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Abstract. We consider the initial-boundary value problem for a quasilinear parabolic
equation. After constructing local solutions to the equation, we show a priori estimates
for them and prove global existence of solutions. A Lyapunov function is constructed
for the global solutions. Furthermore, existence of a unique stationary solution is
observed for each level set Xl (given by (4.1)), together with some characterization
by a functional equation. By virtue of the Lyapunov function, we can show longtime
convergence of all global solutions with initial values in Xl to the unique stationary
solution.

1 Introduction We are concerned with the initial-boundary value problem for a nonlin-
ear diffusion equation

(1.1)


∂u

∂t
=

∂2

∂x2
(au+ αu2)− µ

∂

∂x

[
u
∂

∂x
(T (x)u)

]
in I × (0,∞),

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 on (0,∞),

u(x, 0) = u0(x) in I,

in the unit open interval I = (0, 1). Note that the first equation of (1.1) is rewritten as

(1.2)
∂u

∂t
=

∂

∂x

[
(a+G(x)u)

∂

∂x
u

]
− µ

∂

∂x
[T ′(x)u2],

where
G(x) = 2α− µT (x).

We introduce the model (1.1) by simplifying the following attraction-repulsion chemo-
taxis model:

∂u

∂t
= a1

∂2u

∂x2
− ∂

∂x

[
u

(
∂

∂x
χ1(v)−

∂

∂x
χ2(w)

)]
in I × (0,∞),

∂v

∂t
= a2

∂2v

∂x2
+ g1T (x, t)u− dv in I × (0,∞),

∂w

∂t
= a3

∂2w

∂x2
+ g2u− hw in I × (0,∞),

∂u

∂x
=
∂v

∂x
=
∂w

∂x
= 0 on ∂I × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in I.

(1.3)
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Okaie et al. [18] introduced this model for considering a mobile bionanosensor network
designed for target tracking in molecular environments. In their modeling, they are in-
spired by Keller-Segel model [5]. The network consists of bioparticles and two types of
signaling molecules: attractants for a group of bioparticles to move toward targets, and
repellents to spread over the environment. They obtained numerical results and indicated
that they could improve target tracking performance by controlling the effects of attractants
and repellents suitably. They also developed an individual-based model and demonstrated
numerical results that a group of bioparticles could track moving targets [19].

Unknown functions u = u(x, t), v = v(x, t), and w = w(x, t) denote the density of biopar-
ticles, the concentration of chemical attractants, and the concentration of chemical repel-
lents, respectively, in the interval I at time t. The bioparticles are motile in response to the
gradients of χ1(v) and χ2(w), where χ1(v) and χ2(w) are sensitivity functions of bioparticles
to chemical attractants and chemical repellents. The term − ∂

∂x

[
u
(

∂
∂xχ1(v)− ∂

∂xχ2(w)
)]

denotes a nonlinear advection which is affected by chemical attractants and chemical re-
pellents. Bioparticles move preferentially towards higher (resp. lower) concentration of
chemical attractants (resp. repellents). The term g1T (x, t)u denotes that bioparticles pro-
duce chemical attractant when they meet the target T (x, t). On the other hand, bioparticles
always release chemical repellents by the production rate g2u. The terms −dv and −hw
denote decay rates of chemical attractants and repellents, respectively. The unknown func-
tions u, v, and w satisfy the Neumann boundary conditions at ∂I.

After Keller-Segel [5] first introduced a diffusion-advection model for chemotactic phe-
nomenon, this model was developed further by many researchers (for example [1, 2, 3, 21]).
Many mathematicians have studied a variety of chemotaxis models. For instance, the fol-
lowing model: 

∂u

∂t
= a1∆u−∇ · [u∇χ1(v)] in Ω× (0,∞),

∂v

∂t
= a2∆v + g1u− dv in Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

was first studied by Childress-Percus [15]. Here, Ω is a bounded two-dimensional domain
with some regular boundary. When χ1(v) = V1v1, the global existence for initial functions
having small L1(Ω) norm ∥u0∥L1

was obtained by Ryu-Yagi [14]. On the other hand,
blowup of solutions was proved in [10, 11]. In addition, the stationary problem was studied
by [13, 17]. We quote [8, 9] for one-dimensional problem.

Some attraction-repulsion chemotaxis models have been proposed in [7, 12]. In these
years attraction-repulsion chemotaxis models were studied by many mathematicians (for
example [4, 6, 20]). However, to the best our knowledge, few researchers have handled
the model (1.3), i.e., the case where a production rate of chemical attractants depends on
position x and time t.

We want to study asymptotic behavior of solutions of (1.3). Iwasaki [16] showed the
global existence of solutions and constructed exponential attractors for a non-autonomous
dynamical system generated by problem (1.3). But it is very difficult to investigate the
time evolution of solutions in detail. One of the reasons for this difficulty is that (1.3)
is a reaction, advection and diffusion equation with three components. Furthermore, the
moving target T (x, t) makes it hard to investigate the stationary state. Therefore, we intend
to simplify the original model.

