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Abstract. We are concerned with the racetrack model which has been presented by
Krugman et al.[9] in the study of spatial economics. They intended to describe the
movement of labors and goods along a racetrack where dense economic regions are
continuously distributed and to investigate geographical structures provoked automat-
ically by the superposition of specific economic laws. Tabata et al.[26, 22, 23] have
already studied similar but more general models mainly from the view point of math-
ematical analysis by constructing the global solutions, although they did not handle
the very racetrack model.

The objective of the present paper is to explore asymptotic behavior of the global
solutions to the racetrack model. After constructing global solutions, we shall show
that, as t → ∞, every solution tends to a stationary solution of the model. We shall
then demonstrate in somewhat heuristic way that the stationary solution is given by
either a homogeneous solution on the racetrack or a concentrated solution in which
distribution of the manufacturing is a sum of Dirac delta functions. As the homo-
geneous stationary solution is proved to be always unstable, the asymptotic limit of
the global solution is in general a concentrated solution, thereby there remains only a
finite number of regions on the racetrack that possess the manufacturing sector.

These results may suggest that in the racetrack model the spatial economic state
tends to a discretely concentrated state. According to numerical results, the number
and the location of the spikes of concentration seem to have a certain freedom, evidently
depending on the initial state. The maximum number of spikes is, however, clearly
controlled by the transportation cost and the preference for variety of goods.

1 Introduction. We are concerned with the racetrack model that has been presented
by Fujita, Krugman and Venables [9] in 1999 for the study of spatial economy. The model
equations are given by

(1.1)



w(t, x) =

[∫
S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

for (t, x) ∈ [0,∞)× S,

G(t, x) =

[∫
S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

for (t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ for (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫
S

ω(t, y)λ(t, y)dy

]
λ(t, x) for (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) for x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spa-
tial variable varying on S. The functions w(t, x), G(t, x) are unknown functions denoting,
respectively, manufacturing wage, price index at time t ∈ [0,∞) and at a region x ∈ S.
The function λ(t, x) is an unknown function such that µλ(t, x) denotes population density
of manufacturing workers at time t ∈ [0,∞) at x ∈ S. The function ϕ(x) is a given func-
tion such that (1 − µ)ϕ(x) denotes population density of agricultural workers on S. The
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function |x− y| denotes a symmetric distance between x, y ∈ S along the circumference S.
The exponent 0 < µ ≤ 1 denotes a ratio of the manufacturing workers on S to the total
number of (manufacturing and agricultural) workers. Meanwhile σ > 1 stands for an index
of preference for manufacturing goods, and τ > 0 stands for a parameter concerning the
transportation cost. Finally γ > 0 is some constant.

When λ(t, x) is given at any time t, w(t, x) and G(t, x) at that moment are automatically
determined as instant economic equilibria through the nonlinear integral transformations
on S given by the first and second equations. The third equation shows that real wage
ω(t, x) is given by a ratio of w(t, x) divided by G(t, x)µ. The fourth one is an evolution
equation for λ(t, x) that indicates that λ(t, x) increases (or declines) at a rate γ[ω(t, x) −∫
S
ω(t, y)λ(t, y)dy]. The initial density of λ is given by λ0(x).
In their study of spatial economy, Fujita, Krugman and Venables are interested in under-

standing theoretically the economic activities that are performed by homogeneous regions
laid in the two-dimensional space. They study how the various economic factors (including
general equilibrations, preference for manufacturing goods, transportation costs, mobility
of manufacturing workers and increasing returns) create the spatial inhomogeneity sponta-
neously. One can then find a similar mechanism of self-organization that certain structures
of regions emerge through simple interactions acting among homogeneous constituents that
was first penetrated by Alan Turing [32] in the study of cell differentiation. Starting with
a two-region model (see [12] and confer also [31, 29]), they extend their models to a three-
region model or a multi-region model which are all, however, 0-dimensional models. As a
one-dimensional model, they consider an economy in which homogeneous regions are laid
continuously on a circumference and call it the racetrack model.

The objective of the present paper is to develop mathematical researches for (1.1). In
the first part, we shall formulate the equations of (1.1) as a system of two integral equations
in the space C(S) of continuous functions on S for w(t, x) and G(t, x) and an evolution
equation in the space L1(S) of L1-functions on S for λ(t, x), and then shall construct a
global solution. As generally known, integral equations have uniqueness of solutions only
in special cases. In the present case, too, we can guarantee existence and uniqueness of the
global solution only under somewhat restrictive conditions for the exponents. In this part,
we shall use the similar techniques devised by Tabata and Eshima and their collaborators
[26, 22, 23] for studying the analogous models to (1.1) but in two or multi-dimensional
domains. The second part of paper will be devoted to studying longtime behavior of the
global solution w(t, x), G(t, x) and λ(t, x). Firstly, they are proved to have ω-limits, namely,
there exists an increasing time sequence tn → ∞ such that λ(tn, x) are convergent to some
limit functions λ(x) in a weak∗ topology. Therefore, λ(x) may lie no longer in L1(S) but
can be an element of the space M(S) of all measures on S. Naturally λ(x) are expected
to be a stationary solution of the equations of (1.1). Secondly, when µ = 1, we can claim
that, if

