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Abstract. We study a biharmonic nonlocal MEMS equation. It arises in the Micro-
Electro Mechanical System(MEMS) devices. First we establish the local solution and
extend it globally in time by the use of the energy. Next, we consider the dynamical
properties. The dynamical system has an absorbing set and a global attractor. Finally
we prove the convergence of the global solution to a stationary solution.

1 Introduction We consider the following biharmonic nonlocal MEMS equation:

(1)


utt + ut + ∆2u = G (β, γ,∇u)∆u + λ

(1−u)σ I (σ, χ, u) x ∈ Ω, t > 0,

u = ∆u = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) x ∈ Ω,
ut(x, 0) = u1(x) x ∈ Ω,

where λ > 0, β > 0, γ > 0, χ > 0, σ ≥ 2, Ω ⊂ Rn for n ∈ N is a bounded domain with
smooth boundary ∂Ω,

G (β, γ,∇u) = β

∫
Ω

|∇u|2 dx + γ,

I (σ, χ, u) =
1

(H (σ, χ, u))σ and H (σ, χ, u) = 1 + χ

∫
Ω

dx

(1 − u)σ−1
.

If the solution u(x, t) of (1) reaches 1 at some point in Ω in finite time t = Tq, the right-
hand side of (1) becomes infinite, which leads to the singularity. In this case, the solution
u(x, t) is said to quench in finite time t = Tq and Tq is called the quenching time of the
solution. This equation has been considered in [2, 4] and is a natural extension of MEMS
equation [7, 8, 20, 23]. The MEMS (Micro-Electro Mechanical System) equation arises in the
study of the MEMS devices which are often utilized to combine electronics with micro-size
mechanical devices. They can be modelled as the dynamic deflection of an elastic membrane
inside this system and arise in the accelerometers for airbag deployment in automobiles, in
the ink jet printer heads, in the optical switches, in the chemical sensors and so on.
In [2], the authors establish the stationary solution with Steklov and Dirichlet boundary
condition by the implicit function theorem [25]. They construct the stationary solution u ∈
H4(Ω)∩H1

0 (Ω) of (1) provided that the diameter of Ω is sufficiently small. In [4], the authors
consider the periodic solution of (1) by [25]. In the limiting case χ = 0, there is supposed
to be no capacitor in the circuit, which is studied in [13] with β = 0 and σ = 2. The author
derives the results of existence, convergence to the stationary solution and exponential decay
of the global solution. On the other hand, he deals with the quenching of the solution. The
aim of this paper is to investigate the dynamical properties to the biharmonic nonlocal
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problem (1). For the second order nonlocal equation, see [10, 11, 12, 16, 17, 19, 21, 22, 24].
First, we obtain the theorem concerned with the local existence of the solution. Throughout
this paper, the definition of the function spaces and their norms is presented in Section 2.

Theorem 1 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω with n = 1, 2, 3.
We denote X ≡ H2(Ω) ∩ H1

0 (Ω), D ≡ X × L2(Ω) and H ≡ L2(Ω) × H−2(Ω). For any

λ > 0, β > 0, γ > 0, χ > 0, σ ≥ 2 and φ0 ≡
(

u0

u1

)
∈ D with

‖u0‖C < 1 − δ

for some δ ∈ (0, 1), there exists a unique solution of (1) with

φ ≡
(

u
ut

)
∈ C ([0, T );D) ∩ C1 ([0, T );H)

for sufficiently small T > 0, where T depends only on λ, β, γ, χ, σ, Ω, (u0, u1) and δ. The
solution u can be continued as long as ‖u( · , t)‖C < 1. Here, ‖ · ‖C denotes the standard
C(Ω) norm defined in Section 2.

To establish the global solution, we define the energies by

E(φ(t)) =
1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

(∆u)2 dx +
β

4

(∫
Ω

|∇u|2 dx

)2

+
γ

2

∫
Ω

|∇u|2 dx

and

E0 ≡ 1
2

∫
Ω

u2
1 dx +

1
2

∫
Ω

(∆u0)
2

dx +
β

4

(∫
Ω

|∇u0|2 dx

)2

+
γ

2

∫
Ω

|∇u0|2 dx,

respectively. Then

E(φ(t)) ≡ E(φ(t)) +
λ

(σ − 1)2 χ
(H (σ, χ, u))1−σ

is a Lyapunov function for (1), which plays an important role in proving the global exis-
tence and dynamical properties of the solution. We impose the smallness condition on the
parameter λ > 0 and initial energy E0. To state the condition, we define

λ∗ ≡ (σ − 1)2 χa

2

(
2σ−1 + χ |Ω|

2σ−1

)σ−1

for any fixed γ > 0, χ > 0, σ ≥ 2 and Ω ⊂ Rn, where a > 0 depends only on γ and Ω and
is defined in Section 4. Moreover we define

E∗
0 ≡ a

2
− λ

(σ − 1)2 χ

(
2σ−1

2σ−1 + χ |Ω|

)σ−1

> 0

for these fixed constants and any 0 < λ < λ∗. Then we have the next theorem on the global
existence of the solution.

Theorem 2 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω with n = 1, 2, 3.
For any β > 0, γ > 0, χ > 0 and σ ≥ 2, let λ < λ∗ be fixed arbitrarily. For all κ ∈ (0, E∗

0 ),
there exists δ0 ∈ (0, 1) such that for any φ0 ∈ D with

‖u0‖C < 1 − δ0
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and
E0 < E∗

0 − κ,

(1) has a global solution satisfying

φ ∈ C ([0,∞);D) ∩ C1 ([0,∞);H)

and
‖u( · , t)‖C < 1 − δ0

for all t ≥ 0. Here, δ0 depends only on λ, γ, χ, σ, κ and Ω.