First, we assume that the target is stationary, i.e., T (x, t) ≡ T (x). Next, we assume that
the sensitivity functions are of the forms χ1(v) = V1v and χ2(w) = V2w, where V1 and V2
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are some positive constants. Finally, we assume that g1 and d are sufficiently large, so that

v is in quasi-equilibrium state, i.e., v =
g1
d
T (x)u. It is the same for g2 and h; therefore,

w =
g2
h
u. By substituting these for χ1(v) and χ2(w) in the first equation of (1.3), we obtain

that
∂u

∂t
= a1

∂2u

∂x2
− ∂

∂x

[
u

(
g1V1
d

∂

∂x
(T (x)u)− g2V2

h

∂

∂x
u

)]
,

that is,
∂u

∂t
=

∂2

∂x2

(
a1u+

g2V2
2h

u2
)
− g1V1

d

∂

∂x

[
u
∂

∂x
(T (x)u)

]
.

Putting a1 = a,
g2V2
2h

= α, and
g1V1
d

= µ, we then arrive at (1.1).

In this paper, we show the global existence of solutions of (1.1) and construct a dynamical
system. Since the target T (x) does not depend on time t, we expect that a global solution
u(t) converges to a stationary solution. As will be found, the norm ∥u(t)∥L1

= ∥u0∥L1
is

conserved for every t ∈ [0,∞). Therefore, for each ∥u0∥L1
= l > 0, we have to consider a

stationary problem in a space Xl given by (4.1), the element u of which satisfies ∥u∥L1
= l.

The stationary problem in Xl possesses a unique solution ul. Fortunately, a Lyapunov
function for (1.1) will be constructed. By virtue of a Lyapunov function, we will prove that
every global solution u(t) with initial value u0 satisfying ∥u0∥L1

= l converges to ul.
We assume that a, α, and µ are positive (> 0) constants. We also assume that

(1.4) T ∈ Hσ
N (I), i.e., G ∈ Hσ

N (I)

with some σ > 5/2 and there exists a positive constant c > 0 such that

(1.5) c ≤ G(x) in I.

Let 1/2 < ε ≤ 1 be arbitrarily fixed. The space of initial functions is set by

(1.6) K = {u0 ∈ Hε(I);u0(x) ≥ 0 in I}.

This paper is organized as follows. In Section 2, a local unique solution to (1.1) is
constructed for each initial value u0 ∈ K. In Section 3, we establish a priori estimates for
local solutions to obtain the global existence of solutions. In Section 4, a dynamical system
is generated from problem (1.1). Section 5 is devoted to constructing a Lyapunov function.
A stationary problem for (1.1) is treated in Section 6. Finally, in Section 7, we show that
each global solution converges to a corresponding stationary solution.

2 Local Solutions Let H1(I) ⊂ L2(I) ⊂ H1(I)∗ be a triplet of spaces. Problem (1.1) is
written as the Cauchy problem for an abstract equation

(2.1)


du

dt
+A(u)u = F (u), 0 < t <∞,

u(0) = u0,

in X = H1(I)∗. Here, A(u) is a linear operator defined for u ∈ Z = Hε1(I), where
1/2 < ε1 < ε. For u ∈ Z, let us consider the sesquilinear form

a(u;u1, u2) =

∫
I

(a+G(x)χ(Re u))
∂u1
∂x

∂u2
∂x

dx+

∫
I

u1u2dx

Convergence solutions quasilinear parabolic equation
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on H1(I). Here χ(u) is a smooth cutoff function such that χ(u) = u for u ≥ 0 and
χ(u) ≡ −δ for u ≤ −δ, δ > 0 being some small positive constant such that 2∥G∥L∞δ ≤ a.
Then, thanks to (1.4) and (1.5), the sesquilinear form a(u; ·, ·) defines sectorial operators
A(u) with respect to the triplet H1(I) ⊂ L2(I) ⊂ H1(I)∗ with angles ωA(u) < π/2.

The nonlinear operator F :W → X is given by

F (u) = u− µ
∂

∂x
[T ′(x)u2].

Here, W = Hε2(I), where ε1 < ε2 < ε.
Let 0 < R <∞, and let A(u) be defined for u ∈ KR = {u ∈ Z; ∥u∥Z < R}. We can see

that the spectrum σ(A(u)) is contained in a fixed open sectorial domain, i.e.,

(2.2) σ(A(u)) ⊂ ΣωR = {λ ∈ C; | arg λ| < ωR}, u ∈ KR

with some angle ωA(u) < ωR < π/2, and the resolvent satisfies

(2.3)
∥∥(λ−A(u))−1

∥∥
L(X)

≤ MR

|λ|
, λ /∈ ΣωR

, u ∈ KR,

with a constant MR ≥ 1. Furthermore,

(2.4) D(A(u)) ≡ H1(I), u ∈ KR.