(
λ(x), w(x), G(x)

)
is a stationary solution to (1.1) such that λ(x) ∈ M(S) and

w(x), G(x) ∈ C(S), then either λ(x) is constant on S or λ(x) is a sum of Dirac delta functions
on S. Moreover, it is proved that any constant stationary solution w, G and λ is unstable.
These analytical results ultimately suggest that the global solution to (1.1) converges as

t → ∞ to a stationary solution w(x), G(x) and λ(x) in which λ(x) =
∑K

k=1 αkδxk
(x) is

a finite sum of Dirac measures δxk
(x) ∈ M(S) with suitable centers xk ∈ S and weights

αk > 0 and w(x) and G(x) are functions in C(S) satisfying the integral equations of (1.1).
All the numerical examples support this fact. The number K and the location xk of regions
at which the manufacturing workers concentrate depend on the initial function λ0(x). In the
meantime, the maximum number of concentrated regions on S depends on the exponents
σ and τ .

As for 0-dimensional models, namely, discrete space models, there are already several
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published papers. We here quote Castoro-Correia da Silva-Mossay [2], Combes-Mayer-
Thisse [3], Currie-Kubin [4], Fujita-Thisse [8], Forslid-Ottaviano [7], Ikeda-Akamatsu-Kono
[10], Ioan-Ioan [11], Lange-Quaas [14], Lanaspa-Sanz [13], Leite-Castro-Correia-da-Silva
[15], Maffezzoli-Trionfetti [16], Mossay [18], Robert-Nicoud [20], Sidorov-Zhelobodko [21],
Tabata-Eshima [24], Tabata-Eshima-Kiyonari-Takagi [25], Tabata-Eshima-Sakai [27], and
Tabata-Eshima-Sakai [28]. Tabuchi-Thisse [30] considered an extended model which consists
of 0-dimensional manufacturing and one-dimensional agriculture. As for one-dimensional
model, only few papers were published. Picard-Tabuchi [19], Fabinger [6] treated some re-
lated models to (1.1), together with 0-dimensional ones. Recently Tabata, Eshima and their
collaborators published a series of papers [26, 22, 23] concerning two or multi-dimensional
models, where regions are laid in a bounded domain of two or multi-dimensional space. In
[26] they studied the equilibrating problem for w(x) and G(x) of (1.1) under the situation
that some λ(x) is known. In [22, 23] they considered the evolutional problem in the case
that µ = 1 and 0 < µ < 1, respectively, and constructed a global solution under suitable
conditions for the exponents. In [22] they succeeded also in showing longtime convergence
of the solution that, for some initial function λ0(x), λ(t, x) tends to a Dirac delta function.

This paper is organized as follows. In Section 2, the modeling of the racetrack model will
be reviewed. The model is formulated as an initial value problem for an abstract evolution
equation in Section 3, and existence and uniqueness of global solutions is proved in Section
4. Section 5 is devoted to studying asymptotic behavior of the solutions. First, a dynamical
system is constructed, and existence of the weak* ω-limit set is proved. Next, through
heuristic discussions, we will explore details about weak* ω-limit. Stability of homogeneous
stationary solutions is also discussed here. Section 6 is devoted to showing numerical results.

2 Review of Modeling. In this section, we want to review the modeling of (1.1) ac-
cording to M. Fujita, P. Krugman, and A. Venables [9, Chapter 4].

2.1 Settings. Let us first list all the settings of model.

1. Economic regions are distributed on a whole circumference S.

2. The economy is composed of two sectors, i.e., manufacturing and agriculture. The
manufacturing sector is imperfectly competitive and produces a large variety of differ-
entiated goods. The agricultural sector is perfectly competitive and produces a single,
homogeneous variety of goods.

3. Manufacturing workers and agricultural workers are the only factor of production for
each sector. Manufacturing workers offer their labor to manufacturing firms and earn
a nominal wage in return at each position. Manufacturing workers and manufacturing
firms can move along S freely. Agricultural workers engage in production of agricul-
tural goods and earn a wage in return, but they settle down in their position and
cannot move. The total number of workers is fixed.

4. Workers consume all goods produced in the economy as consumers. Goods produced
at a position are consumed in the same position, or they are transported along S and
consumed in any other different regions.
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2.2 Assumptions. Under these settings, the following conditions are assumed.

1. Each manufacturing firm chooses its price to maximize the profit taking the nominal
wages and the price indices on S to be given.