Next theorem is on the regularity of the solution obtained in Theorem 2. To state the
theorem, we define Y by

Y =
{
u ∈ H4(Ω) ∩ H1

0 (Ω) | ∆u = 0 on ∂Ω
}

.

If n ≤ 3, the Sobolev embedding H2(Ω) ⊂ C(Ω) holds. Hence we note that ∆u = 0 on ∂Ω
makes sense in this paper. Now we denote E ≡ Y × X. Then we have the following:

Theorem 3 Under the same hypotheses as Theorem 2, for any φ0 ∈ E, there exists a
unique global solution of (1) with

φ ∈ C ([0,∞);E) ∩ C1 ([0,∞); D) ∩ C2 ([0,∞);H) .

We define

Zδ0 ≡
{(

u1

u2

)
∈ D |

∥∥u1
∥∥

C
< 1 − δ0

}
and consider the nonlinear semigroup S(t) : Zδ0 → Zδ0 by

S(t)φ0 = φ(t).

In the fourth theorem, we establish an absorbing set to show that S(t) has a global attractor
in Zδ0 .

Theorem 4 In addition to the same hypotheses as Theorem 2, let

(2) E0 +
λ

(σ − 1)2 χ
<

γK1

2βK2

hold, where K1 > 0 and K2 > 0 depend only on γ and Ω and are defined in Lemma 4. Then
the dynamical system S(t) : Zδ0 → Zδ0 possesses an absorbing set B ⊂ Zδ0 . The omega
limit set A = ω(B) of B is a global attractor in Zδ0 .

To argue the behaviour as t → +∞, we introduce the set Sλ
β,γ,χ,σ of stationary solution

by
Sλ

β,γ,χ,σ = {η ∈ Zδ0 | η = η(x) is a stationary solution for (1)} .

In [2], they construct the stationary solution by the implicit function theorem for the small
domain. We also find the stationary solution without imposing any smallness condition on
Ω. We derive the following theorem on dynamical properties of S(t).
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Theorem 5 Under the same hypotheses as Theorem 4, the omega limit set ω(φ0) is in-
variant, non-empty, compact and connected in Zδ0 . Moreover ω(φ0) ⊂ Sλ

β,γ,χ,σ × {0}. In
particular,

Sλ
β,γ,χ,σ 6= ∅

for λ ∈ (0, λ∗), where

λ∗ ≡ min

(
λ∗,

γχ (σ − 1)2 K1

2βK2

)
.

We prove that the omega limit set is composed of a single point in Zδ0 .

Theorem 6 Under the same hypotheses as Theorem 4, there exists η ∈ Sλ
β,γ,χ,σ such that

the omega limit set is composed of a single point in Zδ0 with

ω(φ0) = (η, 0)

and

(3) lim
t→+∞

(
‖u( · , t) − η‖X + ‖ut( · , t)‖2

)
= 0.

This paper is organized as follows: In Section 2, we recall the facts about Sobolev space
and dynamical system. We introduce the existence theorem [2] of stationary solution. In
Section 3, we establish the local solution by the contraction mapping theorem. In Section
4, we extend the local solution to the global one for small parameters and initial values.
Moreover we study the regularity of the global solution. In Section 5, we consider the
dynamical properties. By the existence of the Lyapunov function, we can treat the omega
limit set and global attractor. In Section 6, by the Lojasiewicz-Simon inequality, we show
that the omega limit set is composed of a single point. In an appendix, we prove the
Lojasiewicz-Simon inequality. This kind of inequalities is proven in many situations. In
this paper, we treat the case with nonlocal term.

2 Preliminaries First, we introduce the notations of function spaces and the Sobolev
embedding theorems. In this paper, C(Ω) denotes the space of all continuous functions in
Ω with the norm

‖u‖C = sup
x∈Ω

|u(x)|

for u ∈ C(Ω). For 1 ≤ p ≤ +∞, we denote the usual Sobolev space in Ω by W s,p(Ω) and in
particular write W s,2(Ω) = Hs(Ω). Hs

0(Ω) is defined as the closure of the set D(Ω) in the
space Hs(Ω), where we denote by D(Ω) the space of all infinitely differentiable functions
on Ω with compact supports. H−s(Ω) is defined as the dual space of Hs

0(Ω) equipped with
the norm

‖u‖H−s = sup
w∈Hs

0 (Ω),‖w‖Hs
0
≤1

∣∣∣∣∫
Ω

uw dx

∣∣∣∣ .

( , ) and ( , )H−s denote the inner product in L2(Ω) and H−s(Ω), respectively. According
to [1, 3] , we adopt the norm in H1

0 (Ω), X and Y as

‖u‖H1
0

= ‖∇u‖2 , ‖u‖X = ‖∆u‖2 and ‖u‖Y =
∥∥∆2u

∥∥
2
,
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respectively. Here, ‖ · ‖p denotes the standard Lp norm in Ω with p ∈ [1,∞]. We define

‖φ‖D =
(∥∥u1

∥∥2

X
+

∥∥u2
∥∥2

2

) 1
2

and ‖φ‖E =
(∥∥u1

∥∥2

Y
+

∥∥u2
∥∥2

X

) 1
2

for φ =
(

u1

u2

)
. We introduce the embedding inequalities [1].

Lemma 1 Let n = 1. For u ∈ H1
0 (Ω), we have

‖u‖C ≤ CS ‖u‖H1
0
,

where CS > 0 depends only on Ω.

Lemma 2 Let n = 2, 3. For u ∈ X, we have

‖u‖C ≤ CS ‖u‖X ,

where CS > 0 depends only on Ω.

Lemma 3 For u ∈ H1
0 (Ω), we have

‖u‖2 ≤ CP ‖u‖H1
0
,

where CP > 0 depends only on Ω.

