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Abstract. This paper introduces an algorithmic approach to investigate into the
SIG-dimension of graphs, under the sup-norm. We provide an upper bound for the
SIG-dimension of graphs, without isolated vertices, which do not contain an induced
subgraph isomorphic to K2,2.

1 Introduction The sphere-of-influence graph (SIG) on a set of points, each with an
open ball centered about it of radius equal to the distance between that point and its
nearest neighbor, is defined to be the intersection graph of these balls.

The notion of the sphere of influence graphs was introduced by Toussaint to model
situations in pattern recognition and computer vision. These are used to help separate
objects or otherwise capture perceptual relevance, see [6, 7, 8].

Toussaint has used the SIGs under L2-norm to capture low-level perceptual information
in certain dot patterns. The SIGs in general metric spaces are considered in [3]. It is known
that the SIGs under the L∞-norm perform better for this purpose, see [4]. Below we provide
the construction of SIGs in this case.

Let d be a natural number and Rd denotes the d-dimensional Euclidean space. For any
z ∈ Rd, let z[j] denotes the jth component of z. The distance between any x, y ∈ Rd under
the L∞-metric, denoted by ρ(x, y), is defined as,

ρ(x, y) := max{|x[j]− y[j]| : j = 1, 2, . . . , d}.

Let P ⊂ Rd be a finite set having atleast two points. For a point v ∈ P, let rv denotes
the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.

The open ball Bv := {u ∈ Rd : ρ(u, v) < rv} is known as the sphere of influence at v. The
sphere of influence graph of P, denoted by SIGd

∞(P ), is the graph with vertex set P and
edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
of SIGd

∞(P ) is
{uv : Bu ∩Bv 6= ∅;u, v ∈ P}.

Throughout this paper, E(G) and V (G) will denote the vertex set and the edge set of a
graph G. Note that for G = SIGd

∞(P ) and u, v ∈ P,

uv ∈ E(G) ⇐⇒ ρ(u, v) < ru + rv.

A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
the vertex set. The smallest such d is called the SIG-dimension of a graph G, denoted by
SIG(G). That is,

SIG(G) = min{d : G is realizable in Rd}.
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It is trivial to see that if a graph with at least two vertices is realizable in some Rd,
then it can not have isolated vertices. Also, each graph G with atleast two vertices and
no isolated vertices can be realized in Rd, for some d ∈ N. This can be seen as the rows of
the matrix 2I + A realize G, where A is the adjacency matrix for G and I is the identity
matrix, for more details see [4, Theorem 1].

Recently in [9], Taussaint has surveyed the theory and applications of sphere of influence
graphs. In [4], several open problems on SIG-dimension have been discussed, the one
regarding SIG-dimension of trees has already been solved, for details see [2]. In [5], we have
proved the SIG-dimension conjecture for graphs having a perfect matching. A few partial
results regarding the SIG-dimension for some particular graphs are proved in [1, 4].

It is easy to see that if G is path of size n, then SIG(G) = 1. Also it is known that if G
is a graph of size n with no isolated vertex, then SIG(G) ≤ n− 1, for details see [4].

In this paper, we consider the graphs which do not contain an induced subgraph iso-
morphic to K2,2. We call them K2,2-free graphs. We prove that if G is a K2,2-free graph of
order n which has no isolated vertex, then

SIG(G) ≤
⌊

3n

4

⌋
+ dlog2 ne+ 1.

2 Definitions and Notations To establish our main result for K2,2-free graphs, we
will map our graph to a suitably required finite dimensional Euclidean space. But before
that, we simply categorize the vertices in terms of triplets and pairs as per the following
algorithm.

We start with a K2,2-free graph, of size n, without an isolated vertex. The fact that G
is K2,2-free will be used later in our constructions, not for the following algorithm.

Algorithm 1.Step I. Let G be a K2,2-free graph, of size n, without an isolated vertex.

Step II. Take an edge pq ∈ E(G). There are two possible cases:

Case 1. There is a vertex s ∈ V (G) such that exactly one of ps or qs is an edge. That is,

(1) either ′ps ∈ E(G) & qs /∈ E(G)′ or ′ps /∈ E(G) & qs ∈ E(G)′.

Define n(p) = n(q) = n(s) = 0. The set {p, q, s} will be called a root of G.