Let us set Y = Hε0(I) with a third exponent ε0 chosen so that 1/2 < ε0 < ε1. Thanks
to the assumption of χ(u), it holds that

∥χ(Re u)− χ(Re v)∥L∞

=

∥∥∥∥∫ 1

0

χ′(θRe u+ (1− θ)Re v)dθ · (Re u− Re v)

∥∥∥∥
L∞

≤ C(∥u∥L∞
+ ∥v∥L∞

) ∥u− v∥L∞

≤ CR ∥u− v∥Y , u, v ∈ KR.

Therefore,

∥[A(u)−A(v)]ũ∥X

=

∥∥∥∥ ∂∂x
[
G(x)(χ(Re u)− χ(Re v))

∂ũ

∂x

]∥∥∥∥
X

≤ C ∥G∥L∞
∥χ(Re u)− χ(Re v)∥L∞

∥ũ∥H1

≤ CR ∥G∥L∞
∥u− v∥Y ∥ũ∥H1 , ũ ∈ H1(I), u, v ∈ KR,

i.e., ∥∥[A(u)−A(v)]A(v)−1
∥∥
L(X)

≤ CR ∥G∥L∞
∥u− v∥Y , u, v ∈ KR.(2.5)

The nonlinear operator F satisfies

∥F (u)− F (v)∥X

≤ ∥u− v∥X +

∥∥∥∥ ∂∂x [T ′(x)(u+ v)(u− v)]

∥∥∥∥
X

≤ C [1 + ∥T∥H1(∥u∥Z + ∥v∥Z)] ∥u− v∥W , u, v ∈W.(2.6)
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We see that a(u;u1, u2) is a symmetric form, i.e., a(u;u1, u2) = a(u;u2, u1). Therefore,
A(u) is a positive definite self-adjoint operator of H1(I)∗. Then, we note that, for any
3/4 < θ ≤ 1, D(A(u)θ) = [H1(I)∗,H1(I)]θ = H2θ−1(I) with a norm equivalence (cf. [22,
Chapter 16]). Thus, by setting α̃ = (1 + ε0)/2, β̃ = (1 + ε1)/2, and η̃ = (1 + ε2)/2, we

see that, for any u ∈ KR, D(A(u)α̃) = Y , D(A(u)β̃) = Z, and D(A(u)η̃) = W with the
estimates

(2.7)


∥ũ∥Y ≤ D1

∥∥A(u)α̃ũ∥∥
X
, ũ ∈ D(A(u)α̃), u ∈ KR,

∥ũ∥Z ≤ D2

∥∥∥A(u)β̃ũ∥∥∥
X
, ũ ∈ D(A(u)β̃), u ∈ KR,

∥ũ∥W ≤ D3

∥∥A(u)η̃ũ∥∥
X
, ũ ∈ D(A(u)η̃), u ∈ KR,

Di > 0 (i = 1, 2, 3) being some constants. The initial value u0 ∈ KR ∩K satisfies

(2.8) u0 ∈ D(A(u0)
γ̃),

if γ̃ is taken as γ̃ = (1 + ε)/2. The exponents satisfy the relations

(2.9)
3

4
< α̃ < β̃ < η̃ < γ̃ < 1.

Theorem 2.1. For each u0 ∈ KR ∩K, there exists a unique local solution to (2.1) in the
function space:

(2.10) 0 ≤ u ∈ C((0, Tu0 ];H
1(I)) ∩ C([0, Tu0 ];H

ε(I)) ∩ C1((0, Tu0 ];H
1(I)∗),

where Tu0 is determined by the norm ∥u0∥Hε alone.

Proof. Let us apply a general theorem to construct local solutions to (2.1). Conditions
(2.2) ∼ (2.9) imply that the conditions of [22, Theorem 5.6] are satisfied. Therefore, for
any u0 ∈ KR ∩K, there exists an interval [0, Tu0 ] such that (2.1) possesses a unique local
solution in the function space:

(2.11) u ∈ C((0, Tu0 ];H
1(I)) ∩ C([0, Tu0 ];H

ε(I)) ∩ C1((0, Tu0 ];H
1(I)∗),

where Tu0 is determined by the norm ∥u0∥Hε alone.
Let us show the nonnegativity of local solutions of (2.1). For u0 ∈ KR ∩K, let u(t) be

the local solution of (2.1) constructed above in (2.11).
Let us first verify that u(t) is real valued. Indeed, the complex conjugate u(t) of u(t)

is also a local solution of (2.1) with the same initial value u0. Therefore, the uniqueness of
solution implies that u(t) = u(t); hence, u(t) is real valued.

