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Abstract. We consider the K-theory of the group and subgroup C∗-algebras of
the special or general linear groups over the ring of integers and of their canonical
subgroups. We furhter consider the K-theory of the associated, crossed product C∗-
algebras.

1 Introduction In this paper, as the main purpose, we consider the K-theory of the
(full) group and subgroup C∗-algebras of the special or general linear groups over integers,
i.e., SLn(Z) or GLn(Z) with their canonical subgroups, of higher interest in the literature
(for instance, see [3], [4], [6], [9], [11], [12]) and of still being rather mysterious. We furhter
consider the K-theory of the associated, (full) crossed product C∗-algebras by actions of
SLn(Z), involved in this case.

As results, we obtain several C∗-algebra homomorphisms and their induced K-theory
group homomorphisms, involved in that case, and several consequences of some interest.
The results are as somewhat expected as our goal, but unfortunately, it turns out that
they seems to be not enough to compute completely the K-theory groups of the group C∗-
algebras of SLn(Z) or GLn(Z) targeted. Our idea for these is to consider a reduction of
computing the K-theory groups for the group C∗-algebras to doing that for the subgroup
C∗-algebras.

After this introduction, there are two sections as follows: 2 The group and subgroup
C∗-algebras; 3 The crossed product C∗-algebras.

We begin with several fundamental definitions and notations for convenience to the
readers, which may be skipped if not needed.

Let G be a discrete group. Let C[G] be the group ∗-algebra of all finitely supported,
complex-valued functions on G with convolution and involution, and l1(G) be the Banach
∗-algebra of all summable, C-valued functions on G with convolution and involution, defined
by

f ∗ g(t) =
∑
s∈G

f(s)g(s−1t) and f∗(t) = f(t−1)

for f, g ∈ C[G] or l1(G) and t ∈ G, and with the l1-norm as ‖f‖1 =
∑

s∈G |f(s)|.
The universal representation ΦG of G is defined to be the direct sum representation ⊕ππ

on the Hilbert space direct sum ⊕πHπ, of all unitary representations π of G on represen-
tation Hilbert spaces Hπ, and is extended canonically to be the universal representation of
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C[G] or l1(G), also denoted by ΦG (as the same symbol), and defined by

ΦG(f) =
∑
s∈G

f(s)ΦG(s)

= ⊕π[
∑
s∈G

f(s)π(s)] = ⊕ππ(f)

and the representation space ⊕πHπ is said to be the universal Hilbert space. The full group
C∗-algebra C∗(G) of G is defined to be the C∗-algebra completion of C[G] or l1(G) by the
universal representation. The C∗-norm on C[G] or l1(G) is defined to be

‖f‖ = ‖ΦG(f)‖ = ‖ ⊕π π(f)‖ = sup
π

‖π(f)‖,

where π runs over the set of all ∗-representations of C[G] or l1(G).
Refer to [5] or [10] for more some details.
In particular, there is a left regular representation λG of G on l2(G) the Hilbert space

of all square summable, complex valued functions on G, which extends to l1(G) as above.
The reduced group C∗-algebra C∗

r (G) of G is defined by replacing ΦG with λG.
It follows that there is a C∗-algebra quotient map qG from C∗(G) to C∗

r (G), and that
qG is an isomorphism if and only if G is amenable (see [10]).

We use the symbol ≡ for definition and the symbol ∼= for isomorphism in several senses
such as groups and C∗-algebras.

For a C∗-algebra A, we denote by K0(A) and K1(A) the K-theory groups of A. For
these, refer to [2] and [16]. For (separable) C∗-algebras A and B, we denote by KK(A, B)
the Kasparov KK-theory group for A and B (see [2]).

We denote by Z the ring of integers and by SLn(Z) the special linear group of all n× n
invertible matrices over Z with determinant one. Denote by GLn(Z) the general linear
group of all n × n invertible matrices over Z.

The group SLn(Z) is a normal subgroup of GLn(Z). Indeed, if x ∈ SLn(Z) and g ∈
GLn(Z), then we have the determinant

det(gxg−1) = det g det xdet g−1 = det(gg−1) = det 1n = 1,

where 1n is the n × n identity matrix.
There is a group homomorphism:

det : GLn(Z) → {1,−1} ∼= Z2 = Z/2Z

since det(gh) = det g det h for g, h ∈ GLn(Z), and 1 = det(gg−1) = det g det g−1, so that
det g ∈ {±1} because det g ∈ Z for any g ∈ GLn(Z) by definition of det.

Then there is a short exact sequence of groups:

1 → SLn(Z) → GLn(Z) → Z2 → 1.

which splits, so that GLn(Z) ∼= SLn(Z) o Z2 a semi-direct product of groups. because the
section for the splitting is given by sending 1,−1 ∈ Z2 to 1n and −1 ⊕ 1n−1 the diagonal
sum, respectively.

It is known that SLn(Z) and GLn(Z) are non-amenable. For instance, refer to [6] and
[9]. In particular, there are K-theory group homomorphisms for j = 0, 1:

Kj(C∗(SLn(Z))) → Kj(C∗
r (SLn(Z)))

induced by the quotient map from C∗(SLn(Z)) to C∗
r (SLn(Z)). The same holds for GLn(Z).

However, we do not know whether such maps in general are injective or not and are surjective
or not. This would be considered elsewhere if possible. It is proved by [15] that the map
on K0 for SLn(Z) is not injective but surjective and the map on K1 is surjective.
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2 The group and subgroup C∗-algebras It follows from a review in the previous
section and a basic fact of [2] for group crossed product C∗-algebras viewed as C∗-algebra
crossed products that

Lemma 2.1. We have the following C∗-algebra isomorphism:

C∗(GLn(Z)) ∼= C∗(SLn(Z)) o Z2,

where the right hand side means a C∗-algebra crossed product, so that

Kj(C∗(GLn(Z))) ∼= Kj(C∗(SLn(Z)) o Z2)

for j = 0, 1.

