the equation may be regarded as a semimartingale reflecting
Brownian motion (SRBM) with a nonlinear drift term). Thus, applying the Girsanov trans-
formation to the localized SDE and using (A.4), the uniqueness in law of the solution to
the original SDE is achieved. Consequently we have the desired weak convergence of scaled
workload to the unique solution to the SDE. The limit for queue length in each class is
an immediate consequence of state-space collapse and the limit for workload at the station
serving the class.

Overview of the contents. The rest of the paper is organized as follows. In Sect. 2,
we introduce some primitive variables and processes for a multiclass queueing network
with abandonment under study. In terms of those primitives, we construct a piecewise
deterministic Markov process for the dynamical description of our queueing network in
Sect. 3. In other words, the performance measures for our network are adapted to the
history of the process. In Sect. 4, we state our main result, i.e., a diffusion approximation
theorem for a multiclass feedforward queueing network with abandonment, and Sect. 5
is devoted to its proof, in which the methodology mentioned above are employed. In the
appendix, we put some lemmas used in the demonstration of state-space collapse in Sect.
5.
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Notation. For a random variable X defined on a probability space (Ω,F , P), the ex-
pectation of X on an event A ∈ F is denoted by EP[X; A]. For a local martingale M , the
optional quadratic variation process of M is denoted by [M ]. (Cf. (1.8.3) in Liptser and
Shiryayev [20]).

The symbols Z, N, R1 and R1
+ denote the set of integers, positive integers, real numbers

and nonnegative real numbers, respectively. For a, b ∈ R1, a ∧ b ≡ min{a, b}, a ∨ b ≡
max{a, b}, a+ ≡ a∨ 0, a− ≡ (−a) ∨ 0, bac ≡ max{i ∈ Z : i ≤ a} and dae ≡ max{i ∈ Z : i <
a}.

For d ∈ N, Rd denotes the d-dimensional Euclidean space. Every vector in Rd is
envisioned as a column vector. For example, a = (ak, k ∈ L) denotes the L-dimensional
column vector with L the number of elements in the index set L. The transpose of a vector
or a matrix is denoted by putting a tilde on its top. The vector e ∈ Rd denotes (1, 1, . . . , 1).
The norm |u| of a vector u = (u1, . . . , ud) ∈ Rd is defined by |u| = |u1| + · · · + |ud|. The
matrix diag(u) with a vector u = (u1, . . . , ud) ∈ Rd denotes the d× d diagonal matrix with
(i, i)-diagonal element equal to ui, i = 1, . . . , d.

The space of functions f : [0,∞) → Rd that are right-continuous on [0,∞) and have left-
hand limits in (0,∞) is denoted by D([0,∞),Rd) or simply by Dd. The space Dd is endowed
with the Skorohod J1-topology. Similarly, the space of Rd-valued continuous functions on
[0,∞) is denoted by C([0,∞),Rd). For f ∈ Dd and t > 0, f(t−) denotes its left-hand limit
at t and ∆f(t) ≡ f(t) − f(t−). For a sequence of random elements {Xr}r≥1 taking values
in a metric space S, the symbol Xr =⇒ X in S as r → ∞ means the weak convergence of
Xr to X in S as the index r tends to infinity.

2 Multiclass feedforward queueing networks with abandonments and their
Markovian description of dynamics

2.1 Model primitives In this section we first introduce some primitive random variables
(r.v.’s) on a probability space (Ω,F , P) to construct the model of a multiclass queueing net-
work with abandonment studied in this paper. The network is composed of J service stations
indexed by j = 1, . . . , J , and the set of service stations is denoted by J = {1, 2, . . . , J}. Each
of the service stations has a single server and a waiting buffer of unlimited capacity. Each
customer (or job) belongs to one of K classes with K ≥ J , indexed by k = 1, . . . ,K, and
the set of the classes is denoted by K = {1, 2, . . . ,K}. For each k ∈ K, customers of class
k are served at service station s(k) ∈ J exclusively. The mapping s(·) maps K onto J in a
many-to-one fashion. In addition, we let C(j) = {k ∈ K : s(k) = j}, j ∈ J.

Customers of classes in A, which is a non-empty subset of K, enter the network from
outside and no external arrival is allowed for any class in K − A. Upon arrival, a customer
is assigned the abandonment time (or, patience time) whose probability law depends on
his class, and if the time until the customer is supposed to enter service, called the offered
waiting time, exceeds his abandonment time, then he will abandon the system as soon as his
remaining abandonment time is exhausted. Otherwise, i.e., if the customer is supposed to
receive service eventually, he is assigned the service time on his arrival, which also depends
on his class. The service of customers by the server is performed according to the first-
come-first-service (FCFS) discipline, i.e., in the order of their arrivals independently of
their classes. (We also take the convention that customers within each class are numbered
on the first-in basis). On service completion, a customer either changes his class and waits
for service as the new class customer in the end of the queue, or leaves the system.

External arrivals
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The external arrival process E(t) = {Ek(t), k ∈ K}, t ≥ 0, counts the number of arrivals
at each class from outside the network. For each k ∈ A, we define Ek(·) by

Ek(t) ≡ max{n ∈ N : Uk(n) ≤ t}

with maxφ ≡ 0, where

(1) Uk(n) ≡
n∑

i=1

uk(i)

with Uk(0) ≡ 0. For each k ∈ A, the external interarrival times {uk(i), i = 2, 3, . . .} are
i.i.d. (independent and identically distributed) positive r.v.’s with the distribution function
(d.f.)

Fu
k (x) ≡ P(uk(2) ≤ x), x ≥ 0,

the mean 1/αk ≡
∫ ∞
0

xdFu
k (x) > 0, and the finite variance ak ≡

∫ ∞
0

(x − 1
αk

)2dFu
k (x) ≥ 0.

The r.v. uk(1) > 0, corresponding to the remaining interarrival time of the customer
entering first after time t = 0, is independent of {uk(i), i = 2, 3, . . .}. For each i = 2, 3, . . . ,
the r.v. uk(i) corresponds to the interarrival time between the (i− 1)-th customer and i-th
customer in class k. For conveniece, we set

Ek(·) ≡ 0 and αk = 0

for k ∈ K − A. The vector α = (αk, k ∈ K) is referred to as the arrival rate.

Service times

For each k ∈ K, there are two sequences of service times, i.e., a sequence of original
service times and a sequence of subsequent service times. The sequence of original service
times {vo

k(i), i = 1, 2, . . .} gives the (remaining) service times for class k customers who are
in the system at time 0 and will eventually receive service. (There are more elements in the
infinite sequence than needed). Those initial customers are assumed to have the prescribed
order of arrivals at or before time 0, and if there is such i-th customer in the system, the
original service time vo

k(i) is assigned to him for i = 1, 2, . . ..
For each k ∈ K, the original service times {vo

k(i), i = 2, 3, . . .} are i.i.d. positive r.v.’s
with

(2) F v
k (x) ≡ P

(
vo

k(2) ≤ x
)
, x ≥ 0,

the mean mk =
∫ ∞
0

xdF v
k (x) > 0 and the finite variance bk ≡

∫ ∞
0

(x−mk)2dF v
k (x) ≥ 0. The

constant µk ≡ 1/mk is referred to as the service rate of class k. The r.v. vo
k(1), corresponding

to the (remaining) service time of initial class k customer who arrived the longest time
ago among those eventually receiving service, is independent of {vo

k(i), i = 2, 3, . . .}. The
cumulative original service time process Vo

k(n), n ∈ N, k ∈ K, is given by

(3) Vo
k(n) ≡

n∑
i=1

vo
k(i)

with Vo
k(0) ≡ 0.

The subsequent service times {vs
k(i), i = 1, 2, . . .}, k ∈ K, are i.i.d. positive r.v.’s with

P
(
vs

k(1) ≤ x
)

= F v
k (x), x ≥ 0. For each k ∈ K, vs

k(i) corresponds to the service time
assigned to the i-th class k customer among those arriving after t = 0 from outside or due
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to class change and eventually receiving service. The cumulative subsequent service time
process Vs

k(n), n ∈ N, k ∈ K, is given by

(4) Vs
k(n) ≡

n∑
i=1

vs
k(i)

with Vs
k(0) ≡ 0.

Abandonment times
Similar to the service times above, we introduce the abandonment times in two dis-

tinct sequences, i.e., the original abandonment times and subsequent abandonment times.
For each k ∈ K, the original abandonment times {γo

k(i), i = 1, 2, . . .} is a sequence of in-
dependent positive r.v.’s which corresponds to the remaining abandonment times of the
customers of class k initially at the network. (The assignment of those abandonment times
to each customer is done in the same way as in service times, but distinct to that case, the
abandonment time is assigned to every customer at the system, whether he will abandon it
or not). For each k ∈ K, the subsequent abandonment times {γs

k(i), i = 1, 2, . . .} are i.i.d.
positive random variables with

(5) F γ
k (x) ≡ P(γs

k(1) ≤ x), x ≥ 0,

and correspond to the abandonment times assigned to the customers of class k arriving
after t = 0.

Class routings
The class-routing process Φ(n) = {Φk(n), k ∈ K}, n ∈ N, is defined by

Φk(n) ≡
n∑

i=1

φk(i)

where {φk(i) = (φk
l (i), l ∈ K), i = 1, 2, . . . , } are i.i.d. random vectors taking values in the

set {0, e1, . . . , eK} with ek denoting the unit basis vector parallel to the k-th coordinate
axis in RK , k ∈ K. The identity φk(i) = el indicates that the i-th customer served at
class k changes his class to class l after the service, and the identity φk(i) = 0 indicates his
departure from the system.
Let Pkl = P(φk(1) = el) and Pk0 = P(φk(1) = 0), k, l ∈ K. Then the K × K substochastic
matrix P = [Pkl; k, l ∈ K], called the class-routing matrix, is assumed to have spectral
radius strictly less than unity. Thus

Q ≡ (I − P̃ )−1 = I + P̃ + (P̃ )2 + · · ·

is finite where P̃ denotes the transpose of P . It is readily seen that for each k ∈ K,

E[φk(1)] = Pk· and

Cov[φk(1)] ≡ [Cov(φk
l (1), φk

m(1)), l,m ∈ K]

= Υk(6)

where Pk· denotes the k-th row vector of P and Υk denotes the K × K matrix such that

(7) Υk
lm =

{
Pkl(1 − Pkl) if l = m,

−PklPkm if l 6= m.
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In this paper we will impose on the class-routing probability {Pkl, k, l ∈ K} the following
condition:
Feedforward class-routing condition

For each k, l ∈ K,

(8) if Pkl > 0, then s(k) ≤ s(l).

When J = 1(i.e., a multiclass single-server queue), condition (8) is obviously satisfied.

Remaining time processes
Associated with the interarrival, service and abandonment times introduced above, we

define their remaining time processes as follows. For each k ∈ K and t ≥ 0, let Ru
k(t)

and Rv
k(t) denote the remaining interarrival time and remaining service time of class k

customer at time t, respectively. (For k ∈ K − A, we set Ru
k(·) ≡ −1). In particular,

Ru
k(0) = uk(1), k ∈ A, Rv

l (0) = vo
l (1), l ∈ K.