Henceforth we shall adopt universal notations CS and CP to denote these constants for
the case n = 1, 2, 3.
We introduce the theorem of existence of the global attractor. For other basic notions and
results, see [26, 28]. Let Z be Banach space and S(t) be a continuous semigroup on Z. The
semigroup S(t) is said to be uniformly compact if for every bounded set B ⊂ Z, there exists
t0 such that ∪t≥t0S(t)B is relatively compact in Z.

Theorem 7 (Theorem 1.1 in [26]) Let S(t) be a continuous semigroup on Banach space
Z. We assume that it can be decomposed into S(t) = S1(t) + S2(t), where S1(t) is uni-
formly compact for large t > 0 and S2(t) is continuous from Z to Z satisfying the following
condition: For any bounded set B ⊂ Z,

sup
φ0∈B

‖S2(t)φ0‖Z → 0

as t → ∞. We also assume that there exist an open set U and absorbing set B ⊂ U . Then
the omega limit set A = ω(B) of B is a global attractor in U for S(t).

Finally we mention the existence of stationary solution. We consider the corresponding
elliptic equation

(4)

{
∆2η = G (β, γ,∇η)∆η + λ

(1−η)σ I (σ, χ, η) x ∈ Ω,

η = ∆η − d∂η
∂ν = 0 x ∈ ∂Ω,

where d ∈ [0,+∞], ν is the outer unit normal vector and Ω is a bounded domain in Rn

with smooth boundary ∂Ω. Then the existence of the stationary solution is guaranteed by
the implicit function theorem [25].
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Theorem 8 (Theorem 1 in [2]) Let Ω ⊂ Rn be a bounded domain with smooth boundary
∂Ω with n ≤ 7. For any λ > 0, β > 0, γ > 0, χ > 0 and σ ≥ 2, there exist λ > 0 and
d0 > 0 such that (4) possesses a solution η ∈ H4(Ω)∩H1

0 (Ω) for all λ ∈ (0, λ) provided that
one of the following holds:
Steklov boundary condition: 0 ≤ d < d0

or
Dirichlet boundary condition: d = +∞ and Ω is a ball
and the diameter of Ω is sufficiently small.

The relation between λ and λ∗ in Theorem 5 is not clear.

3 Local existence We consider the linear wave equation

(5)


wtt + wt + Aw = 0 x ∈ Ω, t > 0,
w = ∆w = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = w0(x) x ∈ Ω,
wt(x, 0) = w1(x) x ∈ Ω,

where
Aw = ∆2w − γ∆w

and derive the decay estimate of the solution. Next we construct the time local solution
of (1) by the contraction mapping theorem. We omit the detail of the computations. See
[13, 18, 21].

Lemma 4 (Proposition 4.3.4 in [15] and (3.5) in [13]) For any ψ0 ≡
(

w0

w1

)
∈ D,

there exists a unique solution

ψ ≡
(

w
wt

)
∈ C ([0,∞);D) ∩ C1 ([0,∞);H)

of (5). Moreover, we have
‖ψ‖D ≤ K2 ‖ψ0‖D e−K1t,

where K1 > 0 and K2 > 0 depend only on γ and Ω.

Proof of Theorem 1. To deal with the nonlinear term with the singularity, we modify
1/(1 − u) and I (σ, χ, u) by

Fδ (u) =
{

1
1−u u ≤ 1 − δ

2 ,
4
δ u ≥ 1 − δ

4

and

Iδ (σ, χ, u) =
1

(Hδ (σ, χ, u))σ with Hδ (σ, χ, u) = 1 + χ

∫
Ω

Fδ (u(x))σ−1
dx,

where we continue Fδ(u) suitably in the range (1− δ/2, 1− δ/4) so that we assume that Fδ

is positive, bounded and sufficiently smooth. Under the abstract setting

φ =
(

u
ut

)
, φ0 =

(
u0

u1

)
, B =

(
0 −id
A id

)
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and

Jδ (u) =

(
0

β
(∫

Ω
|∇u|2 dx

)
∆u + λFδ(u)σIδ (σ, χ, u)

)
,

we transform (1) into the modified equation

φt + Bφ = Jδ (u)

and consider the corresponding integral equation

(6) φ = e−Btφ0 +
∫ t

0

e−B(t−s)Jδ (u(s)) ds.

We construct the local solution by the contraction mapping theorem. Taking l = ‖φ0‖D,
we set

XT ≡
{
φ ∈ C ([0, T ]; D) | ‖φ‖XT

≤ 2K2l
}

,

where T is a positive constant to be determined later. Here in the space XT , the norm is
equipped with

‖φ‖XT
= sup

t∈[0,T ]

‖φ ( · , t)‖D .

For φ ∈ XT , we define the mapping V (t) on D by the right-hand side of (6), that is,

V (t)φ = e−Btφ0 +
∫ t

0

e−B(t−s)Jδ (u(s)) ds.

Then we can show that V is a contraction mapping from XT into itself for small T > 0.

Lemma 5 (Cf. Lemmas 2 and 3 in [21]) If T < τ , then V is a contraction mapping
from XT into XT , where τ > 0 is a constant determined only by λ, β γ, χ, σ, Ω, l and δ.