Remark. By Takai duality theorem for C∗-algebra crossed products (see [10] or [2]), we
have

C∗(SLn(Z)) ⊗ M2(C) ∼= C∗(GLn(Z)) o Z∧
2 ,

where the right hand side means the C∗-algebra dual crossed product by the dual action
of the dual group Z∧

2
∼= Z2 and M2(C) is the 2 × 2 matrix C∗-algebra over C, which is

viewed as the C∗-algebra of all compact operators on the Hilbert space C2 (in this case),
with M2(C) ∼= C∗(Z2) o Z∧

2 , so that

Kj(C∗(SLn(Z))) ∼= Kj(C∗(GLn(Z)) o Z∧
2 )

for j = 0, 1, by stability of K-theory groups.

Proposition 2.2. Let G be a discrete group and H a subgroup of G. Then there is an
injective C∗-algebra homomorphism:

0 → C∗(H) i−−−−→ C∗(G)

induced by the inclusion map i : H → G. Then there are K-theory group homomorphisms:

Kj(C∗(H))
i∗,j−−−−→ Kj(C∗(G))

induced by the inclusion map i, for j = 0, 1.

Proof. Let ΦG be the universal representation of G or C[G] or l1(G). The composite ΦG ◦ i
on H extends to a ∗-algebra homomorphism from C[H] to ΦG(C[G]) in C∗(G). It extends
to a C∗-algebra homomorphism from C∗(H) to C∗(G) by density of C[H] in C∗(H) and
continuity of the map ΦG ◦ i.

Note that any representation of H extends trivially to G because G is discrete. Therefore,
the universal representaion ΦH of H is viewed as a subrepresentation of ΦG by restriction.
It follows that the extended map ΦG◦i from C∗(H) to C∗(G), denoted by the same symbol,
is injective.

As a fact, a homomophism between C∗-algebras induces a group homomorphism of their
K-theory groups as a functoriality of K-theory (see [16]).

Remark. We do not know whether the maps i∗,j are injective or not in general. But possibly,
they are injective in that case.
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Example 2.3. Let Z be the group of integers and nZ a subgroup of Z of multiplies by a
natural number n. By the Fourier transform F , the group C∗-algebra C∗(Z) is isomorphic to
C(T) the C∗-algebra of all continuous, complex-valued functions on the one-torus T. Indeed,
let χ1 be the characteristic function at the generator 1 of Z. Then χ∗

1(t) = χ1(−t) = χ−1(t)
and

χ1 ∗ χ−1(t) =
∑
s∈G

χ1(s)χ−1(−s + t) = χ−1(−1 + t) = χ0(t)

with
χ0 ∗ f(t) =

∑
s∈G

χ0(s)f(−s + t) = f(t)

for any f ∈ C[G] or l1(G), so that χ1 is a unitary and χ0 is the unit of C∗(Z). By the
Fourier (inverse) transform,

F (χ1)(z) =
∑
s∈G

χ1(s)zs = z

for z ∈ T. Similarly, each element nk ∈ nZ is identified with χnk ∈ C∗(nZ), and F (χnk) =
znk. Hence, C∗(nZ) is isomorphic to the unital sub-C∗-algebra of C(T) generated by zn.

It is known ([16]) that K0(C(T)) ∼= Z[1] = Z[F (χ0)] and K1(C(T)) ∼= Z[z] = Z[F (χ1)].
Therefore, the induced map i∗,0 : K0(C∗(nZ)) → K0(C∗(Z)) is an isomorphism but i∗,1 is
an injection by multiplication by n, so that

K1(C∗(Z))/K1(C∗(nZ)) ∼= Z/nZ ∼= Zn.

Example 2.4. By Lemma 2.1 or Proposition 2.2, there is an injective C∗-algebra homo-
morphism

0 → C∗(SLn(Z)) i−−−−→ C∗(GLn(Z))
induced by the inclusion map i : SLn(Z) → GLn(Z). Then there are K-theory group
homomorphisms

Kj(C∗(SLn(Z)))
i∗,j−−−−→ Kj(C∗(GLn(Z)))

induced by the inclusion map i for j = 0, 1.

Example 2.5. It is well known that SL2(Z) is isomorphic to the amalgam Z4 ∗Z2 Z6 of
cyclic groups, with Zk = Z/kZ, where the generators of Z2, Z4, and Z6 are identified with
the following matrices respectively,(

−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 1

)
∈ SL2(Z)

([6] and [9]). Note that C∗(SL2(Z)) ∼= C∗(Z4) ∗C∗(Z2) C∗(Z6) the full amalgam of C∗-
algebras ([2]), so that there are injective C∗-algebra homomorphisms from C∗(Z4) and
C∗(Z6) to C∗(SL2(Z)). It then follows ([3] and [2]) that

Kj(C∗(SL2(Z))) ∼= Kj(C∗(Z4) ∗C∗(Z2) C∗(Z6))
∼= [Kj(C4) ⊕ Kj(C6)]/Kj(C2)

∼=

{
Z10/Z2 ∼= Z8 j = 0,

[0 ⊕ 0]/0 ∼= 0 j = 1,

where C∗(Zk) ∼= C(Z∧
k ) ∼= Ck, so that the induced K-theory group homomorphisms are

injective at both K0 and K1, where each component Z4 and Z6 at K0 are mapped injectively
to (Z4 ⊕ Z2)/Z2 ∼= Z4 and (Z2 ⊕ Z6)/Z2 ∼= Z6 respectively.
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For a positive integer n ≥ 1, we consider the following subgroup of SLn+1(Z) with the
decomposition as block matrices:

Zn ∼= Zn ≡
(

1n Zn

0t
n 1

)
⊂ SLn+1(Z) ⊂ GLn+1(Z),

where Zn is the group of all the n×1 matrices (or column vectors) over Z and 0n = (0, · · · , 0)t

is the column zero vector of Zn and its transpose 0t
n = (0, · · · , 0) is the row zero vector,

and this subgroup is isomorphism to Zn and is denoted by Zn.
Moreover, as the transpose of Zn we consider the following subgroup of SLn+1(Z):

(Zn)t ∼= (Zn)t ≡
(

1n 0n

(Zn)t 1

)
⊂ SLn+1(Z) ⊂ GLn+1(Z).

Note that Zn ∼= (Zn)t ∼= Zn
∼= (Zn)t as a group. We identity Zn with (Zn)t.