Now, for each k ∈ K, let

(9) Zk(t), t ≥ 0,

denote the number of class k customers who are either being served or waiting in queue at
time t, which is referred to as the queue length of class k at time t. Then the remaining
abandonment time process of class k, k ∈ K, is represented by

Rγ
k(t) = (Rγ

k,i(t), i = 1, 2, . . .), t ≥ 0,

in which, for each 1 ≤ i ≤ Zk(t), Rγ
k,i(t) denotes the remaining abandonment time of i-th

customer of class k at time t, and for i ≥ Zk(t) + 1, we set Rγ
k,i(t) ≡ −1. In particular,

Rγ
k,i(0) = γo

k(i) for each 1 ≤ i ≤ Zk(0) and k ∈ K. If the remaining abandonment time
Rγ

k,1(·) expires at t = t0 and the service of the corresponding customer began before time
t0 and continues at t = t0, then we set Rγ

k,1(t) ≡ 0 for each t ∈ [t0, t1) where t1 denotes the
time at which the service finishes.

Class designation processes
Relevant to the FCFS discipline investigated in this paper, we have to track the designa-

tion of the class of each customer in each service station in order to describe the dynamics
of the network. For the purpose, we introduce the {0, 1, . . . , 2K}∞-valued process

(10) O(t) = (Oj(t), j ∈ J), t ≥ 0,

where
Oj(t) = (Oj,i(t), i ≥ 1), j ∈ J,

and for j ∈ J and 1 ≤ i ≤
∑

m∈C(j) Zm(t),

Oj,i(t) ≡


k if i-th customer in the queue of station j at time t is

of class k and will eventually receive service;
K + l if i-th customer in the queue of station j at time t is

of class l and will eventually abandon the system,

(11)

and for i ≥
∑

m∈C(j) Zm(t)+1, we set Oj,i(t) ≡ 0. (The variable Oj,1(t) corresponds to the
class of the customer being served at time t, whenever

∑
m∈C(j) Zm(t) ≥ 1).
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Note that under our assumptions on the primitives, simultaneous (exogenous or internal)
arrivals of customers from different classes are allowed. So, to determine the components of
the process O(·) without ambiguity, a rule is needed for the specification of the ordering of
such customers. Following page 41 of Williams [26], we henceforth take a deterministic tie
breaking rule to treat that case. For example, we adopt the convention that for customers
with simultaneous arrivals, a customer of higher numbered class is ordered ahead of a
customer of lower numbered class in the queue of each station.

Offered waiting times
To determine whether each customer will abandon the network or not either on his

arrival to a class or at initial instant, we assign to him the offered waiting time as follows.
For each k ∈ K and i = 1, 2, . . ., the original offered waiting time wo

k(i) is the amount of time
the i-th customer of class k initially in the system would have to wait in queue (i.e., waiting
line) until getting into service if his abandonment time were infinite, with the convention
that wo

k(i) ≡ 0 for i ≥ Zk(0)+1. Thus, if γo
k(i) ≤ wo

k(i), then such i-th class k customer will
eventually abandon the network, and otherwise, he will receive service of class k. Similarly,
for each k ∈ K and i = 1, 2, . . ., the subsequent offered waiting time ws

k(i) is such amount
of time for the i-th customer arriving at class k from outside or from other classes due to
class change after t = 0.

Specifically, ws
k(i) is Gs

k(i)-measurable for each i = 1, 2, . . . and k ∈ K, where

Gs
k(i)

≡ σ{uk(m + 1), vs
k(m), γs

k(m), m ≤ i − 1} ∨
∨

l∈K,l 6=k

σ{ul(m), vs
l (m), γs

l (m), m ≥ 1}

∨
∨
p∈K

σ{vo
p(m), γo

p(m), φp(m),m ≥ 1} ∨ σ{O(0)}.(12)

Mutual independence assumption on the primitives
Finally in this subsection, we impose the following mutual independence assumption on

the primitive variables introduce so far, which is fundamental to our argument in the rest
of the paper:
The families of variables

{Rv(0),Rγ(0), O(0)}, {Ru
k(0) = uk(1)}, k ∈ A,

u∗
k′ , k′ ∈ A, vo,∗

1 , · · · , vo,∗
K ,

vs
1, · · · , vs

K , γs
1 , · · · , γs

K , φ1, · · · , φK(13)

are mutually independent, where

vo,∗
k ≡ (vo

k(i), i ≥ 2), k ∈ K,

u∗
k′ ≡ (uk′(i), i ≥ 2), k′ ∈ A, vs

l ≡ (vs
l (i), i ≥ 1), l ∈ K,

γs
p ≡ (γs

p(i), i ≥ 1), p ∈ K, φq ≡ (φq(i), i ≥ 1), q ∈ K.

2.2 Performance measure processes and their equation As the performance mea-
sures for our multiclass queueing network with abandonment, we define the following pro-
cesses:
The K-dimensional (column) vector-valued process

Z(t) = (Zk(t), k ∈ K), t ≥ 0,
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with Zk(t) in (9) is referred to as the queue length process. For each j ∈ J, let

Wj(t), t ≥ 0,

denote the total amount of immediate work (measured in units of service time) embodied
by the customers in the station j at time t. Set

W (t) = (Wj(t), j ∈ J), t ≥ 0,

which is referred to as the workload process. Also, for each j ∈ J,

Yj(t), t ≥ 0,

denotes the cumulative amount of time that the server at station j is idle during the time
interval (0, t], and set

Y (t) = (Yj(t), j ∈ J)

that is referred to as the cumulative idle time process. To describe the dynamics of Z(·),
W (·) and Y (·), we also introduce the following processes.

For each k ∈ K and t ≥ 0, Ak(t) denotes the total number of the (exogenous and
internal) arrivals of class k customers during (0, t], Dk(t) denotes the total number of the
service completions of class k customers during (0, t], Ik(t) denotes the total number of
the abandonments of class k customers during (0, t], and Tk(t) denotes the total amount
of time that the server has processed customers of class k during (0, t]. Furthermore, let
A+

k (t) denote the number of customers who arrive at class k during (0, t] and will eventually
receive service (and not abandon), and let Z+

k (t) denote the number of class k customers
who are either being under service or waiting in queue at time t and going to receive service.

We represent those processes in (column) vector form as

A(t) = (Ak(t), k ∈ K),

A+(t) = (A+
k (t), k ∈ K),

D(t) = (Dk(t), k ∈ K),
I(t) = (Ik(t), k ∈ K),
T (t) = (Tk(t), k ∈ K),

Z+(t) = (Z+
k (t), k ∈ K), t ≥ 0.

Let

(14) X(t) ≡ (A(t), A+(t), D(t), I(t), T (t),W (t), Y (t), Z(t), Z+(t)), t ≥ 0,

and the process X(·) is called the performance measure process for our multiclass queueing
network with abandonment. Then the dynamical equation for the components of X(t), t ≥ 0,
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is represented as follows:

A(t) = E(t) + F (t)(15)

with F (t) =
K∑

k=1

Φk(Dk(t)),(16)

Z(t) = Z(0) + A(t) − D(t) − I(t),(17)

Z+(t) = Z+(0) + A+(t) − D(t)(18)

with Z+
k (0) ≡

Zk(0)∑
i=1

1{wo
k(i)<γo

k(i)}(19)

and A+
k (t) ≡

Ak(t)∑
i=1

1{ws
k(i)<γs

k(i)}, k ∈ K,(20)

W (t) = W (0) + CVs(A+(t)) − CT (t)(21)

with W (0) = CVo(Z+(0)),(22)
CT (t) + Y (t) = t,(23) ∫ ∞

0

Wj(s)dYj(s) = 0, ∀j ∈ J,(24)

for all t ≥ 0, where C = [Cjk, j ∈ J, k ∈ K] is the J × K matrix with

Cjk =

{
1, if j = s(k):
0, otherwise.

Associated with the abandonment-count process Ik(·), k ∈ K, we now define the process
Nk(·), k ∈ K, by

(25) Nk(t) ≡ Z−
k (0) + A−

k (t), t ≥ 0,

where

Z−
k (0) ≡

Zk(0)∑
i=1

1{γo
k(i)≤wo

k(i)} = Zk(0) − Z+
k (0),(26)

A−
k (t) ≡

Ak(t)∑
i=1

1{γs
k(i)≤ws

k(i)} = Ak(t) − A+
k (t).(27)

We observe that under the FCFS service discipline, for each k ∈ K, t ≥ 0 and ε > 0,

(28) Nk(ζs(k)(t) − ε) ≤ Ik(t) ≤ Nk(t)

with

(29) ζj(t) ≡ inf{s ≥ 0 : s + Wj(s) > t}, j ∈ J,

and

(30) Z−
k (t) ≤ Ik(t + Ws(k)(t)) − Ik(t)

with

(31) Z−
k (t) ≡ Zk(t) − Z+

k (t).
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2.3 Markovian description of a multiclass queueing network with abandonment
In the following we introduce the Markovian description process for a multiclass queueing
network with abandonment in a similar way to Katsuda [15]. The process will be constructed
from the primitive variables and the associated processes introduced so far. Conversely those
primitives can also be represented by the description process.

Let
V (t) ≡ (Vk(t), k ∈ K)

where Vk(t) ≡ (Vk,i(t), i = 1, 2, . . .) with

Vk,1(t) ≡ Rv
k(t),

for 2 ≤ i ≤ Z+
k (t),

Vk,i(t) ≡

{
vo

k(Dk(t) + i), if Dk(t) + i ≤ Z+
k (0),

vs
k(Dk(t) + i − Z+

k (0)), otherwise,

and for i ≥ Z+
k (t) + 1,

Vk,i(t) ≡ 0.

We define the stochastic process Ξ = (Ξ(t), t ≥ 0) by

(32) Ξ(t) ≡ (O(t),Ru(t), V (t),Rγ(t))

where

O(t) = (Oj(t), j ∈ J) = ((Oj,i(t), i = 1, 2, . . .), j ∈ J),
Ru(t) = (Ru

k(t), k ∈ A),
Rγ(t) = (Rγ

k(t), k ∈ K) = ((Rγ
k,i(t), i ≥ 1), k ∈ K).

Then Ξ = (Ξ(t), t ≥ 0) is a piecewise deterministic Markov process (PDMP). Generally the
PDMP is a strong Markov process. (Cf. Davis [10]).

Let
FΞ

t ≡ σ(Ξ(s); 0 ≤ s ≤ t), t ≥ 0.

Then (FΞ
t )t≥0 is right continuous, i.e., ∩∞

n=1FΞ
t+ 1

n

= FΞ
t for each t ≥ 0. As stated in the

next proposition, the performance measure processes X(·) is (FΞ
t )t≥0-adapted. In other

words, the process Ξ(·) describes the dynamics of our multiclass queueing network with
abandonment. For this reason, the process Ξ(·) is called the Markovian description process
for the network.