Let H(u) be a C1,1 cutoff function given by H(u) = u2/2 for −∞ < u < 0 and H(u) ≡ 0
for 0 ≤ u < ∞. Since u ∈ C((0, Tu0 ];H

1(I)) ∩ C1((0, Tu0 ];H
1(I)∗), we see that ψ(t) =∫

I
H(u(t))dx is continuously differentiable with the derivative

ψ′(t) = ⟨H ′(u(t)), u′(t)⟩H1×H1∗ , 0 < t ≤ Tu0
,

where ⟨·, ·⟩H1×H1∗ is a duality product of {H1(I),H1(I)∗}. Therefore, we have

ψ′(t) =

⟨
H ′(u(t)),

∂

∂x

[
(a+G(x)χ(u(t)))

∂

∂x
u(t)

]⟩
H1×H1∗

− µ

⟨
H ′(u(t)),

∂

∂x

[
T ′(x)u(t)2

]⟩
H1×H1∗

.

Convergence solutions quasilinear parabolic equation
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Thanks to the assumption of χ(·), we see that⟨
H ′(u(t)),

∂

∂x

[
(a+G(x)χ(u(t)))

∂

∂x
u(t)

]⟩
H1×H1∗

≤ −a
2

∫
I

∣∣∣∣ ∂∂xH ′(u(t))

∣∣∣∣2 dx
and

− µ

⟨
H ′(u(t)),

∂

∂x

[
T ′(x)u(t)2

]⟩
H1×H1∗

≤ a

2

∫
I

∣∣∣∣ ∂∂xH ′(u(t))

∣∣∣∣2 dx+ C∥H ′(u(t))∥2L2
∥T∥2H2 .

Therefore, we obtain that

ψ′(t) ≤ C∥T∥2H2ψ(t), 0 < t ≤ Tu0 ,

so,
ψ(t) ≤ ψ(0) exp

(
C∥T∥2H2t

)
, 0 < t ≤ Tu0 .

Then, ψ(0) = 0 implies ψ(t) ≡ 0. Thus, u(t) ≥ 0 for every 0 < t ≤ Tu0 .

Since u(t) ≥ 0, it holds that χ(Re u(t)) = u(t); this then means that the local solution
of (2.1) is regarded as a local solution to the original problem (1.1).

3 Global Solution For u0 ∈ K, let u denote any local solution of (2.1) on [0, Tu] in the
function space:

(3.1) 0 ≤ u ∈ C((0, Tu];H
1(I)) ∩ C([0, Tu];H

ε(I)) ∩ C1((0, Tu];H
1(I)∗).

We then show the following a priori estimates.

Proposition 3.1. There exists a continuous increasing function p(·) such that, for any
local solution u of (2.1) in (3.1) with initial value u0 ∈ K, it holds that

(3.2) ∥u(t)∥H1 ≤ p(∥u0∥H1), 0 ≤ t ≤ Tu.

Proof. In the proof, the notations C and p(·) stand for some constants and some continuous
increasing functions, respectively, which are determined by the initial constants and ∥T∥Hσ

(see (1.4)) and by I in a specific way in each occurrence. In the following, we divide the
proof into four steps.

Step 1. Let us integrate the first equation of (1.1) in I. Then, obviously,

d

dt
∥u∥L1 = 0,

i.e.,

(3.3) ∥u(t)∥L1 = ∥u0∥L1 , 0 ≤ t ≤ Tu.

Step 2. Multiply the equation (1.2) by 2u and integrate the product in I. Then,

d

dt
∥u∥2L2

+ 2

∫
I

(a+G(x)u)

∣∣∣∣∂u∂x
∣∣∣∣2 dx = −2µ

∫
I

u
∂

∂x
[T ′(x)u2]dx.
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Here,

−2µ

∫
I

u
∂

∂x
[T ′(x)u2]dx =

2

3
µ

∫
I

[
∂

∂x
u3
]
T ′(x)dx

= −2

3
µ

∫
I

u3T ′′(x)dx

≤ ζ ∥u∥4L4
+ Cζ ∥T ′′∥4L4

≤ ζ ∥u∥2H1 ∥u∥2L1
+ Cζ

≤ ζ ∥u∥2H1 + Cζp(∥u0∥L1
),

with any ζ > 0. Therefore, we get

d

dt
∥u∥2L2

+ ∥u∥2L2
≤ p(∥u0∥L1

),

i.e.,

(3.4) ∥u(t)∥2L2
≤ e−t ∥u0∥2L2

+ p(∥u0∥L1
), 0 ≤ t ≤ Tu.

Step 3. In this step, we shall use the notation

P1(u0) = p(∥u0∥L2
).

Multiply the equation (1.2) by 4u3 and integrate the product in I. Then,

d

dt
∥u∥4L4

+ 12

∫
I

(a+G(x)u)u2
∣∣∣∣∂u∂x

∣∣∣∣2 dx = −12

5
µ

∫
I

u5T ′′(x)dx.