Example 2.6. By Proposition 2.2, there is an injective C∗-algebra homomorphism

0 → C∗(Zn) i−−−−→ C∗(SLn+1(Z))

induced by the inclusion map i : Zn → Zn ⊂ SLn+1(Z) or i : Zn → (Zn)t. Then there are
K-theory group homomorphisms

Kj(C∗(Zn))
i∗,j−−−−→ Kj(C∗(SLn+1(Z)))

induced by the inclusion map i. for j = 0, 1.
Furthermore, all the same holds by replacing SLn+1(Z) with GLn+1(Z).

For a positive integer n ≥ 1, we next consider the following subgroup of SLn+1(Z) with
the decomposition as block matrices:(

SLn(Z) Zn

0t
n 1

)
⊂ SLn+1(Z),

where SL1(Z) = {1} the trivial group. This subgroup is isomorphic to the semi-direct
product Zn o SLn(Z) and is denoted by Hn. In particular, we have H1

∼= Z.
Moreover, as the transpose of Hn we consider the following subgroup of SLn+1(Z):(

SLn(Z) 0n

(Zn)t 1

)
∼= (Zn)t o SLn(Z) ∼=

(
SLn(Z) Zn

0t
n 1

)t

≡ Ht
n.

We identify Zn o SLn(Z) with (Zn)t o SLn(Z).

Example 2.7. By Proposition 2.2, there is an injective C∗-algebra homomorphism

0 → C∗(Zn o SLn(Z)) i−−−−→ C∗(SLn+1(Z))

induced by the inclusion map i : Zn o SLn(Z) → Hn ⊂ SLn+1(Z) or i : (Zn)t o SLn(Z) →
Ht

n. Then there are K-theory group homomorphisms

Kj(C∗(Zn o SLn(Z)))
i∗,j−−−−→ Kj(C∗(SLn+1(Z)))

induced by the inclusion map i for j = 0, 1.
Furthermore, all the same holds by replacing SLn+1(Z) with GLn+1(Z).
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Next consider the following amalgam of groups:

(Zn o SLn(Z)) ∗SLn(Z) ((Zn)t o SLn(Z)).

The group isomorphisms as

Zn o SLn(Z) →
(

SLn(Z) Zn

(0n)t 1

)
≡ Hn

and

(Zn)t o SLn(Z) →
(

SLn(Z) 0n

(Zn)t 1

)
≡ Ht

n

induce a group homomorphism ϕ:

(Zn o SLn(Z)) ∗SLn(Z) ((Zn)t o SLn(Z))

ϕ

y〈(
SLn(Z) Zn

0t
n 1

)
,

(
SLn(Z) 0n

(Zn)t 1

)〉
≡ 〈Hn,Ht

n〉,

where 〈Hn,Ht
n〉 means the group generated by the subgroups Hn and Ht

n of SLn+1(Z).
Remark. It is known (see [9, Theorem VII.3] and also [6, Chapter III]) that SLn(Z) is
generated by the following two matrices:

(1) σ =
(

1 1
0 1

)
⊕ 1n−2,

the diagonal sum with 1k the k × k identity matrix and (2) the other as a sort of the
matrices of permutation pn = (pij)n

i,j=1 with pn1 = (−1)n−1, pk,k+1 = 1 for 1 ≤ k ≤ n − 1
and pij = 0 otherwise, as

pn =


0 1 0

. . . . . .
0 1

(−1)n−1 0


Note that (pn)n = (−1)n−11n, and

σm =
(

1 m
0 1

)
⊕ 1n−2.

It is shown below that the matrix pn+1 does belong to 〈Hn,Ht
n〉.

In fact, we obtain

Proposition 2.8. We have 〈H1,H
t
1〉 = SL2(Z).

Proof. For n,m ∈ Z, we compute(
1 n
0 1

)(
1 0
m 1

)
=

(
1 + nm n

m 1

)
and (

1 0
m 1

) (
1 n
0 1

)
=

(
1 n
m mn + 1

)
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so that in particular we obtain (
1 1
−1 0

)
∈ 〈H1,H

t
1〉.

Then (
1 1
−1 0

)(
1 0
−1 1

)
=

(
0 1
−1 0

)
= p2 ∈ 〈H1,H

t
1〉.

It then follows that 〈H1,H
t
1〉 = SL2(Z).

Moreover, we obtain

Proposition 2.9. We have 〈Hn,Ht
n〉 = SLn+1(Z) for any n ≥ 1.

Proof. We compute(
1n 0n

(−1, 0t
n−1) 1

)(
1n (1, 0t

n−1)
t

0n 1

)
=

(
1n (1, 0t

n−1)
t

(−1, 0t
n−1) 0

)
.

We next compute(
1n (1, 0t

n−1)
t

(−1, 0t
n−1) 0

)(
1n 0n

(−1, 0t
n−1) 1

)
=

(
0 ⊕ 1n−1 (1, 0t

n−1)
t

(−1, 0t
n−1) 0

)
.

Assume now that n is odd. Then we compute(
pn 0n

0t
n 1

)(
0 ⊕ 1n−1 (1, 0t

n−1)
t

(−1, 0t
n−1) 0

)
= pn+1.

Hence pn+1 ∈ 〈Hn,Ht
n〉.

Similarly, we compute(
1n 0n

(1, 0t
n−1) 1

)(
1n (−1, 0t

n−1)
t

0n 1

)
=

(
1n (−1, 0t

n−1)
t

(1, 0t
n−1) 0

)
.

We next compute(
1n (−1, 0t

n−1)
t

(1, 0t
n−1) 0

)(
1n 0n

(1, 0t
n−1) 1

)
=

(
0 ⊕ 1n−1 (−1, 0t

n−1)
t

(1, 0t
n−1) 0

)
.

Assume now that n is even. Then we compute(
pn 0n

0t
n 1

)(
0 ⊕ 1n−1 (−1, 0t

n−1)
t

(1, 0t
n−1) 0

)
= pn+1.

Hence pn+1 ∈ 〈Hn,Ht
n〉.