By Lemma 5, (6) has a unique time local solution φ ∈ C ([0, T );D) ∩ C1 ([0, T );H).
If the solution of (6) begins with ‖u0‖C < 1 − δ and satisfies ‖u( · , t)‖C ≤ 1 − δ/2 for
all t > 0, then u is a solution of (1). Otherwise there is a finite time T0 > 0 at which
maxx∈Ω u(x, T0) = 1 − δ/2. We choose δ1 ∈ (0, δ) and apply the contraction mapping
theorem to (6) with δ replaced by δ1. We may extend u(x, t) uniquely to an interval (0, T ′

0)
with T0 < T ′

0 such that ‖u( · , t)‖C ≤ 1−δ1/2 for all t ∈ [0, T ′
0). Since we can take δ1 ∈ (0, δ)

arbitrarily small, u(x, t) is a solution of (1) on Ω × [0, T ′
0) as long as ‖u( · , t)‖C < 1. 2

4 Global existence In this section, we shall show that the local solution can be continued
up to t = +∞. We introduce the Lyapunov function to obtain the necessary estimates and
extend it globally in time. The idea is from [17]. At first, in order to introduce the lemma,
we set

a =

{
γ

C2
S

for n = 1,
1

C2
S

for n = 2, 3,
b =

2λ

(σ − 1)2 χ
and c = χ |Ω|

and define

g(x) = ax2 + b

{
(1 − x)σ−1

(1 − x)σ−1 + c

}σ−1

for −1 ≤ x ≤ 1, where CS is the constant defined in Lemmas 1 and 2. Let

G(x) = g(x) − 2E∗
0 − g(−1) + g(1) + 2κ

for 0 ≤ x ≤ 1.
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Lemma 6 Under the same hypotheses as Theorem 2, there exists a zero x0 ∈ (0, 1) of
G(x), where x0 depends only on λ, γ, χ, σ, κ and Ω.

Proof. Since we have

g(−1) = a + b

(
2σ−1

2σ−1 + c

)σ−1

, g(0) = b

(
1

1 + c

)σ−1

and g(1) = a

and

h(x) =
(

x

x + c

)σ−1

is increasing for x ≥ 0, a simple computation yields

G(0) = 2 (κ − E∗
0 ) + b

(
h(1) − h(2σ−1)

)
< 0

by the hypotheses 0 < κ < E∗
0 and σ ≥ 2. On the other hand, we have

G(1) = a − b

(
2σ−1

2σ−1 + c

)σ−1

− 2E∗
0 + 2κ = 2κ > 0.

Thus the intermediate theorem guarantees at least one zero in (0, 1). Henceforth, we denote
the least zero by

x0 = 1 − δ0

with δ0 ∈ (0, 1). 2

Proof of Theorem 2. For (1), we have the Lyapunov function

E(φ(t)) ≡ E(φ(t)) +
λ

(σ − 1)2 χ
(H (σ, χ, u))1−σ

for t ∈ [0, T ) and set

E0 ≡ E(φ0) = E0 +
λ

(σ − 1)2 χ
(H (σ, χ, u0))

1−σ
,

where T is the maximal existence time of the solution determined in Section 3. In fact, we
obtain

d

dt
E(φ(t)) = −

∫
Ω

u2
t dx ≤ 0,

which implies that

(7) E(φ(t)) ≤ E(φ(t)) +
∫ t

0

∫
Ω

u2
t dx ds = E0.

Now we estimate E(φ(t)) and E0 as follows:

2E(φ(t)) ≥ ‖u‖2
X + γ ‖u‖2

H1
0

+
b(

1 + c
(

1
1−‖u‖C

)σ−1
)σ−1 ≥ g(‖u‖C)

by Lemmas 1 and 2 and

2E0 < 2E0 + b (H (σ, χ,−1))1−σ ≤ 2E∗
0 + b

(
2σ−1

2σ−1 + c

)σ−1

− 2κ
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due to −1 < u0. Then the energy inequality (7) yields

G(‖u(t)‖C) = g (‖u(t)‖C) − 2E∗
0 − g(−1) + g(1) + 2κ < 0

for all t ∈ [0, T ). By Lemma 6 and ‖u0‖C < 1 − δ0,

(8) ‖u(t)‖C < 1 − δ0

holds for all t ∈ [0, T ). Owing to the energy (7), we have

(9) γ ‖u(t)‖2
H1

0
+ ‖u(t)‖2

X + ‖ut(t)‖2
2 ≤ 2E0

for all t ∈ [0, T ). We note that

(10) E0 < E∗
0 +

λ∗

(σ − 1)2 χ
− κ <

a

2
+

a

2

(
2σ−1 + χ |Ω|

2σ−1

)σ−1

.

Hence the right-hand side depends only on γ, χ, σ and Ω and is independent of ‖φ0‖D and
T . Finally (8) and (9) are valid for all t ≥ 0, which ensures that the solution exists globally
in time. Since L2(Ω) ⊂ H−2(Ω), we have

utt = −ut − ∆2u + G (β, γ,∇u)∆u +
λ

(1 − u)σ I (σ, χ, u) ∈ H−2(Ω)

and φ ∈ C ([0,∞);D) ∩ C1 ([0,∞);H). 2

Proof of Theorem 3. In this proof, by L we denote the universal positive constants which
depend only on λ, β, γ, χ, σ, κ, Ω and ‖φ0‖E . We define (u1)t by

(u1)t = −u1 − ∆2u0 + G (β, γ,∇u0)∆u0 +
λ

(1 − u0)
σ I (σ, χ, u0) ∈ L2(Ω).

First by differentiating ‖utt‖2
2 with respect to t, we obtain

(11)
d

dt

∫
Ω

u2
tt dx = −2

∫
Ω

u2
tt dx − d

dt

∫
Ω

(∆ut)
2

dx + 2I1 + 2I2.