Case 2. There is no vertex s ∈ V (G) satisfying (1). That is, for all s ∈ V (G),

ps ∈ E(G) ⇐⇒ qs ∈ E(G).

Define n′(p) = n′(q) = 0. The set {p, q} will be called a root of G.

Step III. Let G1 = G \R, where R 6= ∅ is a root of G and r ∈ R. Let

k =

{
n′(r) + 1, if |R| = 2
n(r) + 1, if |R| = 3

Case 1. E(G1) 6= ∅. As above, let R1 be a root of G1.

If |R1| = 2, define n′(u) = k and if |R1| = 3, define n(u) = k, for all u ∈ R1.

Set G = G1 and repeat Step 2.

Case 2. E(G1) = ∅. For all v ∈ V (G1), define n′′(v) = k.



Note that, the vertices v for which n′′(v) is defined, form an independent set. Therefore,
the vertices of our graph are divided into triplets, pairs and the remaining independent set.

In order to facilitate our argument, we now fix up few notations. Note that for any
v ∈ V (G), exactly one of n(v), n′(v) and n′′(v) is defined.

Notations 2. 1. For any v ∈ V (G), the index of v, denoted by m(v), is defined as
follows:

m(v) :=

 n(v) if n(v) is defined
n′(v) if n′(v) is defined
n′′(v) if n′′(v) is defined.

2. Let α denotes the maximum value of m(v); v ∈ V (G).

3. If v is a vertex such that n′′(v) is defined, choose a vertex u such that uv ∈ E(G) and
call it N(v). That is, N(v) = u.

Comment: There can be more than one such vertices u, which have an edge with v.
In that case we fix up any one of these and call it N(v).

4. Let r > 0 be any real and δ := r
n+2 .

5. For 0 ≤ k ≤ α and for v ∈ V (G), let r(v) := r + δm(v).

As a common practice in most analytic proofs, the purpose of the above particular choice
of δ > 0 will be cleared later, in our proofs.

Remark 3. For any triplet {p, q, s}, r(p) = r(q) = r(s) = r+ δm(p). Similarly, it is same on
every pair and on the residual independent set.

3 Mapping the graph to a Euclidean space In this section, we map the vertices
of our given graph to a Euclidean space. This mapping will be done in a way that the
corresponding SIG becomes isomorphic to the given graph. The bijection will be proved in
the next section.

Each triplet, as per the previus section, will determine two dimensions of the Euclidean
space, while the pairs will determine a single dimension. The final independent set will be
considered in a separate manner later, while assigning new dimensions to the vertices.

Below we present the detailed algorithm to ensure the same.

Algorithm 4.Step 1. Let G be a K2,2-free graph, of size n(≥ 2), without an isolated vertex.

Step 2. Apply Algorithm 1 on G to categorize its vertices into triplets, pairs and an indepen-
dent set.

Step 3. Repeat this Step, for each k = 0, 1, . . . α. Find v ∈ V (G) with m(v) = k.

Case 1. There is a triplet {p, q, s} such that m(p) = m(q) = m(s) = k and n(p) is defined.
Without loss of generality, we assume that qs /∈ E(G). We define c1(k) and c2(k)
on vertices of G as follows. Let v ∈ V (G).

Case 1.1. If m(v) < k, then we define

c1(k)(v) := c2(k)(v) :=
3

2
r(p).



Case 1.2. If m(v) = k, then v ∈ {p, q, s}. Define

c1(k)(v) :=

 0 if v = q
r(p) if v = p
2r(p) if v = s

and c2(k)(v) :=

 0 if v = s
r(p) if v = p
2r(p) if v = q.

Case 1.3. If k < m(v) < α, then we define

c1(k)(v) :=



2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs /∈ E(G)
2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs ∈ E(G)
r(p) + r(v)− δ if vp /∈ E(G), vq ∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs /∈ E(G)

and

c2(k)(v) :=



2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp /∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq /∈ E(G) and vs ∈ E(G).
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs ∈ E(G)
2r(p) + r(v) if vp /∈ E(G), vq ∈ E(G) and vs /∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq ∈ E(G) and vs /∈ E(G)

Note that if vp /∈ E(G), vq ∈ E(G) and vs ∈ E(G), then the induced subgraph
of G on the vertices p, q, s and v is isomorphic to K{2,2}, which is not possible.