Therefore, we obtain

Proposition 2.10. There is a surjective C∗-algebra homomorphism as

C∗(Hn ∗SLn(Z) Ht
n)

ϕ−−−−→ C∗(Hn,Ht
n) = C∗(SLn+1(Z)) → 0,

which is induced by ϕ on groups above and is denoted by the same symbol, where C∗(Hn, Ht
n)

is the full group C∗-algebra of 〈Hn,Ht
n〉.
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Moreover, we have K-theory group homomorphisms as

Kj(C∗(Hn ∗SLn(Z) Ht
n))

ϕ∗−−−−→ Kj(C∗(Hn,Ht
n))

induced by ϕ for j = 0, 1. Furthermore, we have a KK-theory class

[ϕ] ∈ KK(C∗(Hn ∗SLn(Z) Ht
n), C∗(Hn,Ht

n))

induced by ϕ.

Proof. The group homomorphism ϕ defined above extends to the C∗-algebra homomor-
phism denoted also by ϕ between those full group C∗-algebras by universality of the full
group C∗-algebras. It induces the K-theory group homomorphism ϕ∗ and as well the KK-
theory class [ϕ] as in the statement.

Lemma 2.11. There is a C∗-algebra homomorphism from C∗(ZnoSLn(Z)) onto C∗(SLn(Z))
induced by the quotient map from Zn o SLn(Z) to SLn(Z), which splits. Thus, there are
surjective K-theory group homomorphisms:

Kj(C∗(Zn o SLn(Z))) → Kj(C∗(SLn(Z))) → 0 (j = 0, 1)

which split.

Proof. The trivial homomorphism from Zn to the trivial group induces a quotient homo-
morphism from Zn o SLn(Z) to SLn(Z). In other words, there is a short exact sequence of
groups:

0 → Zn → Zn o SLn(Z) → SLn(Z) → 0,

which splits. It then follows that there is a quotient homomorphism from C∗(Zn oSLn(Z))
to C∗(SLn(Z)) by the group quotient homomorphism and universality, which splits. It then
follows that the induced K-theory group homomorphisms also split (see [16]).

More generally, the same proof as above implies

Proposition 2.12. Let H o G be a semi-direct product of discrete groups. Then there is
a C∗-algebra homomorphisms from C∗(H o G) onto C∗(G), which splits. Thus, there are
surjective K-theory group homomorphisms:

Kj(C∗(H o G)) → Kj(C∗(G)) → 0 (j = 0, 1)

which split.

Example 2.13. Let H × G be a direct product of discrete groups. This is the trivial case
of semi-direct products. The quotient map from H × G to G implies the quotient map
from C∗(H × G) to C∗(G). Also C∗(H × G) ∼= C∗(H) ⊗max C∗(G) when ⊗max means the
maximal C∗-tensor product, so that there is an injective C∗-algebra homomorphism from
C∗(G) to C∗(H × G) as a splitting section for the quotient map.

Example 2.14. Since GLn(Z) ∼= SLn(Z)oZ2, there is a C∗-homomorphism from C∗(GLn(Z))
to C∗(Z2) ∼= C2, which splits. Thus, there is a K-theory group homomorphism:

Kj(C∗(GLn(Z))) → Kj(C∗(Z2)) → 0,

which splits, so that we obtain

Kj(C∗(SLn(Z)))
i∗,j−−−−→ Kj(C∗(GLn(Z))) À Kj(C∗(Z2)) À 0
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As a note, if we assume that i∗,j are injective as a possible case (but we do not know the
very reason for injectivity and short exactness), then

Kj(C∗(GLn(Z))) ∼=

{
K0(C∗(SLn(Z))) o Z2 j = 0,

K1(C∗(SLn(Z))) j = 1.

Note that C∗(SLn(Z)) is not a closed ideal of C∗(GLn(Z)) but a C∗-subalgebra.

Furthermore, as a contrast,

Example 2.15. There is the full crossed product C∗-algebra A o G of a unital C∗-algebra
A by an action of a discrete group G such that AoG has no homomorphisms to C∗(G). For
instance, let A = C(T) and G = Z and C(T) o Z by the rotation action with an irrational,
which is the irrational rotation C∗-algebra. Then C(T) o Z is known to be simple (see [5]).

Also, for n ≥ 2, if A = C∗(Zn) ∼= C(Z∧
n) ∼= Cn with K0(A) ∼= Zn and K1(A) ∼= 0

and let Zn act on C(Zn) by translation. Then A o Zn
∼= Mn(C) with K0(Mn(C)) ∼= Z

and K1(Mn(C)) ∼= 0. Hence, there are no injections from K0(A) to K0(A o Zn) and no
surjections from K0(A o Zn) to K0(C∗(Zn)) in general.

We denote by A ∗C B the full amalgam of C∗-algebras A and B over a common C∗-
subalgebra C.

Lemma 2.16. There is a short exact sequence of K-theory groups:

0 → Kj(C∗(SLn(Z))) → Kj(C∗(Hn)) ⊕ Kj(C∗(Ht
n))

→ Kj(C∗(Hn) ∗C∗(SLn(Z)) C∗(Ht
n)) ∼= Kj(C∗(Hn ∗SLn(Z) Ht

n)) → 0

for j = 0, 1.

Proof. We use a formula of Cuntz ([3] or [2]) on computing the K-theory groups for an
amalgam A ∗C B of C∗-algebras with retractions (that are homomorphisms onto an inter-
section C∗-algebra C. Note as well that the full group C∗-algebra of an amalgam G ∗K H
of discrete groups G and H over a common subgroup K is isomorphic to the amalgam of
the full group C∗-algebras as (see [2])

C∗(G ∗K H) ∼= C∗(G) ∗C∗(K) C∗(H).

Proposition 2.17. The same statement holds for an amalgam (H o G) ∗G (K o G) of
semi-direct products H o G and K o G of discrete groups.