The definition and estimation of I1 and I2 are as follows. (8), (9), the Hölder and Young
inequalities yield

I1 ≡
∫

Ω

utt

(
G (β, γ,∇u) ∆u

)
t
dx

= −2β

∫
Ω

∆uut dx

∫
Ω

utt∆u dx − G (β, γ,∇u)
∫

Ω

∇utt · ∇ut dx

≤ 1
4

∫
Ω

u2
tt dx + L

∫
Ω

u2
t dx − 1

2
G (β, γ,∇u)

d

dt

∫
Ω

|∇ut|2 dx(12)

and

(13) I2 ≡
∫

Ω

utt

(
λ

(1 − u)σ I (σ, χ, u)
)

t

dx ≤ 1
4

∫
Ω

u2
tt dx + L

∫
Ω

u2
t dx,
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respectively. Eventually integrating (11) over (0, t) with respect to t together with (12) and
(13), we obtain∫ t

0

∫
Ω

u2
tt dx ds +

∫
Ω

(
u2

tt + (∆ut)
2
)

dx + G (β, γ,∇u)
∫

Ω

|∇ut|2 dx

≤ ‖(u1)t‖2
2 + ‖u1‖2

X + G (β, γ,∇u0) ‖u1‖2
H1

0

+
∫ t

0

d

dt

(
G (β, γ,∇u)

)( ∫
Ω

|∇ut|2 dx

)
ds + L

∫ t

0

∫
Ω

u2
t dx ds.

Since the fourth integral term in the right-hand side yields

d

dt

(
G (β, γ,∇u)

) ∫
Ω

|∇ut|2 dx = 2β

∫
Ω

∆uut dx

∫
Ω

∆utut dx

≤ L

∫
Ω

u2
t dx + β

∫
Ω

u2
t dx

∫
Ω

(∆ut)
2

dx,

we have ∫ t

0

∫
Ω

u2
tt dx ds +

∫
Ω

(
u2

tt + (∆ut)
2
)

dx + G (β, γ,∇u)
∫

Ω

|∇ut|2 dx

≤ L + β

∫ t

0

(∫
Ω

u2
t dx

)(∫
Ω

(∆ut)
2

dx

)
ds

and in particular∫
Ω

(∆ut)
2

dx ≤ L + β

∫ t

0

( ∫
Ω

u2
t dx

)(∫
Ω

(∆ut)
2

dx

)
ds.

We apply the Gronwall inequality (Lemma 2.1.1 in [15]) to derive∫
Ω

(∆ut)
2

dx ≤ L exp

(
β

∫ +∞

0

∫
Ω

u2
t dx ds

)
≤ L,

which implies that u ∈ Y , ut ∈ X and utt ∈ L2(Ω) due to

∆2u = −utt − ut + G (β, γ,∇u) ∆u +
λ

(1 − u)σ I (σ, χ, u) ∈ L2(Ω).

2

5 Global attractor First, we show that the orbit ∪t≥0φ(t) is contained in some absorb-
ing set in Zδ0 . Hence this fact leads us to the existence of a global attractor by Theorem
7 in Section 2. Next, we consider the properties of ω(φ0). We show that (η, 0) ∈ ω(φ0) for
some η ∈ Sλ

β,γ,χ,σ. In other words, there exist η ∈ Sλ
β,γ,χ,σ and tn → +∞ such that

(14) lim
n→+∞

(
‖u( · , tn) − η‖X + ‖ut( · , tn)‖2

)
= 0.

In [2], the authors establish the stationary solution η ∈ Y . However they impose the
smallness condition on Ω. See Theorem 8 in this paper. In this section, the Lyapunov
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function plays an important role in the argument.
For a solution u of (1) obtained in Theorem 2, we denote by v a solution of

(15)


vtt + vt + Av = β

(∫
Ω
|∇u|2 dx

)
∆v x ∈ Ω, t > 0,

v = ∆v = 0 x ∈ ∂Ω, t > 0,
v(x, 0) = u0(x) x ∈ Ω,
vt(x, 0) = u1(x) x ∈ Ω.

Let ψ =
(

v
vt

)
and S2(t)φ0 = ψ(t). From now on, we show that the semigroup S2 has a

decaying property. First, ψ satisfies

ψ = e−Btφ0 +
∫ t

0

e−B(t−s)P (u(s), v(s)) ds,

where

P (u(t), v(t)) =

(
0

β
(∫

Ω
|∇u|2 dx

)
∆v

)
.

We set
K3 ≡ K1 −

2βE0K2

γ
,

where K1 > 0 and K2 > 0 are constants defined in Lemma 4 and derive

K3 > K1 −
2βK2

γ

(
E0 +

λ

(σ − 1)2 χ

)
> 0

provided that (2) holds.

Lemma 7 Under the same hypotheses as Theorem 4, for any φ0 ∈ D, there exists a unique
solution

ψ ∈ C ([0,∞);D) ∩ C1 ([0,∞); H)

of (15). Moreover, we have

‖ψ(t)‖D ≤ K2e
−K3t ‖φ0‖D .

Proof. Thanks to Lemma 4, we have

‖ψ‖D ≤ K2 ‖φ0‖D e−K1t +
2βE0K2

γ

∫ t

0

e−K1(t−s) ‖ψ‖D ds

by the use of (9) and

eK1t ‖ψ(t)‖D ≤ K2 ‖φ0‖D + (K1 − K3)
∫ t

0

eK1s ‖ψ(s)‖D ds.

The Gronwall inequality yields

‖ψ(t)‖D ≤ K2e
−K3t ‖φ0‖D .

2

Next, in order to prove uniformly compactness, we introduce the lemmas. Their proofs
are similar to that of Theorem 3. Henceforth we shall adopt universal notations M > 0 to
denote the various constants which depend only on λ, β, γ, χ, σ, κ, Ω and ‖φ0‖D.



12 T. MIYASITA

Lemma 8 The solution ψ obtained in Lemma 7 satisfies

‖vt‖2
2 + ‖v‖2

X + γ ‖v‖2
H1

0
+ 2

∫ t

0

‖vt‖2
2 ds ≤ M.