We denote the probability law of Markov process Ξ(t), t ≥ 0, starting with the value
ξ ∈ S by

(33) Pξ(E), E ∈ FΞ
∞

(
≡

∨
t≥0

FΞ
t

)
, ξ ∈ S,

such that Pξ(Ξ(0) = ξ) = 1, where S denotes the state space of the process Ξ(·). For each
E ∈ FΞ

∞, Pξ(E) is B(S)-measurable w.r.t. ξ.
Now let {θt}t≥0 denote the family of shift transformations associated with the process

Ξ(t), t ≥ 0. Namely,
Ξ(t) ◦ θs = Ξ(t + s)

for each s, t ≥ 0. Corresponding to Proposition 2.1 of Katsuda [15], we have the following
proposition on the shift-transformed performance measure process. (Since the proof is done
in a similar way, we omit it).
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Proposition 2.1.
The performance measure process

X(·) = (A(·), A+(·), D(·), I(·), T (·),W (·), Y (·), Z(·), Z+(·))

is (FΞ
t )t≥0-adapted. Thus X(·) ◦ θt, t ≥ 0, is well-defined and each component of the shift

transformed process is given by the following:

A(t) ◦ θs = A(s + t) − A(s),(34)

A+(t) ◦ θs = A+(s + t) − A+(s),(35)
D(t) ◦ θs = D(s + t) − D(s),(36)
I(t) ◦ θs = I(s + t) − I(s),(37)
T (t) ◦ θs = T (s + t) − T (s),(38)
W (t) ◦ θs = W (s + t),(39)
Y (t) ◦ θs = Y (s + t) − Y (s),(40)
Z(t) ◦ θs = Z(s + t),(41)

Z+(t) ◦ θs = Z+(s + t),(42)

for any s, t ≥ 0.

The quantity Z−
k (t), defined by (31), is the number of class k customers who are in the

system at time t and will eventually abandon it. According to (41) and (42),

(43) Z−
k (t) = Z−

k (0) ◦ θt

for each t ≥ 0.
The condition characterizing the FCFS discipline with abandonment is represented as

(44) Dk(t + Ws(k)(t)) − Dk(t) + Z−
k (t) = Zk(t)

for each t ≥ 0 and k ∈ K. In virtue of Proposition 2.1, the identity (44) is a consequence of
the operation of shift transformation θt, t ≥ 0, to the initial relation

(45) Dk(Ws(k)(0)) + Z−
k (0) = Zk(0), k ∈ K,

and can be regarded as the extension of the FCFS characterization condition without aban-
donment, i.e.,

Dk(t + Ws(k)(t)) − Dk(t) = Zk(t), t ≥ 0, k ∈ K,

that is equivalent to (2.25) in Bramson [3].

3 Heavy-traffic assumptions and scaling
In the rest of the paper we consider a sequence of multiclass FCFS queueing networks

with abandonments each of which satisfies the feedforward class-routing condition (8). Each
network in the sequence is indexed by r, where r tends to infinity through a sequence of
values in [1,∞). (Note that the index r may possibly take non-integer values). For slight
abuse of notation, denote such r-th network by Xr(·), whose primitive variables are defined
on the probability space (Ωr,Fr, Pr) for each r ≥ 1. The number of classes K, the subset
A of K with exogenous arrivals, and the map s(·) : K −→ J are fixed for all Xr(·), r ≥ 1.
Also the service discipline investigated is FCFS in every network of the sequence. We
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put a superscript r on each of the stochastic processes, primitive variables and constants
associated with them introduced so far, in order to indicate the associated network in the
sequence. For example, Zr(·), Ar(·), A−,r(·), vs,r

k (i), γo,r(i), αr
k, etc.

On the sequence of the parameters associated with the primitive variables in Xr(·), r ≥ 1,
we impose the following limit conditions:

αr
k −→ αk(> 0) as r → ∞, ∀k ∈ A,(46)

mr
k −→ mk(> 0) as r → ∞, ∀k ∈ K,(47)

ar
k −→ ak(> 0) as r → ∞, ∀k ∈ A,(48)

br
k −→ bk(> 0) as r → ∞, ∀k ∈ K,(49)

P r
kl −→ Pkl as r → ∞, ∀k ∈ K, l ∈ K ∪ {0},(50)

where P = [Pkl]k,l∈K is a substochastic matrix such that its spectral radius is less than
unity and for each l ∈ K − A, there exist some k ∈ A and m ∈ N such that

(51) Pm
kl > 0

where Pm ≡ [Pm
kl ] with Pm denoting the m-th power of P .

We define λr = (λr
k, k ∈ K) to be the unique solution to the traffic equation:

(52) λr = αr + P̃ rλr,

that is,
λr = Qrαr

with

(53) Qr ≡ (I − P̃ r)−1.

For each r and k ∈ K, λr
k is referred to as the nominal total arrival rate to class k in the

r-th network. It is readily seen that λ = limr→∞ λr satisfies

(54) λk > 0

for each k ∈ K, because of (51).
We also define

(55) ρr ≡ CMrλr = (ρr
j , j ∈ J)

with Mr ≡ diag(mr
k, k ∈ K), which is referred to as the traffic intensity vector.

We impose the limit condition on the sequence {ρr}r:

(56) r(ρr − e) −→ ϑ

as r → ∞, where ϑ is some constant vector in RJ . The condition (56) is referred to as the
heavy-traffic condition.

In addition, to obtain the proper limit for appropriately scaled abandonment-count
processes (cf. (74) below) as r → ∞ under the heavy-traffic condition, we assume the
following scaling condition of abandonment distribution F γ,r

k (x) = Pr(γs,r
k (1) ≤ x), x ≥

0, k ∈ K, r ≥ 0:

General hazard-type scaling of abandonment distribution. (Cf. Katsuda [17]).
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For each k ∈ K and x /∈ Disc(Hk),

(57) rF γ,r
k (rxr) −→ Hk(x) as r → ∞,

whenever xr → x as r → ∞, where Hk(x), x ≥ 0, is a non-decreasing function and Disc(Hk)
is the set of discontinuities for Hk(·).

We impose the following uniform integrability condition:

{ur
k(2)2}r≥1 is uniformly integrable,(58)

{vs,r
l (1)2}r≥1 is uniformly integrable,(59)

for each k ∈ A and l ∈ K. We will also assume the following three conditions on the initial
primitive variables, the first two of which correspond to (3.5) in [3] and (82), (83) in [26]:

For each k ∈ A, l ∈ K and T > 0,

ur
k(1)
r

−→ 0 in pr.,(60)

vo,r
l (1)

r
−→ 0 in pr.,(61)

max
0≤m<rT

∣∣∣{V̂o,r
l (Z

+,r

l (0))
}
◦ θrm

∣∣∣ −→ 0 in pr.,(62)

as r goes to infinity, where

V̂o,r(t) ≡ r−1(Vo,r(br2tc) − mr · br2tc),(63)

Z
+,r

(t) ≡ r−2Z+,r(r2t).(64)

(The convergence (62) is restated as

Pr
(

max
0≤m<rT

∣∣∣1
r
×

Z+,r
l (rm)∑

i=1

(
vo,r

l (i) ◦ θrm − mr
l

)∣∣∣ > ε
)
−→ 0, ∀ε > 0,

)

as r → ∞).

Concerned with the asymptotic behavior of the performance measures for our multiclass
queueing network with abandonment under the heavy-traffic condition, we perform the
diffusive and fluid scaling on the associated stochastic processes as follows:



DIFFUSION APPROXIMATIONS  

Diffusion scaling.

Ẑr(t) = r−1Zr(r2t),(65)

Ẑ−,r(t) = r−1Z−,r(r2t),(66)

Ŵ r(t) = r−1W r(r2t),(67)

Ŷ r(t) = r−1Y r(r2t),(68)

Êr(t) = r−1(Er(r2t) − αrr2t),(69)

V̂s,r(t) = r−1(Vs,r(br2tc) − mr · br2tc),(70)

Âr(t) = r−1(Ar(r2t) − λrr2t),(71)

Â−,r(t) = r−1A−,r(r2t),(72)

D̂r(t) = r−1(Dr(r2t) − λrr2t),(73)

Îr(t) = r−1Ir(r2t),(74)

N̂r(t) = r−1Nr(r2t),(75)

Ŝr(t) = r−1(Sr(r2t) − µrr2t),(76)

Φ̂k,r(t) = r−1(Φk,r(br2tc) − P r
k·br2tc).(77)

Fluid scaling.

Z
r
(t) = r−2Zr(r2t),(78)

E
r
(t) = r−2Er(r2t),(79)

A
r
(t) = r−2Ar(r2t),(80)

A
+,r

(t) = r−2A+,r(r2t),(81)

D
r
(t) = r−2Dr(r2t),(82)

I
r
(t) = r−2Ir(r2t),(83)

S
r
(t) = r−2Sr(r2t),(84)

T
r
(t) = r−2T r(r2t).(85)

Finally in this section, we note the fundamental weak-convergence result that is based
on the Donsker theorem for renewal processes (cf. Billingsley [2]) and the convergence of
parameters (46)-(50):

Êr(·) =⇒ E∗(·),(86)

V̂s,r(·) =⇒ V∗(·)(87)

Φ̂k,r(·) =⇒ Φk,∗(·), k ∈ K,(88)

Ŝr(·) =⇒ S∗(·),(89)

S
r

l (·) =⇒ µlι(·), l ∈ K,(90)
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as r → ∞, where

E∗(t) =
√

Π · BE(t),

V∗(t) =
√

Σ · BV(t),

Φk,∗(t) = (Φk,∗
1 (t), . . . , Φk,∗

K (t)),

Φk,∗
l (t) =

K∑
m=1

(√
Υk

)
lm

· Bk
m(t), k, l ∈ K,

ι(t) ≡ t

with BE(·) and BV(·) K-dimensional standard Brownian motions,

(B1(·), . . . , BK(·)) = (B1
1(·), . . . , B1

K(·), . . . , BK
1 (·), . . . , BK

K (·))

a K2-dimensional standard Brownian motion,

Π = diag(α3
1a1, . . . , α

3
KaK),

Σ = diag(b1, . . . , bK),

and Υk in (6) and (7) for each k ∈ K. (These standard Brownian motions are mutually
independent).

4 Main result; diffusion approximation theorem
To derive the diffusion approximation theorem for our multiclass feedforward queueing

network with abandonment under the FCFS discipline, the following four main assumptions,
i.e., (A.1)-(A.4), are imposed in addition to the conditions on primitive variables assumed
so far:

(A.1) For some proper r.v. W ∗(0),

Ŵ r(0) =⇒ W ∗(0) in RJ

as r → ∞.

(A.2) For each k ∈ K,

sup
0≤t≤W r

s(k)(0)

r−1|Dr
k(t) − λr

kt| −→ 0 in pr.

as r → ∞.

(A.3) The sequence {Ẑr(0)}r≥1 is tight in RK , i.e.,

lim
M→∞

lim
r→∞

Pr
(
|Ẑr(0)| > M

)
= 0.

(A.4) (Assumption 7.1 in Williams [26]).
The matrix R = (I + G)−1 is completely-S, where

G ≡ CMQP̃Λ = lim
r→∞

CMrQrP̃ rΛr

and Mr ≡ diag(mr
k, k ∈ K), Λr ≡ diag(λr

k, k ∈ K), r ≥ 1, and M = limr→∞ Mr, etc. (Of
course, it is implicitly assumed that I + G is invertible. For the definition of completely-S
condition, see Definition 6.2 in Williams [26], for example).
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Condition (A.2) corresponds to the initial condition on strong state-space collapse for a
more general multiclass FCFS queueing network without abandonment. (Cf. Bramson [3],
Williams [26]). While condition (A.3) is implied by (A.1) and (A.2) for such network without
abandonment, we have to assume it in our network with abandonment. As established
in [26], assumption (A.4) is satisfied under the asymptotically Kelly-type condition, i.e.,
mk = ml if s(k) = s(l). The completely-S condition on R in (A.4) is a necessary and
sufficient condition for the existence and uniqueness (in law) of a semimartingale reflecting
Brownian motion (SRBM) with the reflection matrix R and the data on the covariance,
drift and initial measure of the Brownian motion in the SRBM. (Cf. Definition 6.1 in [26]
and the references in its comment).