Case 1.4. If m(v) = α, define

c1(k)(v) := c2(k)(v) :=

{
r(p) if N(v) ∈ {p, q, s}
2r(p) if N(v) /∈ {p, q, s}.

Case 2. There is a pair {p, q} such that n′(p) is defined and m(p) = m(q) = k. We define
c1(k) on vertices v ∈ V (G) as follows:

Case 2.1. If m(v) < k, define c1(k)(v) := 3
2r(p).

Case 2.2. If m(v) = k, then v ∈ {p, q}. Define

c1(k)(v) :=

{
0 if v = p
r(p) if v = q.

Case 2.3. If k < m(v) < α, then we define

c1(k)(v) :=

{
2r(p) + r(v) if vp /∈ E(G) and vq /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G) and vq ∈ E(G).

Case 2.4. If m(v) = α, we define

c1(k)(v) :=

{
r(p) if N(v) ∈ {p, q}
2r(p) if N(v) /∈ {p, q}.

Case 3. k = α. Assume that there are exactly n0 vertices v1, . . . , vn0 such that m(v1) =
· · · = m(vn0) = α. For each l = 1, . . . , n0, we define

cvl(k)(v) :=

 0 if v = vl
r(vl) if vvl ∈ E(G)
r(vl) + r(v) if vvl /∈ E(G)



Step 4. Define c1′ and c2′ on vertices u ∈ V (G) as follows:

Case 1. n(u) is defined. Then there exist two other vertices v1 and v2 such that m(v1) =
m(v2) = m(u). Define

(c1′(u), c2′(u)) := (0, r(u)),
(c1′(v1), c2′(v1)) := (r(u), 0)

and (c1′(v2), c2′(v2)) := (r(u), r(u)).

Case 2. n′(u) is defined. Then there exists only one other vertex v such that m(v) = m(u).
Define

(c1′(u), c2′(u)) := (0, r(u)) and (c1′(v), c2′(v)) := (r(u), 0).

Case 3. n′′(u) is defined. Define (c1′(u), c2′(u)) := (0, 0).

Step 5. Let d0 := dlog2 αe and P := {p : p[j] = 1 or − 1} ⊂ Rd0 . In this step we choose a
point in Rd0 , corresponding to every triplet and pair.

For each k = 0, 1, . . . , α − 1, pick a different point from P, say p′k ∈ P and let pk =
(r − δ)p′k. Also let

Sk = {v : m(v) < α & m(v) = k} ∪ {v : m(v) = α & m(N(v)) = k }.

Now append pk to each s ∈ Sk.

Remark 5. Note that Sk ∩ Sk′ = ∅, for all k 6= k′. Therefore the last step above, won’t add
more than dlog2 αe dimensions to our mapping.

Remark 6. Further, every vertex is appended with dlog2 αe coordinates in the mapping, as
for every vertex v such that n′′(v) is defined, there exists at least one u such that u = N(v)
and n′′(u) is not defined. Otherwise, v has to be an isolated vertex in our graph, which is
not the case.

4 The mapping is an isomorphism In the previous section, we mapped the vertex set
on a Euclidean space by assigning the coordinates with respect to each triplet, pair and the
independent set. For convenience, we will use the same symbol v for the image of v, under
this mapping.

In this sense, the vertex set V (G) is now projected in a Euclidean space endowed with
sup metric. We now prove that the SIG of this mapped vertex set is isomorphic to our
given graph. We prove our main result through a series of claims.

In the sequel, for u, v ∈ G we will use the notation |ck(u)−ck(v)|, even when ck represents
a pair of Euclidean dimensions. In that case, as an abuse of notation, it will represent the
sup-norm in those two dimensions.

Lemma 7. For all v ∈ V (G), we have rv ≤ r(v).

Proof. Let u ∈ V (G). We have the following cases:

Case 1. n(u) is defined. Then there exist v1 and v2 such that n(v1) = n(v2) = n(u).

Case 1.1. v1v2 /∈ E(G). Then uv1 ∈ E(G) & uv2 ∈ E(G). Note that it is enough to prove
that ρ(u, v1) ≤ r(u). Therefore it is enough to prove that

(2) |u[j]− v1[j]| ≤ r(u), for each j = 1, 2, . . .

We verify (2), for each co-ordinate separately. First let k = {0, 1, . . . , α}.