Proof. We have(
‖vt‖2

2 + ‖v‖2
X + γ ‖v‖2

H1
0

)
t
+ 2 ‖vt‖2

2 = −β ‖u‖2
H1

0

(
‖v‖2

H1
0

)
t

and integrate this equation with respect to t to get

‖vt‖2
2 + ‖v‖2

X + γ ‖v‖2
H1

0
+ 2

∫ t

0

‖vt‖2
2 ds

≤ M ‖φ0‖2
D + M ‖φ0‖4

D + β

∫ t

0

(
‖u‖2

H1
0

)
t
‖v‖2

H1
0

ds

≤ M + M

∫ t

0

‖u‖X ‖ut‖2 ‖ψ‖
2
D ds

≤ M + M ‖φ0‖2
D

∫ t

0

e−2K3s ds

≤ M

by (9). 2

Next, let w be a solution of

(16)


wtt + wt + Aw = β

(∫
Ω
|∇u|2 dx

)
∆w + λ

(1−u)σ I (σ, χ, u) x ∈ Ω, t > 0,

w = ∆w = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = wt(x, 0) = 0 x ∈ Ω.

We set ξ =
(

w
wt

)
and S1(t)φ0 = ξ(t). Then we have

φ(t) = ξ(t) + ψ(t) and S(t) = S1(t) + S2(t).

Lemma 9 (16) possesses a unique solution

ξ ∈ C ([0,∞);E) ∩ C1 ([0,∞);D) ∩ C2 ([0,∞);H) .

Proof. First of all, we note that

‖w‖X = ‖u − v‖X ≤ ‖u‖X + ‖v‖X ≤ M

by (9) and Lemma 8 and that∫ ∞

0

‖wt‖2
2 ds =

∫ ∞

0

‖ut − vt‖2
2 ds ≤ 2

∫ ∞

0

‖ut‖2
2 ds + 2

∫ ∞

0

‖vt‖2
2 ds ≤ M
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by (7) and Lemma 8. In the same computations as (12) and (13) in the proof of Theorem
3, we have

d

dt

∫
Ω

w2
tt dx = −2

∫
Ω

w2
tt dx − d

dt

∫
Ω

(∆wt)
2

dx + 2I3 + 2I4,

where I3 and I4 are defined and computed similarly as follows:

I3 ≡
∫

Ω

wtt

(
G (β, γ,∇u)∆w

)
t
dx

≤ 1
4

∫
Ω

w2
tt dx + M

∫
Ω

u2
t dx − 1

2
G (β, γ,∇u)

d

dt

∫
Ω

|∇wt|2 dx

and

I4 ≡
∫

Ω

wtt

(
λ

(1 − u)σ I (σ, χ, u)
)

t

dx ≤ 1
4

∫
Ω

w2
tt dx + M

∫
Ω

u2
t dx.

Hence we obtain∫
Ω

w2
tt dx +

d

dt

∫
Ω

(
w2

tt + (∆wt)
2
)

dx + G (β, γ,∇u)
d

dt

∫
Ω

|∇wt|2 dx

≤ M

∫
Ω

u2
t dx.

We integrate this inequality to derive∫ t

0

∫
Ω

w2
tt dx ds +

∫
Ω

(
w2

tt + (∆wt)
2
)

dx + G (β, γ,∇u)
∫

Ω

|∇wt|2 dx

≤ M + 2β

∫ t

0

( ∫
Ω

∆uut dx

)(∫
Ω

∆wtwt dx

)
ds

≤ M + M

∫ t

0

( ∫
Ω

w2
t dx

)(∫
Ω

(∆wt)
2

dx

)
ds

and apply the Gronwall inequality to obtain∫
Ω

(∆wt)
2

dx ≤ M exp

(
M

∫ t

0

∫
Ω

w2
t dx ds

)
≤ M,

which yields w ∈ Y , wt ∈ X and wtt ∈ L2(Ω). 2

Proof of Theorem 4. Since λ and E0 are restricted to the hypotheses in Theorem 2 and
(2), it is obvious that S(t) has an absorbing set owing to (10) and

‖φ‖2
D ≤ 2E(φ(t)) ≤ 2E0.

S2 has a decaying property from Lemma 7. Lemma 9 implies that ‖ξ(t)‖E is bounded for
all t > 0. The inclusion E ⊂ D is compactly embedded. Hence S1 is uniformly compact.
Thus we apply Theorem 7 to S(t) to complete the proof. 2

Proof of Theorem 5. Following the argument of Lemma 7.6.2 in [15] and originally
[27] along with the proof of Theorem 4, we can prove that the orbit ∪t≥0φ(t) is relatively
compact in Zδ0 . Hence, the omega limit set ω(φ0) is invariant, non-empty, compact and
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connected in Zδ0 by Theorem 5.1.8 in [15]. Moreover by Theorem 7.6.1 in [15] together
with both the existence of Lyapunov function E(φ) and the precompactness of the orbit,
we have

lim
t→+∞

‖ut( · , t)‖2 = 0.

Finally we reach

ω(φ0) =
{
(η, 0) | there exist η ∈ Sλ

β,γ,χ,σ and tn → ∞ such that (14) holds
}

.

2

6 Omega limit set We discuss the convergence of the global solution u( · , t) to the
stationary solution η in the norm of X. We conclude that the omega limit set is composed
of a stationary solution η in Zδ0 with (3). For z = u − η, the method in [14, 15] is valid
by existence of Lyapunov function and the precompactness of the orbit in X as proven in
Section 5. In the limiting case χ = 0 and β = 0, the same conclusion is obtained in [13].