Recall that the pull back C∗-algebra A⊕C B of C∗-algebras A and B over a C∗-algebra
C is defined to be the C∗-subalgebra of the direct sum A ⊕ B, which satisfies the following
commutative diagram:

A ⊕C B
p1−−−−→ A

p2

y yq1

B
q2−−−−→ C

where each pj is the canonical projection to the j-th component and each qj is a ∗-
homomorphism. But in applications such as to Mayer-Vietoric K-theory diagram and below,
we need to assume that each qj is a surjective homomorphism. In this case we may call
A ⊕C B a surjective pull back C∗-algebra.
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Proposition 2.18. There is a surjective C∗-algebra homomorphism as

C∗(SLn+1(Z)) = C∗(Hn,Ht
n)

ψ−−−−→ C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n) → 0

where the quotient is the surjective pull back C∗-algebra obtained from the following com-
mutative diagram:

C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n)

p1−−−−→ C∗(Zn o SLn(Z))

p2

y yq1

C∗((Zn)t o SLn(Z))
q2−−−−→ C∗(SLn(Z)) −−−−→ 0

where each pj is the canonical projection map and each qj is the canonical quotient map.
Moreover, we have K-theory group homomorphisms as

Kj(C∗(Hn,Ht
n))

ψ∗−−−−→ Kj(C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n))

induced by ψ for j = 0, 1. Furthermore, we have a KK-theory class

[ψ] ∈ KK(C∗(Hn,Ht
n), C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht

n))

induced by ψ.

Proof. There are canonical C∗-algebra homomorphisms

ψ1 : C∗(Hn) → C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n)

and
ψ2 : C∗(Ht

n) → C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n),

defined as
ψ1(u(z,g)) = (u(z,g), ug) and ψ2(u(z,h)) = (uh, u(z,h))

for u(z,g) ∈ C∗(Hn) and u(z,h) ∈ C∗(Ht
n), with (z, g) ∈ Zn o SLn(Z) and (z, h) ∈ (Zn)t o

SLn(Z). Indeed, for u(z,g), u(z′,g′) ∈ C∗(Hn),

ψ1(u(z,g)u(z′,g′)) = ψ1(u(z+g·z′,gg′))
= (u(z+g·z′,gg′), ugg′)
= (u(z,g)u(z′,g′), ugug′)
= (u(z,g), ug)(u(z′,g′), ug′) = ψ1(u(z,g))ψ1(u(z′,g′)),

where g ·z′ means the action involved in the semi-direct product Hn. Those homomorphisms
ψ1 and ψ2 induce the homomorphism ψ as in the statement. It induces the K-theory group
homomorphism ψ∗ and as well the KK-theory class [ψ] as in the statement.

Combining Proposition 2.10 with Proposition 2.18, we obtain

Corollary 2.19. There are successive, surjective C∗-algebra homomorphisms as

C∗(Hn ∗SLn(Z) Ht
n)

ϕ

y
C∗(Hn,Ht

n) = C∗(SLn+1(Z)) −−−−→ 0

ψ

y
C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht

n) −−−−→ 0.
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It is shown by [2] and [3] that the K-theory groups of the amalgam A∗CB of C∗-algebras
with retractions to C is isomorphic to those of the surjective pull back C∗-algebra A⊕C B.
Namely,

Kj(A ∗C B) ∼= Kj(A ⊕C B)

for j = 0, 1 under the condition with retractions. Also may refer to [13] for a revised
complete proof. In fact, the isomorphism k∗ from Kj(A ∗C B) to Kj(A ⊕C B) is induced
from the homomorphism k defined by

k(a) = (a, q1(a)) and k(b) = (q2(b), b)

for a ∈ A and b ∈ B, where q1 : A → C and q2 : B → C are retractions, that are onto ∗-
homomorphisms. On the other hand, its inverse is given by f∗−h∗, where for (a, b) ∈ A⊕CB,
f(a, b) = a ⊕ b the diagonal sum in the 2 × 2 matrix algebra M2(A ∗C B) over A ∗C B and
h(a, b) = i ◦ q1(a) = i ◦ q2(b), where i : C → A ∗C B is the inclusion map.

Therefore, we obtain

Theorem 2.20. Suppose that (ψ◦ϕ)∗ = ψ∗◦ϕ∗ on K-theory groups, which looks automatic,
but not in general. Then there is an injective K-theory group homomorphism ϕ∗ and a
surjective ψ∗ :

0 → Kj(C∗(Hn ∗SLn(Z) Ht
n))

ϕ∗−−−−→ Kj(C∗(SLn+1(Z))), and

Kj(C∗(SLn+1(Z)))
ψ∗−−−−→ Kj(C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht

n)) → 0

where the maps ϕ∗ and ψ∗ are induced from the quotient maps ϕ and ψ of Propositions 2.10
and 2.18 respectively, and it holds that the image of ϕ∗ is isomorphic to the image of ψ∗.

Moreover, without the assumption above, the Kasparov product [ψ]⊗ [ϕ] = [ψ ◦ϕ] of [ϕ]
and [ψ] is a KK-equivalence.

Proof. Note that the composite ψ◦ϕ is the canonical homomorphism from the amalgam C∗-
algebra with retractions onto the surjective pull back C∗-algebra, and then the induced K-
theory group homomorphism (ψ◦ϕ)∗ is an isomorphism as cited above. If (ψ◦ϕ)∗ = ψ∗◦ϕ∗,
then it must be that ϕ∗ is injective and ψ∗ is surjective, and the image of ϕ∗ is isomorphic
to the image of ψ∗.

Note as well that the Kasparov product [ψ] ⊗ [ϕ] is equal to [ψ ◦ ϕ], where

KK(C∗(Hn ∗SLn(Z) Ht
n), D) × KK(D, C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht

n))

⊗
y

KK(C∗(Hn ∗SLn(Z) Ht
n), C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht

n)),

with D = C∗(Hn,Ht
n), and that the KK-theory equivalence is equivalent to the K-theory

equivalence, that is an equivalence of K-theory group isomorphisms, as cited above ([2]).

Similarly,

Proposition 2.21. If a C∗-algebra D is a quotient of an amalgam C∗-algebra A ∗C B with
retractions to C by ϕ a homomorphism and has the associated surjective pull back C∗-algebra
A ⊕C B as a quotient by ψ a homomorphism, and if the composite ψ ◦ ϕ is the canonical
homomorphism from A ∗C B to A⊕C B and if (ψ ◦ϕ)∗ = ψ∗ ◦ϕ∗ on their K-theory groups,
then

0 → Kj(A ∗C B)
ϕ∗−−−−→ Kj(D), and

Kj(D)
ψ∗−−−−→ Kj(A ⊕C B) → 0

for j = 0, 1, and it holds that the image of ϕ∗ is isomorphic to the image of ψ∗.
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Remark. In general, a KK-equivalence class in KK(A, B) for (separable) C∗-algebras A
and B implies the isomorhisms

KK(B,D) → KK(A, D) and KK(D, A) → KK(D, B)

by the Kasparov product of the KK-equivalence class from the left and right respectively,
for any (separable) C∗-algebra D. It follows that the KK-theory class [ϕ] may correspond
to the KK-theory class of a cross section with respect to ψ, and the similar holds for [ψ].