Case 1.1.1. k = m(u). Then the only possibilities for c1(k) and c2(k) are

c1(k)(u) = r(u) = c2(k)(u), c1(k)(v1) ∈ {0, 2r(u)} and c2(k)(v1) ∈ {0, 2r(u)}.

Thus (2) is verified for c1(k) and c2(k), as we have

|c1(k)(u)− c1(k)(v1)| = r(u) = |c2(k)(u)− c2(k)(v1)|.

Case 1.1.2. k < m(u). Let v3 ∈ V (G) be such that m(v3) = k.

Case 1.1.2.1. n(v3) is defined. In this case, we have
’c1(k)(u) = 2r(v3) + r(u) or r(v3) + r(u) or r(v3) + r(u)− δ’
’c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1) or r(v3) + r(v1)− δ’
Hence we see that

|c1(k)(u)− c1(k)(v1)| ≤ r(v3) + δ = r + δk + δ ≤ r + δm(u) = r(u).

The second inequality above holds, as we have m(u) ≥ k + 1. Similarly,
we obtain ,

|c2(k)(u)− c2(k)(v1)| ≤ r(u).

Case 1.1.2.2. n′(v3) is defined. In this case, we have
’c1(k)(u) = 2r(v3) + r(u) or r(v3) + r(u)− δ’
’c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ’
Hence. as earlier, we see that

|c1(k)(u)− c1(k)(v1)| ≤ r(v3) + δ ≤ r(u).

Case 1.1.3. k > m(u). Let v3 ∈ V (G) be such that m(v3) = k.

Case 1.1.3.1. n(v3) is defined. Then
c1(k)(u) = 3

2r(v3) and c1(k)(v1) = 3
2r(v3).

Therefore |c1(k)(u)− c1(k)(v1)| = 0.
Similarly, |c2(k)(u)− c2(k)(v1)| = 0. Similarly we deal with the case when
n′(v3) is defined.

Case 1.1.3.2. n′′(v3) is defined. For each l = 1, 2, . . . , i, we have
cvl(k)(u) = r(v3) or r(v3) + r(u)
and cvl(k)(v1) = r(v3) or r(v3) + r(v1)
Therefore |cvl(k)(u)− cvl(k)(v1)| ≤ r(u).

Also note that max{|c1′(u)− c1′(v1)|, |c2′(u)− c2′(v1)|} = r(u) and
max{|pm(u)[j]− pm(v1)[j]| : j = 1, 2, . . . } = 0.

This verifies (2) and hence, in this case ru ≤ r(u).

Case 1.2. Either uv1 /∈ E(G) or uv2 /∈ E(G). Let uv1 /∈ E(G). Then we have uv2 ∈ E(G)
and v1v2 ∈ E(G). This case is similar to Case 1.1.

Case 2. n′(u) is defined. This case is analogous to Case 1.

Case 3. n′′(u) is defined. Then there is v such that N(u) = v. Therefore uv ∈ E(G). Let
k ∈ {0, 1, . . . , α}.

Case 3.1. k = m(u). For l = 1, 2, . . . , n0, cvl(k)(u) = 0 or 2r(u).

If cvl(k)(u) = 0, we have cvl(k)(v) = r(u).

If cvl(k)(u) = 2r(u), we have cvl(k)(v) = r(u) or r(u) + r(v).

In both cases, we have |cvl(k)(u)− cvl(k)(v)| ≤ r(u).



Case 3.2. k < m(u). Let w ∈ V (G) be such that m(w) = k.

Case 3.2.1. n(w) is defined.

Case 3.2.1.1. m(v) = k. Then we have
c1(k)(u) = r(v) and c1(k)(v) = 0, r(v) or 2r(v). Then

|c1(k)(u)− c1(k)(v)| ≤ r(v) = r + δk < r + δm(u) = r(u).

Similarly, we have |c2(k)(u)− c2(k)(v)| < r(u).

Case 3.2.1.2. m(v) 6= k. Then we have c1(k)(u) = 2r(v) and

c1(k)(v) = 2r(w) + r(v), r(w) + r(v), r(w) + r(v)− δ or 3
2r(w). Again, we

have
|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Case 3.2.2. n′(w) is defined.