The following theorem is the main result in this paper. It is on the weak convergence
for the sequence of scaled performance measure processes

{(Ŵ r(·), Ŷ r(·), Ẑr(·))}r≥1.

In the statement of the theorem, we use the following symbol:

(91) Γ ≡ RC
{

ΛΓV + MQ
(
ΓE +

K∑
k=1

λkΓk
Φ

)
Q̃M

}
C̃R̃,

According to (54), we see that Γ is strictly positive definite. We also let

(92) H∗(w) ≡ CMQΛ · H(w), w ∈ RJ ,

with H(w) ≡ (Hk(ws(k)), k ∈ K), Hk(·), k ∈ K, in (57).

Theorem 4.1. (Diffusion approximation for a multiclass feedforward queueing network
with abandonment under the FCFS discipline).

Under the main assumptions (A.1), (A.2) and (A.3), and also the conditions imposed on
the primitive variables and processes so far, we have the weak convergence

(93) (Ŵ r(·), Ŷ r(·), Ẑr(·)) =⇒ (W ∗(·), Y ∗(·), Z∗(·)) in D([0,∞),R2J+K)

as r → ∞, where W ∗(·) is the unique solution to the following J-dimensional reflected
stochastic differential equation:

W ∗(t) = X∗(t) + RY ∗(t),(94)

X∗(t) = W ∗(0) +
√

ΓB∗(t) + ϑ∗t −
∫ t

0

H∗(W ∗(u))du,(95)

where B∗(·) is a J-dimensional standard Brownian motion, ϑ∗ ≡ Rϑ and ν(·) = P(W ∗(0) ∈
·). Furthermore,

Z∗(t) = ΛC̃W ∗(t), t ≥ 0.

5 Proof of Theorem 4.1; propositions and lemmas
This section is devoted to the proof of the diffusion approximation theorem stated in

the last section. We begin with the following stochastic boundedness of scaled queue length
and workload in a multiclass feedforward queueing network with abandonment under any
work-conserving service discipline.
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5.1 Stochastic boundedness of diffusion-scaled queue length and workload In
this subsection we present two propositions on the stochastic boundedness of diffusion-
scaled queue length and workload in our multiclass feedforward queueing network with
abandonment. Each of them plays a key role in the proof of our main theorem, specifically
in proving the C-tightness of diffusion-scaled abandonment-count process and deriving state-
space collapse in the network.

Proposition 5.1.
For a sequence of multiclass feedforward queueing networks with abandonments, {Xr}r≥1,

satisfying the assumptions stated so far, the sequence {Ẑr(·)}r≥1 is stochastically bounded,
i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)

= 0

for each T > 0.

Proof.
Let

f̂r(t) ≡ CMrQrẐr(t) = (f̂r
j (t), j ∈ J)

where
f̂r

j (t) = f̂r
j1(t) + f̂r

j2(t)

with

f̂r
j1(t) =

∑
k∈C(j)

mr
k

∑
l∈C(j)

Qr
klẐ

r
l (t),

f̂r
j2(t) =

∑
k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j−1)

Qr
klẐ

r
l (t)

for each j ∈ J, where we have used the feedforward class-routing condition (8). (We set
f̂r
12(·) ≡ 0).

From

Zr(t) = Zr(0) + Er(t) +
K∑

l=1

Φl,r(Sr
l (T r

l (t))) − Sr(T r(t)) − Ir(t)

with Sr(T r(t)) ≡ (Sr
k(T r

k (t)), k ∈ K), we have the following scaled identity in vector form:

Ẑr(t) =Ẑr(0) + Êr(t) + αrrt +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t))) − (I − P̃ r)Ŝr(T
r
(t))

− (I − P̃ r)
(µrT r)(r2t)

r
− Îr(t)(96)

with the diffusion and fluid scalings given above. Multiplying (96) by CMrQr from the
left, we have

f̂r(t) = f̂r(0) + CMrQr
{

Êr(t) +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t)))
}

− CMrŜr(T
r
(t)) − CMrQr Îr(t) + r(ρr − e)t + Ŷ r(t).(97)

Since

(98)
∫ ∞

0

f̂r
1 (s)dŶ r

1 (s) =
∫ ∞

0

f̂r
11(s)dŶ r

1 (s) = 0,
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from (97) we have

(99) f̂r
1 (t) = ϕ

(
X r

1 (·) −
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (·)

)
(t)

where ϕ is the one-dimensional reflection map, i.e.,

(100) ϕ(x(·))(t) = x(t) + sup
0≤s≤t

(
−x(s)

)+
, x ∈ D([0,∞),R1), t ≥ 0,

and

X r
1 (t) ≡ f̂r

1 (0) +
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
kl

{
Êr

l (t) +
∑
p∈K

Φ̂p,r
l (S

r

p(T
r

p(t)))
}

−
∑

k∈C(1)

mr
kŜr

k(T
r

k(t)) + r(ρr
1 − 1)t, t ≥ 0.(101)

Since each component in Îr(·) is nondecreasing, we have

f̂r
1 (t)

= X r
1 (t) −

∑
k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (t) + sup

0≤s≤t

(
−X r

1 (s) +
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (s)

)+

≤ X r
1 (t) + sup

0≤s≤t
(−X r

1 (s))+

= ϕ(X r
1 (·))(t).(102)

Thus, according to the Lipschitz continuity of the map ϕ, (A.3), the heavy-traffic condition
(56), and the convergences (86)-(90), (47) and (50), we obtain

(103) lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

Ẑr
k(t) > M

)
= 0

for each k ∈ C(1) and T > 0.
Suppose that (103) holds for each k ∈ C(1)∪ · · · ∪C(j − 1) with some 2 ≤ j ≤ J . Then,

since ∫ ∞

0

f̂r
j1(s) dŶ r

j (s) = 0,

we have

(104) f̂r
j1(t) = ϕ

(
−f̂r

j2(·) + X r
j (·) −

∑
k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j)

Qr
klÎ

r
l (·)

)
(t)

where

X r
j (t) ≡ f̂r

j (0) +
∑

k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j)

Qr
kl

{
Êr

l (t) +
∑
p∈K

Φ̂p,r
l (S

r

p(T
r

p(t)))
}

−
∑

k∈C(j)

mr
kŜr

k(T
r

k(t)) + r(ρr
j − 1)t, t ≥ 0.(105)

Thus, similar to the above reasoning, the inequality

(106) f̂r
j1(t) ≤ ϕ(−f̂r

j2(·) + X r
j (·))(t)
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holds so that

(107) lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

Ẑr
k(t) > M

)
= 0,

is derived for each k ∈ C(j) and T > 0, using (103) for each k ∈ C(1) ∪ · · ·C(j − 1).
Consequently we have the desired result inductively.

Using Proposition 5.1, we also have the corresponding result for diffusion-scaled workload
in the next proposition.

Proposition 5.2.
For {Xr}r≥1 in Proposition 5.1, the sequence {Ŵ r(·)}r≥1 is stochastically bounded, i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ŵ r(t)| > M
)

= 0

for each T > 0.

Proof.
¿From (21), (23), (67) and (68), we have

(108) Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t)) + CMr(Âr(t) − Â−,r(t)) + r(ρr − e)t + Ŷ r(t)

with V̂s,r(·) in (70) and A
+,r

(t) in (81).
¿From (65), (69), (71), (73), (74), (77) and (82), we see that

Âr(t) = Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ rD̂r(t)

= Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t) + Âr(t)

)
.

Solving it for Âr(t), we have

(109) Âr(t) = Qr{Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t)

)
}.

Substituting (109) into (108), we have

Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t − CMrÂ−,r(t) − CMrQrP̃ r Îr(t) + Ŷ r(t).

Let

Yr(t) ≡ Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t.



DIFFUSION APPROXIMATIONS  

Then, since

(110)
∫ ∞

0

Ŵ r
j (s)dŶ r

j (s) = 0, ∀j ∈ J,

we have that for each j ∈ J,

Ŵ r
j (t) = ϕ

(
Yr

j (·) −
∑

k∈C(j)

mr
kÂ−,r

k (·) −
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klÎ
r
l (·)

)
(t)

= Yr
j (t) −

∑
k∈C(j)

mr
kÂ−,r

k (t) −
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klĜ
r
l (t)

+ sup
0≤s≤t

(
−Yr

j (s) +
∑

k∈C(j)

mr
kÂ−,r

k (s) +
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klÎ
r
l (s)

)+

≤ Yr
j (t) + sup

0≤s≤t

(
−Yr

j (s)
)+

= ϕ
(
Yr

j (·)
)
(t)

with ϕ(·) in (100), where the inequality follows from the non-decreasing property of each
component in Â−,r(·) and Îr(·). Thus, using the Lipschitz continuity of ϕ, Proposition 5.1,
and (A.1), we have the desired result.

Remark 5.1.
The conclusions of Propositions 5.1 and 5.2 are valid under any work-conserving (or

non-idling) service discipline, which is embodied as (98) and (110). We note that if the
stochastic boundedness condition on scaled queue length is verified for a more general multi-
class queueing network, then that condition on scaled workload does hold for such network,
which will be seen by mimicking the proof of Proposition 5.2.

5.2 C-tightness of diffusion-scaled abandonment-count process In this subsec-
tion, we show the C-tightness of the sequence of scaled abandonment-count processes
{Îr

k(·)}r≥1, k ∈ K, which will be seen to follow from that of the sequence {N̂r
k (·)}r≥1, k ∈ K,

as follows.

Proposition 5.3.
For each k ∈ K, the sequence {Îr

k(·)}r is C-tight in D([0,∞),R1).

Proof.
Similar to (29), let

ζr
j (t) ≡ inf{s ≥ 0 : s + W r

j (s) > t}, t ≥ 0, j ∈ J,

and ζ
r

j(t) ≡ r−2ζr
j (r2t). Then we have that for each T > 0 and j ∈ J,

(111) sup
0≤t≤T

|ζr

j(t) − t| −→ 0 in pr.

as r → ∞, which follows from the inequalities

ζr
j (t) + W r

j (ζr
j (t)) ≥ t and ζr

j (t) ≤ t,
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and Proposition 5.2.
¿From (28), the inequality

(112) N̂r
k (ζ

r

s(k)(t) −
1
r3

) ≤ Îr
k(t) ≤ N̂r

k (t)

follows, so that according to (111), the proof of C-tightness for {Îr
k(·)}r, k ∈ K, is reduced

to that for {N̂r
k (·)}r, k ∈ K, which is done in the next lemma.

Lemma 5.1.
For each k ∈ K, the sequence {N̂r

k (·)}r is C-tight in D([0,∞),R1).

Proof.
Assumptions (A.1) and (A.2) yield that for each k ∈ K,

Ẑ+,r
k (0) =

1
r
Dr

k(W r
s(k)(0))

=⇒ λkW ∗
s(k)(0)

as r goes to infinity, so that the tightness of {Ẑ−,r
k (0)}r follows from (A.3). Thus we are

left to show the C-tightness of {Â−,r
k (·)}r, because of the identity

N̂r
k (t) = Ẑ−,r

k (0) + Â−,r
k (t), t ≥ 0.