Here,

12

∫
I

(a+G(x)u)u2
∣∣∣∣∂u∂x

∣∣∣∣2 dx = 3a

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

+
48

25

∫
I

G(x)

∣∣∣∣ ∂∂xu 5
2

∣∣∣∣2 dx,
and

−12

5
µ

∫
I

u5T ′′(x)dx ≤ C
∥∥u5∥∥

L1
∥T ′′∥L∞

≤ C
∥∥∥u 5

2

∥∥∥2
L2

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1

∥∥∥u 5
2

∥∥∥2
L1

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1 ∥u∥
3
L2

∥u∥2L4

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1P1(u0)
∥∥u2∥∥

L2

≤ ζ1

(∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

)
+ Cζ1P1(u0),

with any ζ1 > 0. Therefore,

d

dt
∥u∥4L4

+ ∥u∥4L4
+ a

∥∥u2∥∥2
H1 + c

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

≤ P1(u0),

Convergence solutions quasilinear parabolic equation
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i.e.,

(3.5) ∥u(t)∥4L4
≤ e−t ∥u0∥4L4

+ P1(u0), 0 ≤ t ≤ Tu.

As well,

(3.6)

∫ t

s

∥∥u(τ)2∥∥2
H1 dτ ≤ P1(u0)

[
(t− s) + ∥u0∥4L4

]
, 0 ≤ s < t ≤ Tu.

Step 4. In this step, we shall use the notation

P2(u0) = p(∥u0∥L4
).

By regarding the local solution u ∈ C((0, Tu];H
1(I)) as a known function, (1.1) is handled

as a nonautonomous abstract evolution equation of the form [22, (3.61)] in L2(I). Then,
applying [22, Theorem 3.9], we can assume that u ∈ C((0, Tu];H

2
N (I)) ∩ C1((0, Tu];L2(I)).

By virtue of this fact, the inner product of (1.2) with 2A(u)u in L2(I) makes a sense, so
that we get

d

dt

∥∥∥A(u) 1
2u
∥∥∥2
L2

+ 2 ∥A(u)u∥2L2

= 2
∥∥∥A(u) 1

2u
∥∥∥2
L2

− 2µ

⟨
∂

∂x

[
T ′(x)u2

]
, A(u)u

⟩
H1×H1∗

.

Here, ∥∥∥A(u) 1
2u
∥∥∥2
L2

≤ ∥u∥L2
∥A(u)u∥L2

≤ ζ2 ∥A(u)u∥2L2
+ Cζ2 ∥u∥

2
L2

and

−µ
⟨
∂

∂x

[
T ′(x)u2

]
, A(u)u

⟩
H1×H1∗

= −µ
(
∂

∂x

[
T ′(x)u2

]
, A(u)u

)
L2

≤ C
∥∥T ′u2

∥∥
H1 ∥A(u)u∥L2

≤ ζ2 ∥A(u)u∥2L2
+ Cζ2

∥∥u2∥∥2
H1 ,

with any ζ2 > 0. Therefore, we obtain that

d

dt

∥∥∥A(u) 1
2u
∥∥∥2
L2

+
∥∥∥A(u) 1

2u
∥∥∥2
L2

+ ∥A(u)u∥2L2
≤ C

∥∥u2∥∥2
H1 + P2(u0).

Thanks to (3.6), we conclude that∥∥∥A(u(t)) 1
2u(t)

∥∥∥2
L2

≤ e−t ∥A(u0)u0∥2L2
+ P2(u0), 0 ≤ t ≤ Tu,

i.e.,
∥u(t)∥2H1 ≤ Ce−t ∥u0∥2H1 + P2(u0), 0 ≤ t ≤ Tu.

We have in this way established the desired a priori estimate (3.2).

Thanks to Proposition 3.1, we conclude the global existence of solutions. Indeed, for
any initial value u0 ∈ K, there exists a nonnegative local solution at least on an interval
[0, Tu0 ]. Let 0 < t1 < Tu0 and u1 = u(t1). Then, u1 ∈ K ∩ H1(I). We next consider
problem (2.1) but with the initial time t1 and with the initial value u1 in the ball KR1 of
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Z, where R1 = p(∥u1∥H1). Proposition 3.1 ensures that any local solution starting from
u1 stays at any time in KR1 . In addition, any local solution v on [t1, Tv] starting from u1
can be extended over an interval [t1, Tv + τ ] as local solution, τ being dependent only on
sup0≤t≤Tv

∥v(t)∥Hε and hence being independent of the extreme time Tv. This means that
problem (2.1) on [t1,∞) with the initial value u1 possesses a unique global solution. We
have thus deduced that, for any initial value u0 ∈ K, there exists a unique global solution
u to (2.1) in the function space:

(3.7) 0 ≤ u ∈ C((0,∞);H1(I)) ∩ C([0,∞);Hε(I)) ∩ C1((0,∞);H1(I)∗).

Note that we can apply the maximal principle of parabolic equations (cf. [23, Chapter 3]),
so that

(3.8) u(x, t) > 0 in I × (0,∞).