Case 3.2.2.1. m(v) = k. Then we have
c1(k)(u) = r(v) and c1(k)(v) = 0 or r(v). Then we see that

|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Case 3.2.2.2. m(v) 6= k. Then we have c1(k)(u) = 2r(v) and c1(k)(v) = 2r(w) +

r(v), r(w) + r(v)− δ or 3
2r(w). Hence

|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Also, as earlier, we have

max{|c1′(u)−c1′(v)|, |c2′(u)−c2′(v)|} = r(v) < r(u) and max{|pm(u)[j]−pm(v)[j]| : j = 1, 2, . . . } = 0.

This implies that ρ(u, v) = r(u). Therefore ru ≤ r(u).

Hence the result.

Lemma 8. For all v ∈ V (G), we have rv ≥ r(v).

Proof. Let v1, v2 ∈ V (G).

Case 1. There is some k < α such that v1, v2 ∈ Sk.

Case 1.1. Either m(v1) < α or m(v2) < α. Then we have

max{|ci′(v1)− ci′(v2)| : i = 1, 2} = r(v1).

Case 1.2. m(v1) = m(v2) = α. Then v1v2 /∈ E(G) and we have

cv1(n′′(v1))(v1) = 0 and cv1(n′′(v1))(v2) = r(v1) + r(v2). Therefore

|cv1(n′′(v1))(v1)− cv1(n′′(v1))(v2)| = r(v1) + r(v2) > r(v1).

Case 2. v1 ∈ Sk1
and v2 ∈ Sk2

, where k1 6= k2. Then, by our construction

max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . }

= 2(r − δ) = 2
(
r − r

n+2

)
= 2r

(
n+1
n+2

)
= r
(
2n+2
n+2

)
≥ r
(
n+k1+2

n+2

)
= r
(
1 + k1

n+2

)
= r + k1

(
r

n+2

)
= r + k1δ

= r(v1).



This implies ρ(v1, v2) ≥ r(v1)⇒ rv1 ≥ r(v1), which establishes our lemma.

The following is immediate from Lemma 7 and Lemma 8.

Proposition 9. For all v ∈ V (G), we have rv = r(v).

Lemma 10. If v1, v2 ∈ V (G) are such that v1v2 /∈ E(G), then ρ(v1, v2) ≥ rv1 + rv2 .

Proof.Case 1. Either n′′(v1) or n′′(v2) or both n′′(v1) and n′′(v2) are defined. Without loss
of generality, let n′′(v1) is defined. Then cv1(n′′(v1))(v1) = 0 and cv1(n′′(v1))(v2) =
r(v1) + r(v2). Hence

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ |cv1(n′′(v1))(v1)− cv1(n′′(v1))(v2)|
= r(v1) + r(v2) = rv1 + rv2 .

Case 2. Both n′′(v1) are n′′(v2) not defined.

Case 2.1. m(v1) = m(v2). Clearly by our construction, the case that both n′(v1) and n′(v2)
are defined fails, as in that case v1v2 ∈ E(G). Therefore both n(v1) and n(v2)
must be defined and n(v1) = n(v2). Then, we have c1(n(v1))(v1) = 0 or 2r(v1).

Also c1(n(v1))(v1) = 0 implies c1(n(v1))(v2) = 2r(v1)

and c1(n(v1))(v1) = 2r(v1) implies c1(n(v1))(v2) = 0.

Therefore, |c1(n(v1))(v1)− c1(n(v1))(v2)| = 2r(v1) = rv1 + rv2 and hence

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ |cv1(n(v1))(v1)− cv1(n(v1))(v2)|
= r(v1) + r(v2) = rv1

+ rv2 .

Case 2.2. m(v1) 6= m(v2). Let m(v1) = k1 and m(v2) = k2. Without loss of generality,
assume that k1 < k2.

Case 2.2.1. n(v1) is defined. Then c1(m(v1))(v1) = 0 or r(v1) or 2r(v1). In each of the
following arguments, we look at the possibilities from our construction.
If c1(m(v1))(v1) = 0 then

c1(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2).

If c1(m(v1))(v1) = r(v1) then

c1(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2)− δ.

Incase c1(m(v1))(v2) = r(v1) + r(v2)− δ, we have

c2(m(v1))(v2) = 2r(v1) + r(v2). Already c2(m(v1))(v1) = r(v1).

If c1(m(v1))(v1) = 2r(v1) then c2(m(v1))(v1) = 0 and

c1(m(v1))(v2) = r(v1) + r(v2), 2r(v1) + r(v2) or r(v1) + r(v2)− δ.