¿From (27) and (75), it follows that

Â−,r
k (t) =

1
r

Ar
k(r2t)∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
+

1
r

Ar
k(r2t)∑
i=1

F γ,r
k (ws,r

k (i))

= M̂γ,r
k (A

r

k(t)) + Ĉr
k(A

r

k(t))(113)

where

M̂γ,r
k (t) ≡ 1

r

br2tc∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
,(114)

Ĉr
k(t) ≡ 1

r

br2tc∑
i=1

F γ,r
k (ws,r

k (i)).(115)

Observe that M̂γ,r
k (·) is a purely-discontinuous martingale since ws,r

k (i) is Gs,r
k (i)-measurable

and γs,r
k (i) is independent of Gs,r

k (i) for each i = 1, 2, · · · , where Gs,r
k (i) is given in the form

(12). Then its optional quadratic variation process
[
M̂γ,r

k

]
(·) is given by

[M̂γ,r
k ](t) =

∑
0<s≤t

|∆M̂γ,r
k (s)|2

=
1
r2

br2tc∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)2
.(116)

(Cf. (1.8.3) of Liptser and Shiryayev [20]).
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We now show that

(117) M̂γ,r
k (·) =⇒ 0 in D([0,∞),R1),

as r → ∞ in a similar way to the proof of Lemma 4.3 in Dai and He [7] as follows.
Observe that for each t ≥ 0,

Er([M̂γ,r
k ](t)) =

1
r2

br2tc∑
i=1

Er(F γ,r
k (ws,r

k (i)) − F γ,r
k (ws,r

k (i))2)

≤ t Er( sup
1≤i≤br2tc

F γ,r
k (ws,r

k (i)))

where the equality follows from the Gs,r
k (i)-measurability of ws,r

k (i) and the independence
of γs,r

k (i) and Gs,r
k (i).

Since Ar
k(s) ≥ Er

k(s) for each s ≥ 0 and E
r

k(·) =⇒ αkι(·) as r → ∞, we can take an
appropriate constant t∗ > 0 such that

(118) lim
r→∞

Pr(Ar
k(r2t∗) ≤ br2tc) = 0.

Thus we have

lim
r→∞

Er
[

sup
1≤i≤br2tc

F γ,r
k (ws,r

k (i))
]

≤ lim
r→∞

Er
[

sup
1≤i≤br2tc

F γ,r
k (ws,r

k (i)); Ar
k(r2t∗) > br2tc

]
≤ lim

r→∞
Er

[
sup

1≤i≤Ar
k(r2t∗)

F γ,r
k (ws,r

k (i))
]

≤ lim
r→∞

Er
[
F γ,r

k ( sup
0≤u≤t∗

W r
s(k)(r

2u))
]

≤ lim
r→∞

Er
[
F γ,r

k ( sup
0≤u≤t∗

W r
s(k)(r

2u)); sup
0≤u≤t∗

Ŵ r
s(k)(u) ≤ M

]
+ lim

r→∞
Pr

(
sup

0≤u≤t∗
Ŵ r

s(k)(u) > M
)
.(119)

According to Proposition 5.2, limM→∞ (the second term in (119)) = 0, while the first term
in (119) is majorized by

lim
r→∞

F γ,r
k (rM) = lim

r→∞

1
r
· rF γ,r

k (rM)

= 0

for each fixed M > 0, because of (57). Therefore we have that for each t ≥ 0,

lim
r→∞

Er([M̂γ,r
k ](t)) = 0

so that the convergence (117) is established, according to Theorem 7.1.4 in Ethier and Kurtz
[11].

Let Br
k(t) ≡ Er

k(t) +
∑K

l=1 Sr
l (t), t ≥ 0. Then, since Ar

k(t) ≤ Br
k(t) for each t ≥ 0 and

(120) B
r

k(·) ≡ r−2Br
k(r2·) =⇒ αkι(·) +

K∑
l=1

µlι(·)
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as r → ∞, we have

(121) M̂γ,r
k (A

r

k(·)) =⇒ 0 in D([0,∞),R1),

as r → ∞.
Thus the proof of the C-tightness of {Â−,r

k (·)}r is reduced to that of the C-tightness of
{Ĉr

k(A
r

k(·))}r, and so it is enough to show the following two conditions:

(122) lim
M→∞

lim
r→∞

Pr(Ĉr
k(A

r

k(T )) > M) = 0

for each T > 0, and

(123) lim
δ→0

lim
r→∞

Pr(wT (Ĉr
k(A

r

k(·)), δ) > ε) = 0

for each ε > 0 and T > 0, where

(124) wT (x(·), δ) ≡ sup
0≤s,t≤T
|s−t|≤δ

|x(s) − x(t)|, x(·) ∈ D([0,∞),Rd), δ > 0, T > 0, d ∈ N.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
Observe that

Pr(Ĉr
k(A

r

k(T )) > M) ≤Pr(Ĉr
k(A

r

k(T )) > M, sup
0≤t≤T

Ŵ r(t) ≤ L)

+ Pr( sup
0≤t≤T

Ŵ r(t) > L).(125)

Then, limL→∞ limr→∞(the second term in (125))= 0 according to Proposition 5.2, and the
first term in (125) is majorized by

Pr(A
r

k(T ) · rF γ,r
k (rL) > M) ≤ Pr(B

r

k(T ) · rF γ,r
k (rL) > M)

so that limM→∞ limr→∞(the first term in (125))= 0 for each fixed L > 0, according to (57)
and (120). Thus we have (122).

Furthermore, observe that

Pr(wT (Ĉr
k(A

r

k(·)), δ) > ε)

≤ Pr( sup
0≤s,t≤T
|s−t|≤δ

|Ĉr
k(A

r

k(s)) − Ĉr
k(A

r

k(t))| > ε, sup
0≤t≤T

Ŵ r(t) ≤ L)

+ Pr( sup
0≤t≤T

Ŵ r(t) > L).(126)

Then, the same as above, limL→∞ limr→∞(the second term in (126))= 0, and the first term
in (126) is less than or equal to

Pr
(
rF γ,r

k (rL) × wT (A
r

k(·), δ) > ε
)
.

Therefore, noting
wT (A

r

k(·), δ) ≤ wT (E
r

k(·), δ) +
∑
l∈K

wT (S
r

l (·), δ),

(123) is seen to be satisfied, according to (57).
Consequently we have the C-tightness of {Â−,r

k (·)}r and so the conclusion of the lemma
has been proved.
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5.3 State-space collapse in multiclass feedforward queueing networks with
abandonments under FCFS service disciplines In this subsection, under the assump-
tion (A.2), we prove the following proposition on multiplicative strong state-space collapse
and state-space collapse in a multiclass feedforward queueing network with abandonment
under the FCFS service discipline.

Proposition 5.4. (Multiplicative strong state-space collapse and state-space collapse).
Suppose that in addition to the assumptions in Sect. 3, conditions (A.1), (A.2) and (A.3)

hold. Then we have the following convergences:
For each k ∈ K and T > 0,

(127)
sup0≤t≤T sup

0≤s≤cW r
s(k)(t)

| r−1Dr
k(r2t + rs) − r−1Dr

k(r2t) − λr
ks |

sup0≤t≤T Ŵ r
s(k)(t) ∨ 1

−→ 0 in pr.

as r → ∞, and also,

(128) sup
0≤t≤T

∣∣Ẑr
k(t) − λr

kŴ r
s(k)(t)

∣∣ −→ 0 in pr.

as r → ∞.

To demonstrate the proposition, we need to modify slightly the proof of Theorem 1 in
Bramson [3] by incorporating the customer abandonment to it. Specifically, to the statement
of Proposition 5.1 in [3], we have to add the identity on the weak law of large numbers for
Ir,m(·) that is defined in the same way as in [3] as follows.

For the performance measure process Xr(·), r ≥ 1, in (14), let

(129) Xr,m(t) ≡
{ 1

xr,0
Xr(xr,0t)

}
◦ θrm

for m = 0, 1, 2, . . ., where xr,0 ≡ |W r(0)| ∨ |Zr(0)| ∨ r and {θt, t ≥ 0} is the shift transfor-
mation associated with Markov description process Ξr(·). For example, using Proposition
2.1, we have

Zr,m(t) =
1

xr,m
Zr(xr,mt + rm),

Ir,m(t) =
1

xr,m
(Ir(xr,mt + rm) − Ir(rm)),

where xr,m ≡ xr,0 ◦ θrm = |W r(rm)| ∨ |Zr(rm)| ∨ r for m = 0, 1, 2, . . ..

Proposition 5.5. (Weak law of large numbers for Ir,m(·) ).

For each ε > 0, T > 0, L > 0 and k ∈ K,

lim
r→∞

Pr
(

max
0≤m<rT

Ir,m
k (L) > ε

)
= 0.

Since Ir
k(t) ≤ Nr

k (t) for each t ≥ 0, the above proposition is a consequence of the
following proposition.
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Proposition 5.6.
For each ε > 0, T > 0, L > 0 and k ∈ K,

lim
r→∞

Pr
(

max
0≤m<rT

Nr,m
k (L) > ε

)
= 0,

where Nr,m
k (·) is defined as in (129).

Before giving the proof of Proposition 5.6, we define the following variables which cor-
respond to (5.25) in Bramson [3]:

umax,T,r
k ≡ max{ur

k(i) : Ur
k (i − 1) ≤ r2T, i = 1, 2, . . .},(130)

vmax,T,r
l ≡ max{vo,r

l (i) : Vo,r
l (i − 1) ≤ r2T, i = 1, 2, . . . , Z+,r

l (0)}
∨ max{vs,r

l (i) : Vo,r
l (Z+,r

l (0)) + Vs,r
l (i − 1) ≤ r2T, i = 1, 2, . . .}(131)

with maxφ ≡ 0, for each k ∈ A, l ∈ K and T > 0. Then we have the inequalities

ur
k(1) ◦ θrm ≤ umax,T,r

k ,(132)

vo,r
l (1) ◦ θrm ≤ vmax,T,r

l(133)

for each m = 0, 1, · · · , drT e − 1, T > 0, k ∈ A and l ∈ K. Indeed, for each m,

Ur
k (Er

k(rm)) ≤ rm < Ur
k (Er

k(rm) + 1),
ur

k(1) ◦ θrm = Ru,r
k (0) ◦ θrm

= Ru,r
k (rm)

= Ur
k (Er

k(rm) + 1) − rm,

from which the inequality (132) follows.
The next lemma corresponds to Lemma 5.1 in [3].

Lemma 5.2.
For each k ∈ A, l ∈ K and T > 0,

1
r
umax,T,r

k −→ 0 in pr.,(134)

1
r
vmax,T,r

l −→ 0 in pr.,(135)

as r goes to infinity.