4 Dynamical system Let us verify that problem (1.1) defines a dynamical system. For
each l > 0, we set Kl = {u0 ∈ K; ∥u0∥L1

= l}. We already know that, for any u0 ∈ Kl,
(1.1) possesses a unique global solution u(t;u0) in (3.7). Let us set S(t)u0 = u(t;u0). On
account of (3.3) and (3.8), for a fixed t0 > 0,

(4.1) Xl = S(t0)Kl

is the subset of {u ∈ H1(I);u(x) > 0 in I, ∥u∥L1
= l}. The uniqueness of solutions implies

that for every t ≥ 0, S(t)Xl = S(t)S(t0)Kl = S(t + t0)Kl = S(t0)S(t)Kl ⊂ S(t0)Kl = Xl.
This means that S(t) is a nonlinear semigroup acting on Xl.

Let us show that S(t) is continuous on Xl.

Proposition 4.1. Let 0 < R̃ < ∞ and K̃R̃ = {u ∈ Xl; ∥u∥H1 < R̃} be an open ball of Xl.
Then, S(t) satisfies

∥S(t)u0 − S(t)v0∥H1 ≤ Ln+1

p(R̃)
∥u0 − v0∥δ̃

n+1

H1 ,

t ∈ [ntp(R̃), (n+ 1)tp(R̃)]; n = 0, 1, 2, ...; u0, v0 ∈ K̃R̃,(4.2)

with the exponent δ̃ = (1− η̃)/(1− α̃) and some constant Lp(R̃) > 0, where p(·) is the same

continuous increasing function as in (3.2).

Proof. Since H1(I) is continuously embedded in Z, there exists some constant C̃ such that
∥·∥Z ≤ C̃ ∥·∥H1 . Therefore, for u0 ∈ K̃R̃, it holds that ∥u0∥Z < C̃R̃. So, [22, Corollary 5.4]

is applicable for the solutions S(t)u0, u0 ∈ K̃R̃, to observe that

tη̃−α̃ ∥S(t)u0 − S(t)v0∥W + tβ̃−α̃ ∥S(t)u0 − S(t)v0∥Z
+ ∥S(t)u0 − S(t)v0∥Y ≤ CR̃ ∥u0 − v0∥H1 , 0 < t ≤ tR̃, u0, v0 ∈ K̃R̃.

On the basis of this estimate, in the same way as [22, Propositions 6.6 and 6.7], we can
obtain the desired inequality (4.2).

We define the mapping G : [0,∞)×K̃R̃ → Xl as G(t, u0) = S(t)u0. Estimate (4.2) means

that G(t, ·) is Hölder continuous on the ball K̃R̃ and the Hölder exponent is uniform in t on

any finite time interval. As shown in (3.7), for each u0 ∈ K̃R̃, G(·, u0) is continuous from
[0,∞) to H1(I). Therefore, problem (1.1) determines a dynamical system (S(t),Xl,H

1(I)).
Note that the asymptotic behavior of every global solution u(t;u0) starting from u0 ∈ Kl

is reduced to that of a trajectory in (S(t),Xl,H
1(I)).

Convergence solutions quasilinear parabolic equation
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5 Lyapunov function In this section, let us construct a Lyapunov function for (1.1).
Let u be a global solution of (1.1) in the function space (3.7). As u is positive due to (3.8),
the first equation of (1.1) is written as

∂u

∂t
=

∂

∂x

[
u
∂

∂x
(a log u+G(x)u)

]
.

Consider the duality product of this equation with (a log u + G(x)u) in H1(I) × H1(I)∗.
Then,

d

dt

∫
I

[
a (u log u− u) +

G(x)

2
u2
]
dx ≤ −

∫
I

u

∣∣∣∣ ∂∂x (a log u+G(x)u)

∣∣∣∣2 dx.
Let 0 < s < t <∞. Integrating this inequality in [s, t], we obtain that[∫

I

[
a (u(τ) log u(τ)− u(τ)) +

G(x)

2
u(τ)2

]
dx

]τ=t

τ=s

≤ 0.

If we set

Φ(u) =

∫
I

[
a (u log u− u) +

G(x)

2
u2
]
dx,

then Φ(u(t)) ≤ Φ(u(s)). This means that Φ is a Lyapunov function for (1.1).
We show a property of Φ which is used in Section 7. Let us set H1

+(I) = {u ∈
H1(I);u(x) > 0 in I}. Then, H1

+(I) is an open set of H1(I). For every u ∈ H1
+(I),

we see that

Φ(u+ h)− Φ(u)− ⟨a log u+G(x)u, h⟩H1×H1∗ = ∥h∥H1∗ R(h),(5.1)

here R(h) is defined for h ∈ H1(I) such that u + h ∈ H1
+(I) and satisfies R(h) → 0 as

∥h∥H1 → 0. Indeed, we verify that∫
I

[(u+ h) log (u+ h)− (u+ h)] dx−
∫
I

[u log u− u] dx− ⟨log u, h⟩H1×H1∗

=

∫
I

[∫ 1

0

log (u+ θh)dθ

]
h dx−

∫
I

(log u)h dx

=

∫
I

[∫ 1

0

log (1 + θ
h

u
)dθ

]
h dx

≤
∫
I

[∫ 1

0

θ
h

u
dθ

]
h dx

=
1

2

∫
I

h2

u
dx

≤ 1

2minx∈I{u(x)}
∥h∥H1∗ ∥h∥H1

and ∫
I

G(x)
(u+ h)2

2
dx−

∫
I

G(x)
u2

2
dx− ⟨G(x)u, h⟩H1×H1∗

=

∫
I

G(x)
h2

2
dx

≤
∥G∥L∞

2
∥h∥H1∗ ∥h∥H1 .