Therefore
c2(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2).

Hence we observe that

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ max{|ci(m(v1))(v1)− ci(m(v1))(v2)| : i = 1, 2}
≥ r(v1) + r(v2) = rv1 + rv2 .



Case 2.2.2. n′(v1) is defined. Then we have c1(m(v1))(v1) = 0 or r(v1) and
c1(m(v1))(v2) = 2r(v1) + r(v2). Hence

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ |c1(m(v1))(v1)− c1(m(v1))(v2)|
≥ r(v1) + r(v2) = rv1 + rv2 .

This proves our lemma.

Lemma 11. If v1, v2 ∈ V (G) are such that v1v2 ∈ E(G), then ρ(v1, v2) < rv1 + rv2 .

Proof. Pick v1, v2 ∈ V (G) with v1v2 ∈ E(G) and let k1 = m(v1) and k2 = m(v2).

Case 1. k1 = k2.

Case 1.1. n′′(v1) is defined. Then n′′(v2) is defined. This implies v1v2 /∈ E(G), which is
not the case.

Case 1.2. n′(v1) is defined. Then n′(v2) is defined. Repeat the following steps for k = 0 to
α.

Case 1.2.1. k = k1. Then c1(k)(v1) = 0 or r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1) and if c1(k)(v1) = r(v1) then c1(k)(v2) =
0. Hence

|c1(k)(v1)− c1(k)(v2)| = r(v1) = rv1 .

Case 1.2.2. k > k1.

Case 1.2.2.1. k denotes the index of vertices in the independent set (left at the end of
our algorithm), if any.
Then cvl(k)(v1) = r(vl) or r(vl) + r(v1). Also cvl(k)(v2) = r(vl) or r(vl) +
r(v1) and therefore

|cvl(k)(v1)− cvl(k)(v2)| ≤ r(v1) = rv1 .

Case 1.2.2.2. Otherwise, c1(k)(v1) = 3
2r(v0), with v0 ∈ V (G) is such that m(v0) = k.

Also c1(k)(v2) = 3
2r(v0) and therefore

|c1(k)(v1)− c1(k)(v2)| = 0.

If n(v0) is defined, then c2(k) is defined and we have

c2(k)(v1) = 3
2r(v0) and c2(k)(v2) = 3

2r(v0). Therefore

|c2(k)(v1)− c2(k)(v2)| = 0.

Case 1.2.3. k < k1.

Case 1.2.3.1. There exists a vertex v3 ∈ V (G) such that n′(v3) is defined with k =
n′(v3). Then

c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ.

Also c1(k)(v2) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ. Hence

|c1(k)(v1)− c1(k)(v2)| ≤ r(v3) + δ ≤ r(v1) = rv1
.



Case 1.2.3.2. There exists a vertex v3 ∈ V (G) such that n(v3) is defined with k =
n(v3). Then both c1(k)(v1) and c1(k)(v2) are either

2r(v3) + r(v1), r(v3) + r(v1) or r(v3) + r(v1)− δ.

Therefore, we have

|c1(k)(v1)− c1(k)(v2)| ≤ r(v3) + δ ≤ r(v1) = rv1 .

Similarly, |c2(k)(v1)− c2(k)(v2)| ≤ rv1 .
Case 1.2.4. (c1′(v1), c2′(v1)) = (0, r(v1)) or (r(v1), 0).

If (c1′(v1), c2′(v1)) = (0, r(v1)), then (c1′(v2), c2′(v2)) = (r(v1), 0).
If (c1′(v1), c2′(v1)) = (r(v1), 0), then (c1′(v2), c2′(v2)) = (0, r(v1)). Hence
max{|ci′(v1)− ci′(v2)| : i = 1, 2} = r(v1) = rv1 .

Case 1.2.5. max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . } = 0.

Therefore, if n′(v1) and n′(v2) are defined and n′(v1) = n′(v2), then

ρ(v1, v2) ≤ rv1 < rv1 + rv2 .

Case 1.3. n(v1) is defined. Then n(v2) is also defined.

Case 1.3.1. k = k1. Then c1(k)(v1) = 0, r(v1) or 2r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1).
If c1(k)(v1) = r(v1) then c1(k)(v2) = 0 or 2r(v1).
If c1(k)(v1) = 2r(v1) then c1(k)(v2) = r(v1).
Hence

|c1(k)(v1)− c1(k)(v2)| = r(v1) = rv1 .