Proof.
We have only to prove the latter convergence (135), because the derivation of the former

(134) is the same as in Lemma 5.1 in [3]. First we observe that for each δ and B1 with
0 < δ < B1,

Pr
(1
r
vmax,T,r

l > ε
)

≤ Pr
(1

r
vmax,T,r

l > ε,Vo,r
l (Z+,r

l (0)) + Vs,r
l (br2B1c) > r2T,Z+,r

l (0) < r2δ
)

+ Pr
(
Vo,r

l (Z+,r
l (0)) + Vs,r

l (br2B1c) ≤ r2T,Z+,r
l (0) < r2δ

)
+ 2Pr

(
Z+,r

l (0) ≥ r2δ
)
.(136)



DIFFUSION APPROXIMATIONS  

The second term in (136) tends to zero as r goes to infinity, since

(137) Pr
(
Vo,r

l (br2δc) + Vs,r
l (br2B1c) ≤ r2T

)
−→ 0

as r tends to infinity for an appropriate constant B1 > 0, according to the weak law of large
numbers. We also have

(138) Pr
(
Z+,r

l (0) ≥ r2δ
)
−→ 0

as r tends to infinity, according to assumption (A.3).
Furthermore, the first term in (136) is majorized by

Pr
(1

r
× max

1≤i≤br2δc
vo,r

l (i) ∨ max
1≤i≤br2B1c

vs,r
l (i) > ε

)
≤ Pr

(1
r
vo,r

l (1) > ε
)

+ (br2δc + br2B1c) ·
1

(rε)2
η(rε)

−→ 0(139)

as r goes to infinity, where

η(R) ≡ sup
r

Er
[
vo,r

l (2)2; vo,r
l (2) > R

]
, R > 0,

and the convergence to zero follows from assumptions (61) and (59). So the proof is com-
pleted.

Proof of Proposition 5.6.

First we observe that according to (25) and Proposition 2.1,

Nr,m
k (t) =

{ 1
xr,0

Z−,r
k (0)

}
◦ θrm +

{ 1
xr0

A−,r
k (xr,0t)

}
◦ θrm.

≤ 1
r
Z−,r

k (rm) +
{ 1

xr,0
A−,r

k (xr,0t)
}
◦ θrm,(140)

and also that

(141) max
0≤m<rT

1
r
Z−,r

k (rm) ≤ sup
0≤t≤T

Ẑ−,r
k (t).

Using the inequality (30), we see that for each t ≥ 0,

Ẑ−,r
k (t) ≤ Îr

k(t + r−1Ŵ r
s(k)(t)) − Îr

k(t).

Thus, using Propositions 5.2 and 5.3, we have

(142) Ẑ−,r
k (·) =⇒ 0

as r → ∞, which yields

lim
r→∞

Pr
(

max
0≤m<rT

1
r
Z−,r

k (rm) >
ε

2

)
= 0,
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according to (141). So, in virtue of (140), it suffices to show that for each k ∈ K,

(143) lim
r→∞

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)
= 0

in order to obtain the conclusion of the lemma.

Now we have that for each δ > 0 and M > 0,

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)
≤ Pr

(
max

0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2
,
|umax,T,r|

r
≤ δ,

max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm ≤ δ, sup

0≤t≤T+L
|Ŵ r(t)| ≤ M, sup

0≤t≤T
|Ẑr(t)| ≤ M

)
+ Pr

( |umax,T,r|
r

> δ
)

+ Pr
(
max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm > δ

)

+ Pr
(

sup
0≤t≤T+L

|Ŵ r(t)| > M
)

+ Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)(144)

where V̂o,r
p (·), p ∈ K, and Z

+,r

p (·), p ∈ K, are given in (63) and (64), respectively. According
to Lemma 5.2,

lim
r→∞

(the second term in (144)) = 0,

and according to assumption (62),

lim
r→∞

(the third term in (144)) = 0.

Further, according to Propositions 5.1 and 5.2,

lim
M→∞

lim
r→∞

(the fourth term in (144)) = 0

and

lim
M→∞

lim
r→∞

(the fifth term in (144)) = 0.

Observe that in addition to (132) and (133),

|Ẑr(0)| ◦ θrm ≤ sup
0≤t≤T

|Ẑr(t)|,(145)

sup
0≤t≤L

|Ŵ r(t)| ◦ θrm ≤ sup
0≤t≤T+L

|Ŵ r(t)|,(146)
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for each 0 ≤ m < rT . Then, in use of the Markov property of Ξr(·), we see that

(the first term in (144))

≤ Pr
( ⋃

0≤m<rT

{{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2
,
|umax,T,r|

r
≤ δ,

max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm ≤ δ, sup

0≤t≤L
|Ŵ r(t)| ◦ θrm ≤ M, |Ẑr(0)| ◦ θrm ≤ M

})
≤

∑
0≤m<rT

Er
[
Pr(· · · · · · · · · · · · | Fr

rm)
]

=
∑

0≤m<rT

Er
[
Pr

Ξr(rm)

( 1
xr,0

A−,r
k (xr,0L) >

ε

2
,
|ur(1)|

r
≤ δ,

max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ, sup

0≤t≤L
|Ŵ r(t)| ≤ M, |Ẑr(0)| ≤ M

)]
Thus, in order to show (143), it is enough to prove that for each ε > 0,

Pr
∗

( 1
xr,0

A−,r
k (xr,0L) >

ε

2
,
|ur(1)|

r
≤ δ,max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

sup
0≤t≤L

|Ŵ r(t)| ≤ M, |Ẑr(0)| ≤ M
)

<
ε

r
(147)

if r is sufficiently large independently of the initial value ∗.
Observe that

1
xr,0

A−,r
k (xr,0L) =

1
xr,0

Ar
k(xr,0L)∑

i=1

1{γs,r
k (i)≤ws,r

k (i)}

and if sup0≤t≤L |Ŵ r(t)| ≤ M , |Ẑr(0)| ≤ M and r > M > 1, then

ws,r
k (i) ≤ sup

0≤t≤xr,0L
W r

s(k)(t) ≤ sup
0≤t≤rML

W r
s(k)(t) ≤ r sup

0≤t≤L
|Ŵ r(t)|

≤ rM

for each i = 1, 2, · · · , Ar
k(xr,0L). Thus, if r > M > 1, then the left-hand side of (147) is

dominated by

Pr
∗

( 1
xr,0

Ar
k(xr,0L)∑

i=1

1{γs,r
k (i)≤rM} >

ε

2
, max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)

≤ Pr
∗

( 1
xr,0

bcxr,0c∑
i=1

1{γs,r
k (i)≤rM} >

ε

2

)
+ Pr

∗

(
Ar

k(xr,0L) > cxr,0, max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)

≡ (i) + (ii),(148)

where c is any positive constant. (The value of c will be appropriately determined below).
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We first evaluate the term (i) in (148). Note that

1
xr,0

bcxr,0c∑
i=1

1{γs,r
k (i)≤rM}

=
1

xr,0

bcxr,0c∑
i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)
+

1
xr,0

F γ,r
k (rM)bcxr,0c.

Then, since F γ,r
k (rM) → 0 as r → ∞ because of (57), we have that

Pr
∗

( 1
xr,0

F γ,r
k (rM)bcxr,0c >

ε

4

)
= 1{

x−1
r,0F γ,r

k (rM)bcxr,0c>ε/4
} = 0

for sufficiently large r independently of the value ∗.
Further, we have that for each ε > 0,

Pr
∗

(
sup

0≤t≤c

∣∣ bxr,0tc∑
i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)∣∣ > xr,0
ε

4

)

≤ 44

(xr,0ε)4
Er
∗

[{bxr,0cc∑
i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)}4]
≤ 44

(xr,0ε)4
· 3(xr,0c)2 ≤ 768c2

(xr,0)2ε4
≤ 768c2

r2ε4
,

where the first inequality is due to Doob’s submartingale inequality. Therefore, if r is
sufficiently large such that

1
r

<
ε5

768c2
,

then

(149) the term (i) ≤ ε

r
.

We next evaluate the term (ii) in (148). Because of (149), it is enough to show that for
each k ∈ K, there exists some constant c > 0 such that

Pr
∗

(
Ar

k(xr,0L) ≥ cxr,0, max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)
≤ ε

r
,(150)

if r is sufficiently large independently of ∗. Because of (15) and (16), we have only to show
that for each k ∈ A and l ∈ K, there exists some constant c, c1, c2, c3 > 0 such that

Pr
∗

(
Er

k(xr,0L) ≥ 1
2
cxr,0,

|ur(1)|
r

≤ δ
)
≤ c1

ε

r
,(151)

Pr
∗

(
F r

l (xr,0L) ≥ 1
2
cxr,0, max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ

)
≤ (c2 + c3)

ε

r
,(152)

if r is sufficiently large independently of ∗. Using Lemma 7.2 in the Appendix, we immedi-
ately have (151) with c ≥ 2 supr αr

kL̇+1 and any ε ∈ (0, 1). Further, using Lemmas 7.3 and
7.4, we have (152) with c ≥ 4

∑K
p=1 supr P r

plµp + 1. Therefore (150) has been established so
that the conclusion of the lemma follows.
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Proof of Proposition 5.4.

According to Proposition 5.5, the methodology employed in Bramson [3], specifically
the contents of Sect. 5 and Sect. 6 in [3], also applies to the demonstration of multiplicative
strong state-space collapse, i.e., (127) in our multiclass feedforward queueing network with
abandonment under the FCFS service discipline. Thus, using Proposition 5.2, we see that
strong state-space collapse holds, i,e.,

sup
0≤t≤T

sup
0≤s≤cW r

s(k)(t)

| r−1Dr
k(r2t + rs) − r−1Dr

k(r2t) − λr
ks |−→ 0 in pr.

as r → ∞, for each k ∈ K. In particular, we have

(153) sup
0≤t≤T

| r−1Dr
k(r2t + rŴ r

s(k)(t)) − r−1Dr
k(r2t) − λr

kŴ r
s(k)(t) |−→ 0 in pr.

as r → ∞.
On the other hand, because of the FCFS service discipline with abandonment, we have

(154) r−1Dr
k(r2t + rŴ r

s(k)(t)) − r−1Dr
k(r2t) + Ẑ−,r

k (t) = Ẑr
k(t)

for each k ∈ K. Also recall that for each T > 0,

(155) sup
0≤t≤T

Ẑ−,r
k (t) −→ 0 in pr.

as r → ∞, as established in (142). Then, combining (155) with (153) and (154), we have
the condition of state-space collapse (128).

5.4 Proof of the diffusion approximation theorem (i.e., Theorem 4.1) Before
presenting the proof of the theorem, we show the next lemma on the fluid limits of {Ar(·)}r

and {Dr(·)}r, which corresponds to Lemma 8.2 in Williams [26].

Lemma 5.3.
For each k ∈ K and T > 0 ,

sup
0≤t≤T

|Ar

k(t) − λkt| −→ 0 in pr.,

sup
0≤t≤T

|Dr

k(t) − λkt| −→ 0 in pr.,

as r → ∞.

Proof.
¿From (17), (78), (80), (82) and (83), we have

Z
r

k(t) = Z
r

k(0) + A
r

k(t) − D
r

k(t) − I
r

k(t)

for each k ∈ K and t ≥ 0. Because of Propositions 5.1 and 5.3, we see that for each T > 0,

sup
0≤t≤T

Z
r

k(t) −→ 0 in pr.,

sup
0≤t≤T

I
r

k(t) −→ 0 in pr.
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as r → ∞. So we have that for each T > 0,

(156) sup
0≤t≤T

|Ar

k(t) − D
r

k(t)| −→ 0 in pr.

as r → ∞.
Fix any t ≥ 0. Then, according to (120), {Ar

k(t)}r is tight in R1 for each k ∈ K, which
yields that for any subsequence {r′} of {r}, there exists some further subsequence {r′′} of
{r′} such that

A
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, for some r.v. ak(t). Thus we also have

D
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, because of (156). Therefore, from (15), (46) and (86), it follows that

ak(t) = αkt +
K∑

l=1

Plkal(t)

for each k ∈ K, which implies ak(t) = λkt, k ∈ K. Consequently we have proved that

A
r

k(t) =⇒ λkt in R1,

D
r

k(t) =⇒ λkt in R1

as r → ∞, for each t ≥ 0 and k ∈ K. Therefore, in virtue of Polya’s theorem (cf. Problem
5.3.2 in Liptser and Shiryayev [20]), we obtain the conclusion.