So, (5.1) is valid.
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𝑦 0 

𝑧 = 𝑔(𝑦) 

𝑧 

𝑧 = 𝑓(𝑦, 𝐶) 
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𝑧 

𝑧 = 𝑓(𝑦, 𝐶′) 

𝑦 𝐶  𝑦 𝐶′  

1 1 

Fig. 1: Graphs of f(y, C) and g(y).

6 Stationary solutions In this section, we investigate the stationary solutions of (1.1).
As shown in Section 4, problem (1.1) determines a dynamical system (S(t),Xl,H

1(I)).
Therefore, when the initial function u0 of (1.1) is taken from Kl, we have to consider a
corresponding stationary problem

(6.1)



d2

dx2
(au+ αu2)− µ

d

dx

[
u
d

dx
(T (x)u)

]
= 0 in I,

du

dx
(0) =

du

dx
(1) = 0,∫

I

u(x)dx = l,

u(x) > 0, in I,

in H1(I).

Theorem 6.1. For each l > 0, the stationary problem (6.1) possesses a unique solution
ul(x). Moreover, there exists a bijection between l ∈ (0,∞) and Cl ∈ R and ul(x) is
characterized by the functional equation

ul(x) = exp

(
Cl −G(x)ul(x)

a

)
in I.

The proof of Theorem 6.1 relies on the following two lemmas (see Fig. 1).

Lemma 6.1. Let x0 ∈ I be fixed. Then, for each C ∈ R, a transcendental equation with
respect to y:

(6.2) y = exp

(
C −G(x0)y

a

)
possesses a unique positive solution.

Proof. Let us put f(y, C) = y exp (−C/a) and g(y) = exp (−G(x0)y/a). Since a > 0 and
G(x0) > 0, we can observe that there exists a unique y(C) > 0 satisfying f(y(C), C) =
g(y(C)). This y(C) is the solution of (6.2).

Convergence solutions quasilinear parabolic equation
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Lemma 6.2. Let x0 ∈ I be fixed. Then the mapping

y : C ∈ R 7→ y(C) ∈ (0,∞),

where y(C) is the solution of (6.2) with C, is a strictly increasing continuous function
satisfying

y(−∞) = 0 and y(∞) = ∞.

Proof. When −∞ < C < C ′ < ∞, we obviously see that f(y, C) > f(y, C ′) for all y >
0. Since f(y, C) and g(y) are continuous functions with respect to y, we observe that
y(C) < y(C ′) and y(C) → y(C ′) as C → C ′. Furthermore, exp−(C/a), i.e., the slope of
f(y, C), converges to ∞ (resp. 0) as C → −∞ (resp. C → ∞). Thus, y(−∞) = 0 and
y(∞) = ∞.

Proof of Theorem 6.1. The first equation of (6.1) is written as

d

dx

[
u
d

dx
(a log u+G(x)u)

]
= 0 in I.

Considering the duality product of this equation with (a log u+G(x)u) in H1(I)×H1(I)∗,
we obtain that ∫

I

u

∣∣∣∣ ddx (a log u+G(x)u)

∣∣∣∣2 dx = 0.

Therefore, u satisfies

a log u(x) +G(x)u(x) = C in I,

where C ∈ R is some constant, i.e.,

(6.3) u(x) = exp

(
C −G(x)u(x)

a

)
in I.

On account of Lemma 6.1, we verify the existence and uniqueness of u(x) satisfying (6.3).
Let uC denote the solution of (6.3) with C. Thanks to Lemma 6.2, we know that the

mapping

L : C ∈ R 7→ L(C) =
∥∥uC∥∥

L1
∈ (0,∞)

is a bijection. Thus, there exists a certain Cl such that
∥∥uCl

∥∥
L1

= l. This uCl is the very

solution ul of (6.1).

Let us show some information about stationary solutions. On account of (1.4), we know
that G′(·) and G′′(·) are continuous functions. Due to (6.3), the first derivative of u(·)
satisfies

u′(x) = −G
′(x)u(x) +G(x)u′(x)

a
exp

(
C −G(x)u(x)

a

)
in I.