Case 1.3.2. k > k1. This case is same as Case 1.2.2.

Case 1.3.3. k < k1. This case is same as Case 1.2.3.

Case 1.3.4. (c1′(v1), c2′(v1)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)).
(c1′(v2), c2′(v2)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)). Hence

max{|ci′(v1)− ci′(v2)| : i = 1, 2} ≤ r(v1) = rv1 .

Case 1.3.5. max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . } = 0.

Therefore, if n(v1) and n(v2) are defined such that n(v1) = n(v2) and v1v2 ∈
E(G), then we have

ρ(v1, v2) ≤ rv1 < rv1 + rv2 .

This proves the result for the case m(v1) = m(v2).

Case 2. k1 6= k2. Without loss of generality, assume that k1 < k2. Repeat the following for
k = 0 to α.

Case 2.1. k < k1.

Case 2.1.1. There exists some v3 ∈ V (G) such that n(v3) = k. Therefore

c1(k)(v1) = 2r(v3) + r(v1), r(v3) + r(v1) or r(v3) + r(v1)− δ,

c1(k)(v2) = 2r(v3) + r(v2), r(v3) + r(v2), r(v3) + r(v2)− δ, 2r(v3) or r(v3).

Hence we obtain

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Similarly, |c2(k)(v1)− c2(k)(v2)| ≤ rv1 + rv2 .



Case 2.1.2. There exists v3 ∈ V (G) be such that n′(v3) is defined and n′(v3) = k. Then
we see that

c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ.

c1(k)(v2) = 2r(v3) + r(v2), r(v3) + r(v2)− δ, 2r(v3) or r(v3).

Hence |c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.2. k = k1.

Case 2.2.1. n(v1) is defined. Then we have c1(k)(v1) = 0, r(v1) or 2r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1), 2r(v1) or r(v1) + r(v2)− δ. Hence we
have

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

If c1(k)(v1) = r(v1) then we have

c1(k)(v2) = r(v1), 2r(v1), r(v1) + r(v2) or r(v1) + r(v2)− δ.

Hence, as earlier

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

If c1(k)(v1) = 2r(v1) then

c1(k)(v2) = r(v1), 2r(v1), 2r(v1) + r(v2), r(v1) + r(v2) or r(v1) + r(v2)− δ.

Therefore |c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .
Similarly, we obtain

|c2(k)(v1)− c2(k)(v2)| < rv1 + rv2 .

Case 2.2.2. n′(v1) is defined. Then we have
c1(k)(v1) = 0 or r(v1) and c1(k)(v2) = r(v1), 2r(v1) or r(v1)+r(v2)−δ. Hence
|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.3. k1 < k < k2. Then there exists v3 ∈ V (G) such that m(v3) = k.

Case 2.3.1. n(v3) is defined. Then we have c1(k)(v1) = 3
2r(v3) and

c1(k)(v2) = r(v3), 2r(v3), 2r(v3) + r(v2), r(v3) + r(v2) or r(v3) + r(v2)− δ.

Case 2.3.2. n′(v3) is defined. Then we have c1(k)(v1) = 3
2r(v3) and

c1(k)(v2) = r(v3), 2r(v3), 2r(v3) + r(v2) or r(v3) + r(v2)− δ.
Therefore, in both of the above cases, we observe that

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.4. k = k2.

Case 2.4.1. n(v2) is defined. Then c1(k)(v1) = 3
2r(v2) and c1(k)(v2) = 0, r(v2) or 2r(v2).

Therefore, we have

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Similarly, we obtain

|c2(k)(v1)− c2(k)(v2)| < rv1 + rv2 .



Case 2.4.2. n′(v2) is defined. Then c1(k)(v1) = 3
2r(v2) and c1(k)(v2) = 0 or r(v2).

Case 2.4.3. n′′(v2) is defined. Then cv2(k)(v2) = 0 and cv2(k)(v1) = r(v2).
Also, for vl 6= v2 such that n′′(vl) is defined, we have cvl(k)(v2) = r(vl) +
r(v2) = 2r(v2) and cvl(k)(v1) = r(v2) or r(v1) + r(v2). Hence

|cvl(k)(v1)− cvl(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5. k > k2. Then there exists v3 ∈ V (G) such that m(v3) = k.