The next lemma identifies the weak limit of scaled abandonment-count process as a
functional of the limit of scaled workload process, which is similar in form to the case
of heavy-traffic limit for a many-server queue with abandonment under the hazard-type
scaling of abandonment distribution (cf. Lemma 2.7 in Katsuda [17]), with the difference
of multiplicative constant due to our multiclass setting.

Lemma 5.4.
Suppose that

Ŵ r(·) =⇒ W ∗(·) in D([0,∞),RJ),

as r → ∞. Then we have that

(157) Îr
k(·) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1),

as r → ∞, for each k ∈ K.

Proof.
According to (25), (112) and (155), we have that for each k ∈ K,

sup
0≤t≤T

|Îr
k(t) − Â−,r

k (t)| −→ 0 in pr.

as r → ∞. Thus, because of (113) and (121),

(158) sup
0≤t≤T

|Îr
k(t) − Ĉr

k(A
r

k(t))| −→ 0 in pr.
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as r → ∞, with Ĉr
k(·) in (115).

Observing that according to (115),∫ t

0

rF γ,r
k (rŴ r

s(k)(u−))dA
r

k(u) ≤ Ĉr
k(A

r

k(t)) ≤
∫ t

0

rF γ,r
k (rŴ r

s(k)(u))dA
r

k(u)

for each t ≥ 0, we have the convergence (157) in virtue of (57), (158) and Lemma 5.3 in the
same way as in the proof of Lemma 2.7 in [17].

Proof of Theorem 4.1.

The first half of the proof uses an analogous argument to the proof of Theorem 7.1 in
Williams [26] as follows.
From (21), (67) and (68), we have that for each j ∈ J,

Ŵ r
j (t) = Ŵ r

j (0) +
∑

k∈C(j)

1
r

A+,r
k (r2t)∑

i=1

(vs,r
k (i) − mr

k) +
∑

k∈C(j)

1
r
mr

k(Ar
k(r2t) − A−,r

k (r2t))

− rt + Ŷ r
j (t)

= Ŵ r
j (0) +

∑
k∈C(j)

V̂s,r
k (A

+,r

k (t)) +
∑

k∈C(j)

mr
kÂr

k(t) −
∑

k∈C(j)

mr
kM̂

γ,r
k (A

r

k(t))

−
∑

k∈C(j)

mr
kĈr

k(A
r

k(t)) + r(ρr
j − 1)t + Ŷ r

j (t)(159)

with V̂s,r
k (·) in (70), M̂γ,r

k (·) in (114) and Ĉr
k(·) in (115) for each k ∈ K. In vector form,

(159) is represented as

Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t)) + CMrÂr(t) − CMrM̂γ,r(A
r
(t))

− CMrĈr(A
r
(t)) + r(ρr − e)t + Ŷ r(t).(160)

On the other hand, using (109), we have

CMrÂr(t) = CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}

− CMrQrP̃ r(Ẑr(t) − Ẑr(0)) − CMrQrP̃ r Îr(t)

= CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}
− CMrQrP̃ r(ε̂r(t) − ε̂r(0))

− Gr(Ŵ r(t) − Ŵ r(0)) − CMrQrP̃ r Îr(t)(161)

where

ε̂r(t) = (ε̂r
k(t), k ∈ K) with ε̂r

k(t) ≡ Ẑr
k(t) − λr

kŴ r
s(k)(t), k ∈ K,

Gr ≡ CMrQrP̃ rΛr.

Therefore, substituting (161) into (160) and using assumption (A.4), we have
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(162) Ŵ r(t) = X̂r(t) + RrŶ r(t)

for sufficiently large r, where

Rr ≡ (1 + Gr)−1,

X̂r(t) ≡ Ŵ r(0) + Rr(ξ̂r(t) + η̂r(t) + ζ̂r(t))(163)

with

ξ̂r(t) ≡ CV̂s,r(A
+,r

(t)) + CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}

− CM̂γ,r(A
r
(t)),

η̂r(t) ≡ r(ρr − e)t − CMrQrP̃ r Îr(t) − CMrĈr(A
r
(t)),

ζ̂r(t) ≡ CMrQrP̃ r(ε̂r(0) − ε̂r(t)).

Using (86), (87), (88), (121) and Lemma 5.3, we see that

(164) ξ̂r(·) =⇒ ξ∗(·) in D([0,∞),RJ)

as r goes to infinity, where

(165) ξ∗(t) = CV∗(λt) + CMQ
{
E∗(t) +

K∑
l=1

Φl,∗(λlt)
}
.

Applying the oscillation inequality in Williams [25] to (162) as in (120) of Williams [26],
we have that for wT (x(·), δ) in (124),

Osc(x(·), I) ≡ sup
u,v∈I

|x(u) − x(v)|, I ⊂ R1,

and sufficiently large r,

wT (Ŵ r(·), δ) = sup
u∈[0,T−δ]

Osc
(
Ŵ r(·), [u, u + δ]

)
≤ const · sup

u∈[0,T−δ]

Osc
(
X̂r(·), [u, u + δ]

)
= const · wT (X̂r(·), δ),

so that
wT (Ŵ r(·), δ) ≤ const ·

{
wT (ξ̂r(·), δ) + wT (η̂r(·), δ) + wT (ζ̂r(·), δ)

}
for each T > 0 and δ > 0, because of (163).

The convergence (164) implies

lim
δ→0

lim
r→∞

Pr
(
wT (ξ̂r(·), δ) > ε

)
= 0, ∀ε > 0.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
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In addition, from the heavy-traffic condition (56) and the C-tightness of both {Îr
k(·)}r and

{Ĉr
k(A

r

k(·))}r already established, we have

lim
δ→0

lim
r→∞

Pr
(
wT (η̂r(·), δ) > ε

)
= 0, ∀ε > 0.

Therefore, by virtue of the condition of state-space collapse (128), we have

(166) lim
δ→0

lim
r→∞

Pr
(
wT (Ŵ r(·), δ) > ε

)
= 0, ∀ε > 0.

Combining (166) with Proposition 5.2, we obtain the C-tightness of {Ŵ r(·)}r.
Let W ∗(t), t ≥ 0, be any limit process of the sequence {Ŵ r(·)}r, and suppose that a

subsequence {r′} of {r} satisfies

Ŵ r′
(·) =⇒ W ∗(·) in D([0,∞),RJ),

as r′ → ∞. Then, according to Lemma 5.4, we have that for each k ∈ K,

(167) Îr′

k (·) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1)

and

(168) Ĉr′

k (A
r′

k (·)) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1)

as r′ goes to infinity. Therefore, using (167), (168) and (56), we have

(169) η̂r′
(·) =⇒ η∗(·)

as r′ goes to infinity, where

η∗(t) = ϑt − CMQ
(
λk

∫ t

0

Hk(W ∗
s(k)(u))du, k ∈ K

)
, t ≥ 0.

Consequently, substituting assumption (A.1), (164), (128) and (169) into (163) and using
assumption (A.4), we have

(170) X̂r′
(·) =⇒ X∗(·)

as r′ goes to infinity, where

(171) X∗(t) = W ∗(0) + R(ξ∗(t) + η∗(t)), t ≥ 0.

Therefore, any limit process W ∗(·) of the C-tight sequence {Ŵ r(·)}r is a semimartingale
reflecting Brownian motion (SRBM) with a nonlinear drift term, i.e., (94) and (95). Apply-
ing the Girsanov transformation technique to the localized version of such SRBM (cf. the
proof of Theorem 2.1 in Katsuda [17], for example), we can reduce the uniqueness in law of
W ∗(·) to that of SRBM, so that the desired convergence

(172) (Ŵ r(·), Ŷ r(·)) =⇒ (W ∗(·), Y ∗(·)),

as r → ∞ has been shown. Combining (172) with the result on state-space collapse, i.e.,
Proposition 5.4, we also have the convergence

Ẑr(·) =⇒ Z∗(·)

as r → ∞, where Z∗(·) = (λkW ∗
s(k)(·), k ∈ K), so the proof of the theorem has been

completed.
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6 Final remarks
As an example of our diffusion approximation with the unstable random behavior of

abandonment time near the origin, consider a GI/GI/1+GI queue for which the abandon-
ment time is distributed according to the Gamma distribution

Gp(x) =
∫ x

0

gp(u)du, x ≥ 0, gp(u) = (Γ(p))−1up−1e−u, u ≥ 0,

with p ∈ (0, 1). Then, its hazard-rate function hp(x) = gp(x)/(1 − Gp(x)) is not locally
bounded so that the diffusion approximation result in the literature such as [24] and [21]
is inapplicable. However, in virtue of our general hazard-type scaling, our main result does
hold in ths case.

In this paper we impose the feedforward routing condition on our multiclass queueing
networks (MQNs) and the only place where it is used is the proof of the stochstic bound-
edness of queue length. So, if it is established without such restriction, our main result is
valid for general MQNs with abandonment.

One of the most important studies around diffusion approximations of queueing systems
is the application of such approximations to the validation of steady-state approximations of
those systems. Gamarnik and Zeevi [12] is a seminal work of the study, in which steady-state
approximations for generalized Jackson networks have been validated under the condition
of the existence of moment generating functions for primitive model variables. It is also
noted that such relatively restrictive assumption can be relaxed to moment condition of p-th
order with p ≥ 2 by the work of Budhiraja and Lee [5] in conjunction with the appendix of
Krichagina and Taksar [19]. Furthermore, the author’s works [15, 16] used the Lyapunov
function method of [12] and the framework on the uniform moment bounds of the Markov
state process in [5], respectively, to study such steady-state analysis of a multiclass single-
server queue in heavy traffic under various service disciplines.

In this paper we have proved the diffusion approximation theorem for multiclass feed-
forward queueing networks with abandonments under FCFS service disciplines, and so we
are interested in steady-state approximations of those networks as an application of our
theorem. Restricting our attention to a multiclass single-server queue with ϑ < 0 (in
heavy-traffic condition (56)), we are able to validate such approximation of the queue with
abandonment in a similar fashion to [15] and [16], in which conditions (A.1), (A.2) and
(A.3) of this paper may be verified to hold in stationarity. However, checking the case with
ϑ ≥ 0 remains unresolved and is worth pursuing in future research. More specifically, it is
solved if the following two tasks are done:
(i) To seek a sufficient condition for the stability of multiclass feedforward queueing networks
with abandonments.
To be expected from the literature (cf. Baccelli et al. [1], Dai [6]), the condition is such
that the traffic intensity at each station may possibly be greater than unity in such a way
that its excess over unity can be balanced out by the effect of abandonment;
(ii) To show the tightness of stationary workload and queue length in the queue with
abandonment for the verification of conditions (A.1), (A.2) and (A.3) in stationarity.
As concerns the issue (i), in his recent work [18] the author has given a stability condition for
those networks, which involves the total probability mass of abandonment time in addition
to the model parameters of networks.

7 Appendix
This appendix corresponds to Sect. 5 of Bramson [3] in which hydrodynamically scaled

performance measure processes for multiclass queueing networks are asymptotically esti-
mated as approximately Lipschitz continuous. Different from [3], our argument employs
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such scaling in association with the shift transformation of the description process Ξ(·) in
Sect. 3 and uses its Markov property to obtain such asymptotic estimation of performance
measure processes in our queueing network.