Theorem 2.22. There are K-theory group homomorphisms:

[Kj(C∗(Hn)) ⊕ Kj(C∗(Ht
n))]/Kj(C∗(SLn(Z))) → Kj(C∗(SLn+1(Z)))

for j = 0, 1. These are injective only when (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

Corollary 2.23. Suppose that (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗. Then for n ≥ 1, we have the following
inclusions as groups:

Kj(C∗(SLn+1(Z))) ⊃ [K∗(C∗(Hn)) ⊕ K∗(C∗(Ht
n))]/K∗(SLn(Z))

for ∗ = 0, 1.

In particular, we do have the following unexpected:

Example 2.24. Without the assumption above, it holds that

K0(C∗(SL2(Z))) ) [K0(C∗(H1)) ⊕ K0(C∗(Ht
1))]/K0(C∗(SL1(Z)))

∼= [Z ⊕ Z]/Z ∼= Z

but

K1(C∗(SL2(Z))) 6⊃ [K1(C∗(H1)) ⊕ K1(C∗(Ht
1))]/K0(C∗(SL1(Z)))

∼= [Z ⊕ Z]/0 ∼= Z2.

It then follows that (ψ ◦ ϕ)∗ 6= ψ∗ ◦ ϕ∗ in the last case. Indeed, it is known ([2] or [3])
that K0(C∗(SL2(Z))) ∼= Z8 and K1(C∗(SL2(Z))) ∼= 0. Also, the assumption (ψ ◦ ϕ)∗ =
ψ∗ ◦ϕ∗ does not hold in the K1-case above because the left hand side of the equation is an
isomorphism but the right hand side is zero since ϕ∗ and ψ∗ are zero.

Remark. We do not know whether the assumption on K-theory group homomorphisms
above which looks like to be natural is correct or not in general, and even if correct, then
whether the inclusions are strict or not. It is desirable as a goal that the assumption is
correct and the inclusions are equal for SLn(Z) with n ≥ 3. As a reason which supports
our conjecture, note that the group C∗-algebras C∗(SLn(Z)) as well as the groups SLn(Z)
are highly noncommutative in a sense that it is known that SLn(Z) for n ≥ 3 are not
isomorphic to amalgams, but isomorphic to multi-amalgams ([12]).

As a contrast, but in the case of a commutative C∗-algebra involved,

Example 2.25. There is a surjective C∗-algebra homomorphism from the unital full free
product C∗-algebra C∗(Zn) ∗C C∗(Zm) to the group C∗-algebra C∗(Zn+m) ∼= C∗(Zn) ⊗
C∗(Zm) the (full or reduced) C∗-algebra tensor product. Also, there is a surjective C∗-
algebra homomorphism from C∗(Zn+m) to the pull back C∗-algebra C∗(Zn)⊕C C∗(Zm). It
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follows that

K0(C∗(Zn) ∗C C∗(Zm)) ∼= K0(C∗(Zn) ⊕C C∗(Zm))

∼= [K0(C∗(Zn)) ⊕ K0(C∗(Zm))]/K0(C) ∼= [Z2n−1
⊕ Z2m−1

]/Z ∼= Z2n−1+2m−1−1,

K1(C∗(Zn) ∗C C∗(Zm)) ∼= K1(C∗(Zn) ⊕C C∗(Zm))

∼= [K1(C∗(Zn)) ⊕ K1(C∗(Zm))]/K1(C) ∼= Z2n−1+2m−1

but
Kj(C∗(Zn+m)) ∼= Z2n+m−1

(see [16]). The equality for the respective K0 and K1-groups only holds when n = m = 1
and j = 1. Note that K0(C) ∼= Z and K1(C) ∼= 0 and that by the Fourier transform,
C∗(Zn) ∼= C(Tn) the C∗-algebra of all continuous, complex-valued functions on the n-
dimensional torus Tn.

As another consequence, of some interest, we obtain

Corollary 2.26. There is a continuous field of C∗-algebras over the closed interval [0, 1]
with fibers changing continuously from C∗(Hn∗SLn(Z)H

t
n) at 0 to C∗(Hn,Ht

n) = C∗(SLn+1(Z))
at some 0 < t < 1 and to C∗(Hn)⊕C∗(SLn(Z)) C∗(Ht

n) at 1 along ϕ and ψ respectively, such
that their canonical generators associated with Hn and Ht

n are defined to be continuous.

Proof. The constructions is as follows. Deform generators of Hn∗SLn(Z)H
t
n to have the rela-

tions for those of 〈Hn, Ht
n〉, with a certain continuous parameter, and doing so may induce a

C∗-algebra deformation. And similarly deform generators of C∗(Hn, Ht
n) to have relations

for those of C∗(Hn) ⊕C∗(SLn(Z)) C∗(Ht
n), as desired. We omit the detailed construction

about this. Also, equivalently, we may deform the identity map on C∗(Hn ∗SLn(Z) Ht
n) to

ϕ and to ψ as well.

Remark. Such a consequence may be well known. For instance, it is also known as softening
C∗-algebras or soft C∗-algebras (see [7], [8], and [14]). Unfortunately, note that the K-theory
groups of fibers of a continuous field of C∗-algebras are not necessarily isomorphic.

Example 2.27. In the case of n = 1, there is such a continuous field of C∗-algebras on [0, 1]
with fibers given by C∗(Z ∗1Z Z) at 0, C∗(SL2(Z)) at some 0 < t < 1, and C∗(Z)⊕C C∗(Z)
at 1, where 1Z is the unit of Z. Moreover,

K0(C∗(Z ∗1Z Z)) ∼= K0(C∗(Z) ⊕C C∗(Z)) ∼= [Z ⊕ Z]/Z ∼= Z,

K1(C∗(Z ∗1Z Z)) ∼= K1(C∗(Z) ⊕C C∗(Z)) ∼= [Z ⊕ Z]/0 ∼= Z2,

but K0(C∗(SL2(Z)) ∼= Z8 and K1(C∗(SL2(Z)) ∼= 0 as confirmed.