Proof of Theorem 6. In this proof, by Ni for i ∈ N, we denote the positive constant
which depends only on the constants λ, β, γ, χ, σ, κ, Ω and ‖η‖X . Changing variable
z = u − η, we consider

ztt + zt + Az = f (β, z, η) + g (λ, σ, χ, z, η) x ∈ Ω, t > 0,
z = ∆z = 0 x ∈ ∂Ω, t > 0,
z(x, 0) = u0(x) − η(x) x ∈ Ω,
zt(x, 0) = u1(x) x ∈ Ω

and obtain
lim

n→+∞

(
‖z( · , tn)‖X + ‖zt( · , tn)‖2

)
= 0

instead of (1) and (14), where

f (β, z, η) = β

( ∫
Ω

|∇(z + η)|2 dx

)
∆(z + η) − β

( ∫
Ω

|∇η|2 dx

)
∆η

and
g (λ, σ, χ, z, η) =

λ

(1 − (z + η))σ I (σ, χ, z + η) − λ

(1 − η)σ I (σ, χ, η) ,

respectively. For the sake of simplicity, we shall write

f = f (z, η) = f (β, z, η) and g = g (z, η) = g (λ, σ, χ, z, η) .

Defining

F (z) =
1
2

∫
Ω

(
(∆z)2 + γ |∇z|2

)
dx +

β

4

( ∫
Ω

|∇(z + η)|2 dx

)2

−β

4

( ∫
Ω

|∇η|2 dx

)2

+ β

(∫
Ω

|∇η|2 dx

)(∫
Ω

z∆η dx

)

+λ

∫
Ω

z

(1 − η)σ dx I (σ, χ, η)

+
λ

(σ − 1)2 χ

(
H (σ, χ, z + η)1−σ − H (σ, χ, η)1−σ

)
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and
G(t) =

1
2

∫
Ω

z2
t dx + F (z(t)) + ε

(
Az − f (z, η) − g (z, η) , zt

)
H−2

,

where ε > 0 is a small constant to be determined later, we have

d

dt
F (z(t)) = −1

2
d

dt

∫
Ω

z2
t dx −

∫
Ω

z2
t dx

and

G′(t) = −
∫

Ω

z2
t dx − ε

(
Az − f (z, η) − g (z, η) , zt

)
H−2

−ε ‖Az − f (z, η) − g (z, η)‖2
H−2

+ε
(
Azt − fz (z, η) zt − gz (z, η) zt, zt

)
H−2

,

where fz and gz are linearized operators from L2(Ω) to H−2(Ω) given by

fz (z, η) w = 2β

( ∫
Ω

∇(z + η) · ∇w dx

)
∆(z + η) + β

( ∫
Ω

|∇(z + η)|2 dx

)
∆w

and

gz (z, η) w =
λσw

(1 − (z + η))σ+1 I (σ, χ, z + η)

− λσ (σ − 1) χ

(1 − (z + η))σ H (σ, χ, z + η)−σ−1
∫

Ω

w

(1 − (z + η))σ dx,

respectively. Then the Young and Hölder inequalities yield

G′(t) ≤ −‖zt‖2
2 −

ε

2
‖Az − f − g‖2

H−2 +
ε

2
‖zt‖2

H−2

+ε ‖zt‖2
2 + εγ ‖zt‖2 ‖zt‖H−2 − ε

(
fzzt + gzzt, zt

)
H−2

≤ (εN1 − 1) ‖zt‖2
2 − ε

(
fzzt + gzzt, zt

)
H−2

− ε

2
‖Az − f − g‖2

H−2 .

Since we estimate the linearized operators as∣∣∣(fz (z, η) w,w
)

H−2

∣∣∣ ≤ β
(
2 ‖z + η‖X ‖z + η‖2 + ‖z + η‖2

H1
0

)
‖w‖2 ‖w‖H−2

and ∣∣∣(gz (z, η)w,w
)

H−2

∣∣∣ ≤ N2 ‖w‖2
2

(1 − ‖z + η‖C)σ+1 +
N2 ‖w‖2

2

(1 − ‖z + η‖C)2σ ,

respectively, thanks to (8) and (9), we can take sufficiently small ε > 0 so that the following
estimate is valid:

G′(t) ≤ (εN3 − 1) ‖zt‖2
2 −

ε

2
‖Az − f − g‖2

H−2

≤ −2N4

(
‖zt‖2

2 + ‖Az − f − g‖2
H−2

)
≤ −N4

(
‖zt‖2 + ‖Az − f − g‖H−2

)2

(17)

for t ≥ 0. Hence since G(t) is non-increasing in t ≥ 0 and (0, 0) ∈ ω(u0 − η, u1), we have
G(t) → 0 as t → +∞ and G(t) > 0 for t ≥ 0. As in [13, 14], we can prove the following
type of Lojasiewicz-Simon inequality:
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Lemma 10 (Theorems 2.2 in [14] and 11.2.7 in [15]) There exist θ ∈ (0, 1
2 ) and ρ >

0 such that for all z ∈ X with ‖z‖X < ρ, we have

|F (t)|1−θ ≤ ‖Az − f (z, η) − g (z, η)‖H−2 .