Case 2.5.1. n(v3) is defined. Then c1(k)(v1) = 3
2r(v3) and c1(k)(v2) = 3

2r(v3). Hence
|c1(k)(v1)− c1(k)(v2)| = 0 < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5.2. n′(v3) is defined. Then c1(k)(v1) = 3
2r(v3), c1(k)(v2) = 3

2r(v3).Hence |c1(k)(v1)−
c1(k)(v2)| = 0 < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5.3. n′′(v3) is defined. Then we have cvl(k)(v1) = r(vl) or r(vl) + r(v1) and
cvl(k)(v2) = r(vl) or r(vl) + r(v2). Hence

|cvl(k)(v1)− cvl(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.6. (c1′(v1), c2′(v1)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)).

(c1′(v2), c2′(v2)) = (0, r(v2)), (r(v2), 0), (r(v2), r(v2)) or (0, 0).

Therefore |c1′(v1)− c1′(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Also |c2′(v1)− c2′(v2)| < r(v1) + r(v2) = rv1 + rv2 . Hence

max{|ci′(v1)− ci′(v2)| : i = 1, 2} < rv1 + rv2 .

Case 2.7. Let pk1′ be associated with v1 and pk2′ be associated with v2.

Then, either |pk1′ − pk1′ | = 0 or

|pk1′ − pk1′ | = 2(r − δ) < r(v1) + r(v2) = rv1 + rv2 .

This proves the result for the case m(v1) 6= m(v2). Hence the result.

The previous two lemmas essentially prove the following theorem.

Theorem 12. For v1, v2 ∈ V (G), we have

v1v2 ∈ E(G) if and only if ρ(v1, v2) < rv1 + rv2 .

Therefore the SIG of our mapping of V (G) on the Euclidean space is isomorphic to G.
In other words, G is realizable in a Euclidean space, whose dimension is fixed according to
our algorithm. Next we will count the dimension of this Euclidean space.

5 The Main Result We need the following result from [1, Corollary 9].

Lemma 13. If G is a graph of order n with no isolated vertex. If G has an independent set
of size t > 1, then

SIG(G) ≤ n− 1− t+ dlog2 te.

Remark 14. In Step 3 of our construction, we attach dlog2 αe co-ordinates to each vertex.
As α ≤ n/2, we attach maximum dlog2bn2 ce co-ordinates. Since⌈

log2

⌊
n

2

⌋⌉
≤
⌈

log2

n

2

⌉
= dlog2 n− log2 2e = dlog2 ne − 1,

we attach maximum dlog2 ne − 1 co-ordinates.



Now we prove the main result of this paper.

Theorem 15. Let G be a K2,2-free graph with n(≥ 2) vertices. If G has no isolated vertex,
then

SIG(G) ≤
⌊

3n

4

⌋
+ dlog2 ne+ 1.

Proof. Let S := {v : v ∈ V (G) and n′′(v) is defined}. Let |S| = β. Using our construction
in Section 3 along with Remark 14, we obtain

SIG(G) ≤ 2

3
(n− β) + β + (dlog2 ne − 1) + 2 =

2

3
n+

1

3
β + dlog2 ne+ 1.

If β = n
4 , then

SIG(G) ≤ 2n

3
+

n

12
+ dlog2 ne+ 1 =

3n

4
+ dlog2 ne+ 1.

If β < n
4 , then β = n

4 − k, for some k > 0 and we have

SIG(G) ≤ 2n

3
+

n

12
− k

3
+ dlog2 ne+ 1 <

3n

4
+ dlog2 ne+ 1.

If β > n
4 , then β = n

4 + k, for some k > 0 and then the maximum independent set
has cardinality greater than or equal to n

4 + k. Let t be the cardinality of the maximum
independent set of G. Then t ≥ n

4 + k. Also, as in Lemma 13, we have

SIG(G) ≤ n− 1− t+ dlog2 te.

Therefore,

SIG(G) ≤ 3n

4
− k − 1 + dlog2 te <

3n

4
+ dlog2 ne.

Hence, we have proved that SIG(G) ≤ 3n
4 + dlog2 ne+ 2. Hence

SIG(G) ≤
⌊

3n

4

⌋
+ dlog2 ne+ 1.
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