The next lemma corresponds to Proposition 4.2 in Bramson [3] and plays a fundamental
role in proving the rest of the lemmas as in [3].

Lemma 7.1.

Suppose that the sequence of r.v.’s {Xr(i), i ≥ 1} is i.i.d. for each r ≥ 1, and {Xr(1)2}r≥1

is uniformly integrable. Let Sr(i) ≡
∑i

j=1 Xr(j), i ≥ 1, and µr
X ≡ Er[Xr(1)], r ≥ 1. Then,

for each ε > 0,
sup

r
Pr

(
max

1≤i≤n
|Sr(i) − iµr

X | > εn
)

<
ε

n

if n is sufficiently large.

Lemma 7.2.

For each ε > 0 and k ∈ K, there exist constants δ1 > 0 and c1 > 0 such that

(173) Pr
∗

(
sup

0≤t≤xr,0L
|Er

k(t) − αr
kt| > xr,0ε,

|ur(1)|
r

≤ δ1

)
< c1 ·

ε

r

if r is sufficiently large independently of ∗, where Pr
∗(·) is the probability law of Markov

process Ξr(·) starting with the value ∗ for each r ≥ 1. (Cf. (33)).

Proof.
First observe that the inequality

sup
0≤t≤xr,0L

|Er
k(t) − αr

kt| ≥ xr,0ε

implies that there exists some t ∈ [0, xr,0L] such that either

(174) Er
k(t) ≥ αr

kt + xr,0ε

or

(175) Er
k(t) ≤ αr

kt − xr,0ε.

The inequality (174) and condition (46) implies that

(176) Ur
k (bαr

kt + xr,0εc) − bαr
kt + xr,0εc

1
αr

k

≤ −xr,0ε

2αk

if r is sufficiently large. Similarly, the inequality (175) implies that

(177) Ur
k (bαr

kt − xr,0εc + 1) − (bαr
kt − xr,0εc + 1)

1
αr

k

>
xr,0ε

2αk

if r is sufficiently large.
Thus, noting that for each t ∈ [0, xr,0L],

(178) bαr
kt + xr,0εc < xr,0(αkL + 1)
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if r is sufficiently large, where we suppose ε ∈ (0, 1
2 ), and using (176), (177) and (178), we

have

Pr
∗

(
sup

0≤t≤xr,0L
|Er

k(t) − αr
kt| ≥ xr,0ε,

|ur(1)|
r

≤ δ
)

≤ Pr
∗

(
max

1≤i≤bxr,0(αkL+1)c

∣∣∣Ur
k (i) − 1

αr
k

i
∣∣∣ >

xr,0ε

2αk
,
|ur(1)|

r
≤ δ

)
.(179)

Suppose that the constant δ1 > 0 satisfies the inequality

δ1 ≤ ε

4αk
− 2

αkr

for sufficiently large r satisfying ε
4αk

− 2
αkr > 0. Then, when |ur(1)|

r ≤ δ1, we have that for
each i ≥ 1, ∣∣∣Ur

k (i) − 1
αr

k

i
∣∣∣ ≤ ur

k(1) +
1
αr

k

+
∣∣∣ i∑

j=2

(
ur

k(j) − 1
αr

k

)∣∣∣
≤ δ1r +

2
αk

+
∣∣∣ i∑

j=2

(
ur

k(j) − 1
αr

k

)∣∣∣
≤ xr,0ε

4αk
+

∣∣∣ i∑
j=2

(
ur

k(j) − 1
αr

k

)∣∣∣,
where we set

∑i
j=2 · · · ≡ 0 when i = 1. Therefore, applying Lemma 7.1 and observing that

xr,0 is a function of ∗ on the event inside P∗, we have that the display (179) with δ = δ1 is
dominated by

Pr
∗

(
max

2≤i≤bxr,0(αkL+1)c

∣∣∣ i∑
j=2

(
ur

k(j) − 1
αr

k

)∣∣∣ >
xr,0ε

4αk

)
≤ xr,0ε

4αk
× 1

(bxr,0(αkL + 1)c − 1)2

≤ xr,0ε

αk
× 1

{xr,0(αkL + 1)}2

≤ 1
αk(αkL + 1)2

× ε

r
,

if r is sufficiently large. Letting c1 ≡ 1
αk(αkL+1)2 , we have the conclusion of the lemma.

The next lemma corresponds to Lemma 5.2 in Bramson [3], and it will be used in the
proof of Lemma 7.4 below.

Lemma 7.3.
For each ε > 0 and k ∈ K, there exist constants δ > 0 and c2 > 0 such that

Pr
∗

(
sup

t1,t2∈[0,xr,0L]

(
|Dr

k(t2) − Dr
k(t1)| − µk|t2 − t1|

)
≥ xr,0ε, |V̂o,r

k (Z
+,r

k (0))| < δ
)

< c2 ·
ε

r
,(180)
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if r is sufficiently large independently of ∗. In particular,

(181) Pr
∗

(
Dr

k(xr,0L) ≥ 2µkxr,0L, |V̂o,r
k (Z

+,r

k (0))| < δ
)

< c2 ·
ε

r
,

if r is sufficiently large independently of ∗.
Proof.

Let
ξr
k(s) ≡ max{n ∈ N : Vr

k(n) ≤ s}, s ≥ 0, k ∈ K,

where

(182) Vr
k(n) ≡ Vo,r

k (Z+,r
k (0) ∧ n) + Vs,r

k ((n − Z+,r
k (0))+).

Then
Dr

k(t) = ξr
k(T r

k (t)), t ≥ 0, k ∈ K.

Since

Dr
k(t2) − Dr

k(t1) − µr
k(t2 − t1) ≤ ξr

k(T r
k (t2)) − ξr

k(T r
k (t1)) − µr

k(T r
k (t2) − T r

k (t1))

for each t1, t2 ∈ [0, xr,0L] such that t1 ≤ t2, we have

sup
t1,t2∈[0,xr,0L]

{|Dr
k(t2) − Dr

k(t1)| − µr
k|t2 − t1|}

≤ sup
s1,s2∈[0,xr,0L]

{|ξr
k(s2) − ξr

k(s1)| − µr
k|s2 − s1|}.

≤ 2 sup
s∈[0,xr,0L]

|ξr
k(s) − µr

ks|.

Thus, it suffices to show

(183) Pr
∗

(
sup

s∈[0,xr,0L]

∣∣ξr
k(s) − µr

ks
∣∣ ≥ xr,0ε

2
, |V̂o,r

k (Z
+,r

k (0))| < δ
)

< c2 ·
ε

r
,

if r is sufficiently large independently of ∗. In the same way as in the derivation of (179),
the left-hand side of (183) is majorized by

(184) Pr
∗

(
max

1≤i≤bxr,0(µkL+1)c

∣∣∣Vr
k(i) − mr

ki
∣∣∣ >

xr,0ε

4µk
, |V̂o,r

k (Z
+,r

k (0))| < δ
)
.

Suppose that the constant δ > 0 satisfies the inequality δ < ε
8µk

. Then, when i > Z+,r
k (0)

and |V̂o,r
k (Z

+,r

k (0))| < δ, we have∣∣Vr
k(i) − mr

ki
∣∣ ≤ rδ +

∣∣Vs,r
k (i − Z+,r

k (0)) − mr
k(i − Z+,r

k (0))
∣∣

≤ xr,0ε

8µk
+

∣∣Vs,r
k (i − Z+,r

k (0)) − mr
k(i − Z+,r

k (0))
∣∣.(185)

Therefore we have

(184) ≤ Pr
∗

(
max

1≤j≤bxr,0(µkL+1)c−Z+,r
k (0)

∣∣∣Vs,r
k (j) − mr

kj
∣∣∣ >

xr,0ε

8µk

)
≤ xr,0ε

8µk
× 1

(bxr,0(µkL + 1)c − Z+,r
k (0))2

≤ xr,0ε

2µk
× 1

(xr,0µkL)2

≤ 1
2µ3

kL2
× ε

r
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if r is sufficiently large, where the second inequality is a consequence of the application
of Lemma 7.1 and the third inequality follows from Z+,r

k (0) ≤ xr,0. Consequently the
conclusion (180) follows with c2 = 1

2µ3
kL2 .

Substituting t1 = 0 and t2 = xr,0L into (180) and letting ε ∈ (0, µkL), we immediately
have (181).

Lemma 7.4.
For each ε > 0 and k ∈ K, there exist constants δ > 0 and c3 > 0 such that

(186) Pr
∗

(
sup

0≤t≤xr,0L

∣∣∣F r
k (t) −

K∑
l=1

P r
lkDr

l (t)
∣∣∣ > xr,0ε, max

p∈K
|V̂o,r

p (Z
+,r

p (0))| < δ
)

< c3 ·
ε

r

if r is sufficiently large independently of ∗, where F r(·) is given in (16).

Proof.

(The left-hand side of (186))

= Pr
∗

(
sup

0≤t≤xr,0L

∣∣∣ K∑
l=1

Dr
l (t)∑

i=1

(φl,r
k (i) − P r

lk)
∣∣∣ > xr,0ε, max

p∈K
|V̂o,r

p (Z
+,r

p (0))| < δ
)

≤ Pr
∗

(
max
l∈K

sup
0≤t≤xr,0L

∣∣∣ Dr
l (t)∑

i=1

(φl,r
k (i) − P r

lk)
∣∣∣ >

xr,0ε

K
, max

p∈K
|V̂o,r

p (Z
+,r

p (0))| < δ
)

≤
K∑

l=1

Pr
∗

(
sup

0≤t≤xr,0L

∣∣∣ Dr
l (t)∑

i=1

(φl,r
k (i) − P r

lk)
∣∣∣ >

xr,0ε

K
, |V̂o,r

l (Z
+,r

l (0))| < δ
)
.(187)

Each term in the summation w.r.t. l in (187) is dominated by

Pr
∗

(
Dr

l (xr,0L) ≥ 2µlxr,0L, |V̂o,r
l (Z

+,r

l (0))| < δ
)

+ Pr
∗

(
sup

0≤t≤xr,0L

∣∣∣ Dr
l (t)∑

i=1

(φl,r
k (i) − P r

lk)
∣∣∣ >

xr,0ε

K
,Dr

l (xr,0L) < 2µlxr,0L
)

(188)

According to Lemma 7.3,
(the first term in (188)) < c2

ε

r

if r is sufficiently large independently of ∗. Furthermore we have that

(the second term in (188))

≤ Pr
∗

(
max

1≤j≤b2µlxr,0Lc

∣∣∣ j∑
i=1

(φl,r
k (i) − P r

lk)
∣∣∣ >

xr,0ε

K

)
≤ Pr

∗

(
max

1≤j≤b2µlxr,0Lc

∣∣∣ j∑
i=1

(φl,r
k (i) − P r

lk)
∣∣∣ > b2µlxr,0Lc ·

ε

2µlLK

)
≤ ε

2µlLK
· 1
b2µlxr,0Lc

≤ ε

(µlL)2Kxr,0
<

ε

(µlL)2Kr
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if r is sufficiently large independently of ∗, where the third inequality follows from the
application of Lemma 7.1.

Consequently we have the conclusion of the lemma with c3 ≡ Kc2 + (minl∈K µl · L)−2.
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