We observe from this equation that u′(·) is a continuous function and

u′(x0) = 0 at x0 ∈ I ⇐⇒ G′(x0) = 0 at x0 ∈ I,

i.e.,

(6.4) u′(x0) = 0 at x0 ∈ I ⇐⇒ T ′(x0) = 0 at x0 ∈ I.
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Furthermore, the second derivative of u(·) satisfies

u′′(x) = exp

(
C −G(x)u(x)

a

)
×
[
−G

′′(x)u(x) + 2G′(x)u′(x) +G(x)u′′(x)

a

+

(
G′(x)u(x) +G(x)u′(x)

a

)2
]

in I.

This equation and (6.4) also imply that u′′(·) is a continuous function and

u′(x0) = 0 and u′′(x0) > 0 at x0 ∈ I

⇐⇒ G′(x0) = 0 and G′′(x0) < 0 at x0 ∈ I,

i.e.,

u′(x0) = 0 and u′′(x0) > 0 at x0 ∈ I

⇐⇒ T ′(x0) = 0 and T ′′(x0) > 0 at x0 ∈ I.(6.5)

From above all, we conclude that u(·) ∈ C2([0, 1];R). Moreover, u(·) and T (·) have the same
local minimum points and local maximum points.

7 Convergence to stationary solutions We are now in a position to prove the con-
vergence of global solutions.

Theorem 7.1. For each l > 0, every global solution S(t)u0 of (1.1) in (3.7) with initial
value u0 ∈ Kl converges to ul(x) in H

1(I).

In the proof, we shall use the following proposition.

Proposition 7.1. For each u0 ∈ Kl, let ω(u0) = {v ∈ Xl ; ∃tn ↗ ∞ s.t. ∥S(tn)u0−v∥H1 →
0} denote the ω-limit set of the trajectory S(t)u0. Then, ω(u0) = {ul}, where ul is a unique
solution of (6.1).

Proof. At first, since u log u− u ≥ −1 for all u ≥ 0, we obtain that

Φ(u) =

∫
I

[
a (u log u− u) +

G(x)

2
u2
]
dx ≥ −a, ∀u ∈ Xl.

Let v ∈ ω(u0). ∥S(tn)u0 − v∥H1 → 0 implies that

Φ(v) = lim
tn→∞

Φ(S(tn)u0) = inf
0≤t<∞

Φ(S(t)u0),

i.e., Φ(v) is constant on ω(u0). Note that S(t)ω(u0) = ω(u0) for every 0 ≤ t < ∞.
Thus, Φ(S(t)v) is constant for 0 ≤ t < ∞. We know that S(·)v ∈ C([0,∞);H1(I)) ∩
C1([0,∞);H1(I)∗). Then, we see that

(7.1)
d

dt
Φ(S(t)v)

∣∣∣∣
t=0

=

⟨
a log v +G(x)v,

d

dt
S(t)v

⟩
H1×H1∗

∣∣∣∣∣
t=0

.

Convergence solutions quasilinear parabolic equation
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Indeed, for sufficiently small ∆t > 0, we obtain from (5.1) that

Φ(S(∆t)v)− Φ(v)− ⟨a log v +G(x)v, S(∆t)v − v⟩H1×H1∗

= ∥S(∆t)v − v∥H1∗ R(S(∆t)v − v).

Dividing this equality by ∆t, we have

Φ(S(∆t)v)− Φ(v)

∆t
−
⟨
a log v +G(x)v,

S(∆t)v − v

∆t

⟩
H1×H1∗

=

∥∥∥∥S(∆t)v − v

∆t

∥∥∥∥
H1∗

R(S(∆t)v − v).

Since S(∆t)v → v in H1(I) and S(∆t)v−v
∆t → d

dtS(t)v
∣∣
t=0

in H1(I)∗ as ∆t → 0, (7.1) is
verified. Then, we see that

0 =
d

dt
Φ(S(t)v)

∣∣∣∣
t=0

=

⟨
a log v +G(x)v,

∂

∂x

[
v
∂

∂x
(a log v +G(x)v)

]⟩
H1×H1∗

= −
∥∥∥∥√v ∂∂x (a log v +G(x)v)

∥∥∥∥2
L2

≤ −min
x∈I

{v(x)}
∥∥∥∥ ∂∂x (a log v +G(x)v)

∥∥∥∥2
L2

.

Therefore, v ∈ ω(u0) implies that

a log v +G(x)v = C in I,

i.e., v is a solution of (6.1). By Theorem 6.1, we obtain that ω(u0) = {ul}.

Proof of Theorem 7.1. We verify that

inf
v∈ω(u0)

∥S(t)u0 − v∥H1 → 0 as t→ ∞.

Indeed, suppose the contrary; then there exists a sequence of time tn ↗ ∞ such that
Φ(S(tn)u0) does not converge to Φ(v), v ∈ ω(u0), which is a contradiction. As shown in
Proposition 7.1, ω(u0) consists of ul. Therefore, we obtain that

∥S(t)u0 − ul∥H1 → 0 as t→ ∞.
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