Example 2.28. As a contrast, let G be the discrete Heisenberg solvable group of rank
3, of all upper triangular 3 × 3 matrices over Z with 1 on the diagonal. It is well known
that C∗(G) can be viewed as a continuous field of C∗-algebras over the one torus T as
the dual group of Z as the center of G, with fibers given by rational or irrational rotation
C∗-algebras, or 2-dimensional noncommutative tori. In this case, all the fibers have the
same K-theory groups isomorphic to Kj(C(T2)) ∼= Z2 for j = 0, 1 (see [1]).
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3 The crossed product C∗-algebras The full group C∗-algebras C∗(Hn) and C∗(Ht
n)

are viewed as the full crossed product C∗-algebras by actions of SLn(Z) as

C∗(Hn) = C∗(Zn o SLn(Z)) ∼= C∗(Zn) o SLn(Z)

and
C∗(Zn) o 〈Hn−1,H

t
n−1〉 = C∗(Zn) o SLn(Z).

As obtained as Proposition 2.10 in the previous section,

Proposition 3.1. There is a surjective C∗-algebra homomorphism from the full unital free
product C∗-algebra to the full unital crossed product C∗-algebra as

C∗(Zn) ∗C C∗(Hn−1 ∗SLn−1(Z) Ht
n−1)

id∗Cϕ−−−−→ C∗(Zn) o 〈Hn−1, H
t
n−1〉 → 0,

which is induced by ϕ and the identity map id on C∗(Zn) and is denoted by the symbol
id ∗C ϕ.

Moreover, we have K-theory group homomorphisms as

Kj(C∗(Zn) ∗C C∗(Hn−1 ∗SLn−1(Z) Ht
n−1)

(id∗Cϕ)∗

y
Kj(C∗(Zn) o 〈Hn−1,H

t
n−1〉) = Kj(C∗(Zn) o SLn(Z))

induced by id ∗C ϕ for j = 0, 1. Furthermore, we have a KK-theory class

[id ∗C ϕ] ∈ KK(C∗(Zn) ∗C C∗(Hn−1 ∗SLn−1(Z) Ht
n−1), C

∗(Zn) o 〈Hn−1,H
t
n−1〉)

induced by id ∗C ϕ.

Proof. The surjective homomorphism ϕ between those full group C∗-algebras defined in the
previous section extends trivially to the surjective C∗-algebra homomorphism by universal-
ity of the full untal free product C∗-algebras. It induces the K-theory group homomorphism
(id ∗C ϕ)∗ and the KK-theory class [id ∗C ϕ] as in the statement.

As obtained as Proposition 2.18 in the previous section,

Proposition 3.2. There is a surjective C∗-algebra homomorphism as

C∗(Zn) o 〈Hn−1,H
t
n−1〉 = C∗(Zn) o SLn(Z)

id⊕Cψ

y
C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht

n−1)] −−−−→ 0

where the image is the successive, surjective pull back C∗-algebra obtained as before.
Moreover, we have K-theory group homomorphisms as

Kj(C∗(Zn) o 〈Hn−1,H
t
n−1〉) = Kj(C∗(Zn) o SLn(Z))

(id⊕Cψ)∗

y
Kj(C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht

n−1)])

induced by id ⊕C ψ for j = 0, 1. Furthermore, we have a KK-theory class

[id ⊕C ψ] ∈ KK(C∗(Zn) o SLn(Z), C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht
n−1)])

induced by id ⊕C ψ.
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Proof. There are canonical C∗-algebra homomorphisms

ψ1 = id : C∗(Zn) → C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht
n−1)]

and

ψ2 = ψ : C∗(Hn−1,H
t
n−1) → C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht

n−1)],

defined as
ψ1(uz)) = (uz, 1) and ψ2(ug) = (1, ψ(ug))

for uz ∈ C∗(Zn) and ug ∈ C∗(Hn−1,H
t
n−1), Those homomorphisms ψ1 and ψ2 induce the

homomorphism id⊕C ψ as in the statement. It induces the K-theory group homomorphism
(id ⊕C ψ)∗ and the KK-theory class [id ⊕C ψ] as in the statement.

Corollary 3.3. There are successive, surjective C∗-algebra homomorphisms as

C∗(Zn) ∗C C∗(Hn−1 ∗SLn−1(Z) Ht
n−1)

id∗Cϕ

y
C∗(Zn) o 〈Hn−1,H

t
n−1〉 = C∗(Zn) o SLn(Z) −−−−→ 0

id⊕Cψ

y
C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht

n−1)] −−−−→ 0.

We then obtain

Theorem 3.4. Suppose that ((id ⊕C ψ) ◦ (id ∗C ϕ))∗ = (id ⊕C ψ)∗ ◦ (id ∗C ϕ)∗. Then there
is an injective K-theory group homomorphism (id ∗C ϕ)∗ and a surjective (id ⊕C ψ)∗ :

0 −−−−→ Kj(C∗(Zn) ∗C [C∗(Hn−1) ∗C∗(SLn−1(Z)) C∗(Ht
n−1)])

(id∗Cϕ)∗

y
Kj(C∗(Zn) o 〈Hn−1,H

t
n−1〉) = Kj(C∗(Zn) o SLn(Z))),

Kj(C∗(Zn) o 〈Hn−1,H
t
n−1〉) = Kj(C∗(Zn) o SLn(Z)))

(id⊕Cψ)∗

y
0 ←−−−− Kj(C∗(Zn) ⊕C [C∗(Hn−1) ⊕C∗(SLn−1(Z)) C∗(Ht

n−1)])

where the maps (id ∗C ϕ)∗ and (id ⊕C ψ)∗ are induced from the quotient maps id ∗C ϕ and
id⊕C ψ of Propositions 3.1 and 3.2 respectively, and it holds that the image of (id ∗C ϕ)∗ is
isomorphic to the image of (id ⊕C ψ)∗.

Moreover, without the assumption above, the Kasparov product of [id ∗C ϕ] and [id⊕C ψ]
is a KK-equivalence.