This inequality is proven in the same argument as Theorems 2.2 in [14] and 11.2.7 in
[15]. For the sake of completeness, we give a sketch of a proof in an appendix. The proof
of Theorem 6 is also similar to that of Theorem 1.2 in [14]. For all t ≥ 0, we have

− d

dt
(G(t))θ = −θ (G(t))θ−1

G′(t)(18)

≥ θN4 (G(t))θ−1
(
‖zt‖2 + ‖Az − f − g‖H−2

)2

by (17). Now that limt→+∞ ‖zt‖2 = 0 holds, there exists sufficiently large T > 0 such that
we may suppose that ‖zt‖2 ≤ 1 as long as t ≥ T . Noting that 1/2 < 1 − θ < 1 and that
1 < (1 − θ)/θ for θ ∈ (0, 1/2), we have

(G(t))1−θ ≤ 1
21−θ

‖zt‖2(1−θ)
2 + |F (t)|1−θ + ε1−θ ‖Az − f − g‖1−θ

H−2 ‖zt‖1−θ
H−2

≤ 1
21−θ

‖zt‖2(1−θ)
2 + |F (t)|1−θ

+ε1−θ(1 − θ) ‖Az − f − g‖H−2 + ε1−θθ ‖zt‖
1−θ

θ

H−2

≤ N5

(
‖zt‖2 + |F (t)|1−θ + ‖Az − f − g‖H−2

)
(19)

for t ≥ T . For any 0 < ξ < ρ, there exists N ∈ N such that tn > T satisfying

‖z( · , tn)‖2 <
1
2
ξ, (G(tn))θ

<
θN4

4N5
ξ and ‖z( · , tN )‖X <

1
2
ξ

for all n ≥ N . Let

t = sup {t ≥ tN | ‖z( · , s)‖X < ρ for all s ∈ [tN , t]} .

Hence for all t ∈ [tN , t], (18) becomes

− d

dt
(G(t))θ ≥ θN4

2N5

(
‖zt‖2 + ‖Az − f − g‖H−2

)
≥ θN4

2N5
‖zt‖2

owing to
(G(t))1−θ ≤ 2N5

(
‖zt‖2 + ‖Az − f − g‖H−2

)
by (19) together with Lemma 10. By integrating this inequality over [tN , t], we obtain∫ t

tN

‖zt( · , s)‖2 ds ≤ 2N5

θN4
(G(tN ))θ

<
1
2
ξ.

Claim 1
t = +∞

holds.
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Proof. If t < +∞, we have

∥∥z( · , t)
∥∥

2
=

∫ t

tN

(
d

dt
‖z( · , s)‖2

)
ds + ‖z( · , tN )‖2

≤
∫ t

tN

(
‖z( · , s)‖−1

2

∫
Ω

|z(x, s)| |zt(x, s)| dx

)
ds + ‖z( · , tN )‖2

≤
∫ t

tN

‖zt( · , s)‖2 ds + ‖z( · , tN )‖2

< ξ.

From the compactness of z(t) in X, we can choose ξ > 0 sufficiently small to obtain∥∥z( · , t)
∥∥

X
< ρ, which contradicts the definition of t. 2

Since the claim is shown,

lim
t→+∞

‖z( · , t)‖2 ≤
∫ +∞

tN

‖zt(· , s)‖2 ds + ‖z( · , tN )‖2 < ξ,

which implies the convergence of z in X. 2

A Proof of Lemma 10 In this section, we sketch the proof of the Lojasiewicz-Simon
inequality. If we establish Lemma 11, we can follow the argument in [14, 15]. As in our
problem, the Lojasiewicz-Simon inequality can be applicable to the convergence problem in
infinite dimensions We remark that the lemma is also proven by [5, 6] and applied to [9].

Sketch of the proof of Lemma 10. Let

Mz = Az − f (z, η) − g (z, η) .

We prepare an orthogonal projection. We denote the i-th eigenpair of A by (µi, ϕi), where
{ϕi}i∈N is a set of orthonormal eigenfunctions in L2(Ω). We define by Wk the vector space
spanned by ϕ1, ϕ2, . . . , ϕk. Let

Qk : L2(Ω) → Wk

be the orthogonal projection onto Wk. For all k ∈ N, we have

(Az + µkQkz, z) =
1
2

(Az, z) +
1
2

(Az, z) + µk (Qkz, z)

≥ 1
2
‖z‖2

X +
γ

2
‖z‖2

H1
0

+
µk

2
‖z − Qkz‖2

2 + µk ‖Qkz‖2
2

≥ 1
2
‖z‖2

X +
γ

2
‖z‖2

H1
0

+
µk

2

(
‖z − Qkz‖2

2 + ‖Qkz‖2
2

)
≥ 1

2
‖z‖2

X +
γ

2
‖z‖2

H1
0

+
µk

4
‖z‖2

2 .

Putting
L = A − fz (0, η) − gz (0, η) + µkQk,
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we obtain

(Lz, z) ≥ 1
2
‖z‖2

X +
γ

2
‖z‖2

H1
0

+
µk

4
‖z‖2

2 + β ‖η‖2
H1

0
‖z‖2

H1
0

+2β

( ∫
Ω

∇z · ∇η dx

)2

− λσI (σ, χ, η)
∫

Ω

1
(1 − η)σ+1 z2 dx

+λσ (σ − 1) χH (σ, χ, η)−σ−1

( ∫
Ω

z

(1 − η)σ dx

)2

≥ 1
2
‖z‖2

X +

(
µk

4
− λσ

(1 − ‖η‖C)σ+1

)
‖z‖2

2 .

Now we take k so large that the inequality

µk >
4λσ

(1 − ‖η‖C)σ+1

is satisfied. Hence L is coercive and bijective from X to H−2(Ω). Let

N = µkQk + M.

N is a C1 diffeomorphism in the neighbourhood of 0 ∈ X to H−2(Ω) and its derivative at
0 is L. The inversion theorem implies the following lemma:

Lemma 11 (Lemmas 2.6 in [14] and 11.2.8 in [15]) There exist a neighbourhood V1

of 0 in X, V2 of 0 in H−2(Ω), C1 > 0 and C2 > 0 such that

‖Mz −Mw‖H−2 ≤ C1 ‖z − w‖X

for all z, w ∈ V1 and ∥∥N−1(f) −N−1(g)
∥∥

X
≤ C2 ‖f − g‖H−2

for all f , g ∈ V2.

Owing to Lemma 11, the same estimates as in [14, 15] hold, which yields the conclusion.
2
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