Proof. Note that the composite (id ⊕C ψ) ◦ (id ∗C ϕ) is the canonical homomorphism from
the successive amalgam C∗-algebra with retractions onto the successive, surjective pull back
C∗-algebra, and then the induced K-theory group homomorphism (id ⊕C ψ)∗ ◦ (id ∗C ϕ)∗
is an isomorphism as cited in the previous section. Therefore, it must be that (id ∗C ϕ)∗ is
injective and (id⊕C ψ)∗ is surjective, and the image of (id ∗C ϕ)∗ is isomorphic to the image
of (id ⊕C ψ)∗.

Note as well that the Kasparov product [id⊕Cψ]⊗[id∗Cϕ] is equal to [(id⊕Cψ)◦(id∗Cϕ)],
and that KK-theory equivalence is equivalent to the K-theory equivalence [2].



　　　　　　　　　　　　　　　　　TAKAHIRO SUDO

Theorem 3.5. There are K-theory group homomorphisms:

{Kj(C∗(Zn)) ⊕ [(Kj(C∗(Hn−1)) ⊕ Kj(C∗(Ht
n−1)))/Kj(C∗(SLn−1(Z))]}/Kj(C)y

Kj(C∗(Zn) o SLn(Z))

for j = 0, 1. These are injective only when ((id⊕C ψ) ◦ (id ∗C ϕ))∗ = (id⊕C ψ)∗ ◦ (id ∗C ϕ)∗.

Corollary 3.6. Suppose that ((id ⊕C ψ) ◦ (id ∗C ϕ))∗ = (id ⊕C ψ)∗ ◦ (id ∗C ϕ)∗. Then for
n ≥ 2, we have the following inclusions as groups:

K0(C∗(Zn) o SLn(Z)) ⊃

{Z2n−1
⊕ [(K0(C∗(Hn−1)) ⊕ K0(C∗(Ht

n−1)))/K0(SLn−1(Z))]}/Z,

K1(C∗(Zn) o SLn(Z)) ⊃

Z2n−1
⊕ [(K1(C∗(Hn−1)) ⊕ K1(C∗(Ht

n−1)))/K1(SLn−1(Z))].

In particular,

K0(C∗(Z3) o SL3(Z)) ⊃ {Z4 ⊕ [(K0(C∗(H2)) ⊕ K0(C∗(Ht
2)))/Z8]}/Z,

and
K1(C∗(Z3) o SL3(Z)) ⊃ Z4 ⊕ K1(C∗(H2)) ⊕ K1(C∗(Ht

2)).

Remark. We do not know whether the assumption is correct or not in general, and even if
correct, then whether those inclusions are strict or not. We have the similar conjecture as
mentioned in the remark after Corollary 2.23 and Example 2.24.

As a contrast, but in the case of a trivial action involved,

Example 3.7. There is a surjective C∗-algebra homomorphism from the unital full free
product C∗-algebra C∗(Zn) ∗C C∗(SLn(Z)) to the crossed product C∗-algebra C∗(Zn) o
SLn(Z), but with the trivial action, which is isomorphic to the (full or reduced) C∗-algebra
tensor product C∗(Zn) ⊗ C∗(SLn(Z)) (since C∗(Zn) is nuclear). Also, there is a surjective
C∗-algebra homomorphism from this tensor product to the pull back C∗-algebra C∗(Zn)⊕C
C∗(SLn(Z)). It follows that

K0(C∗(Zn) ∗C C∗(SLn(Z))) ∼= K0(C∗(Zn) ⊕C C∗(SLn(Z)))

∼= [K0(C∗(Zn)) ⊕ K0(C∗(SLn(Z)))]/K0(C) ∼= [Z2n−1
⊕ K0(C∗(SLn(Z)))]/Z,

K1(C∗(Zn) ∗C C∗(SLn(Z))) ∼= K1(C∗(Zn) ⊕C C∗(SLn(Z)))

∼= [K1(C∗(Zn)) ⊕ K1(C∗(SLn(Z)))]/K1(C) ∼= Z2n−1
⊕ K1(C∗(SLn(Z)))

but the Künneth theorem in K-theory for C∗-algebras implies that

K0(C∗(Zn) ⊗ C∗(SLn(Z))) ∼=

[Z2n−1
⊗ K0(C∗(SLn(Z)))] ⊕ [Z2n−1

⊗ K1(C∗(SLn(Z)))]
∼= K1(C∗(Zn) ⊗ C∗(SLn(Z))),

both K0 and K1-groups of which contain strictly the above K0 and K1-groups respectively,
for n ≥ 2.
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As another consequence, we obtain

Corollary 3.8. There is a continuous field of C∗-algebras over the closed interval [0, 1] with
fibers changing from C∗(Zn)∗C C∗(Hn−1 ∗SLn−1(Z) Ht

n−1) at 0 to C∗(Zn)o 〈Hn−1,H
t
n−1〉 =

C∗(Zn)oSLn(Z) at some 0 < t < 1 and to C∗(Zn)⊕C [C∗(Hn−1)⊕C∗(SLn−1(Z)) C∗(Ht
n−1)]

at 1 along id ∗C ϕ and id ⊕C ψ respectively, such that their canonical generators associated
with Zn, Hn−1, and Ht

n−1 are defined to be continuous.

Proof. The constructions is similar as given in the proof of Corollary 2.26.
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[12] C. Soulé, The cohomology of SL3(Z), Topology, 17 (1978), 1-22.

[13] T. Sudo, K-theory of the pullback and pushout C∗-algebras, Scientiae Mathematicae Japon-
icae, 65, No. 1 (2007), 53-60, :e2006, 1061-1068.

[14] T. Sudo, Noncommutative continuous deformation theory by soft C∗-algebras — a review,
Ryukyu Math. J. 22 (2009), 31-114.

[15] T. Sudo, K-theory for the group C∗-algebras of a residually finite discrete group with Kazh-
dan property T, Cubo A Mathematical Journal, Vol. 16, No. 2 (2014), 49-52.

[16] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Univ. Press (1993).

Communicated by Moto Ouchi

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus,
Senbaru 1, Nishihara, Okinawa 903-0213, Japan.

Email: sudo@math.u-ryukyu.ac.jp