2. Technology of manufacturing firms is assumed to be increasing return, i.e., the more
goods are produced, the less becomes an average cost of goods per unit. The tech-
nology is the same for all varieties and at all regions. That is, firm’s only input is
the labor, and the required labor input is uniquely determined in accordance with the
production quantity of a variety, regardless of varieties and regions.

3. The maximized profit is 0 for all manufacturing firms.

4. The number of varieties of goods is innumerably infinite.

5. Each variety of manufactured goods is produced only in one region by a single man-
ufacturing firm. Therefore, the number of manufacturing firms is the same as the
number of available varieties.

6. The goods which are produced at a region have a uniform price at any region. The
price of goods produced at x ∈ S and sold at y ∈ S is denoted by p(x, y), with
abbreviation p(x, x) = p(x).

7. The price of agricultural goods is assumed to be p(x, y) ≡ 1 for all x, y ∈ S.

8. The total number of the manufacturing workers is fixed and is denoted by µ, where
µ ∈ (0, 1). A function λ(x) is defined so that µλ(x) denotes density of manufacturing
workers at x ∈ S, i.e.,

∫
S
λ(x)dx = 1. All manufacturing workers at x ∈ S earn a

uniform nominal wage w(x).

9. Manufacturing workers move toward regions that offer higher real wages away from
those of lower real wages. The real wage is defined in a usual manner.

10. The total number of the agricultural workers is 1 − µ. A function ϕ(x) is defined so
that (1− µ)ϕ(x) denotes density of agricultural workers at x ∈ S, i.e.,

∫
S
ϕ(x)dx = 1.

Their wage is assumed to be fixed to 1 at every region.

11. Transportation cost is incurred by transporting of manufactured goods between re-
gions. The transportation cost is assumed to be given by the “iceberg form”. That
is, to transport one unit of goods from x to y along S, T (x, y) ≥ 1 times units of
the goods must be shipped. Thereby, p(x, y) = T (x, y)p(x). Furthermore, we assume
that T (x, y) = eτ |x−y|, where τ is a positive exponent and |x − y| is a shorter dis-
tance along S between x and y. (By contrast, transportation of agricultural goods is
costless, remember (7).)

12. Consumer’s satisfaction obtained from consumption of goods is expressed by a utility
function. Consumers intend to buy manufactured goods and agricultural goods to
maximize their utility function. All consumers are assumed to have a unified utility
function. They have a common preference for varieties of goods which is represented
through an index σ > 1. As σ decreases, the desire to consume a larger variety of
manufactured goods increases.

13. For goods and labor, the demand and the supply are always balancing. More precisely,
their demand and supply meet instantly in an equilibrium much faster than workers
move on S.
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2.3 Mathematical Modeling. Under these settings and assumptions, let us survey
modeling of (1.1). The modeling is composed of three steps. First, each consumption
and production activity is described without explicitly referring to the interactions between
regions. Next, interactions among regions are taken into account. Finally, dynamics of the
change of λ(x) is formulated.

2.3.1 Local equilibration. Let us focus our attention on an arbitrarily fixed region, and
consider economic activities at this region. From Assumption 4, let the varieties of manu-
factured goods be parameterized by i ∈ [0, n], where n is a fixed number. Let m(i) be the
consumption of i-th variety, and p(i) be the price of i-th variety.

Consider the consumer’s activity. Their utility functions mentioned in Assumption 12
is assumed to be uniformly given by

(2.1) U =

{∫ n

0

m(i)
σ−1
σ di

} σµ
σ−1

A1−µ,

where A stands for the consumption of agricultural goods. Here, as mentioned in Assump-
tion 12 σ stands for their uniform preference to varieties. The consumer maximizes (2.1)
subject to the budget constraint

pAA+

∫ n

0

p(i)m(i)di = Y,

where pA stands for the price of agricultural goods and Y is income of the consumer. Solving
this maximization problem for U with given pA and p(i), we have

A =
(1− µ)Y

pA
,

m(j) = µY p(j)−σGσ−1.(2.2)

Here, G has been defined by

(2.3) G =

{∫ n

0

p(i)1−σdi

} 1
1−σ

,

and is called the price index at this region.
On the other hand, consider the manufacturing firms. According to Assumption 2, their

technology is uniformly described by

(2.4) lM = F + cMQ,

where lM is labor input required to produce a quantity Q of a variety. Here, F > 0 stands
for a fixed cost and cM > 0 stands for a marginal cost at the position.

2.3.2 Global equilibration. We now focus our attention on interactions among regions. We
consider activities that take place among regions.

Let the number of varieties produced at x be denoted by n(x). By applying Assumptions
6 and 11 to (2.3), the price index at x is written as

(2.5) G(x) =

[∫
S

n(y)
(
p(y)eτ |x−y|

)1−σ

dy

] 1
1−σ

,
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where the integration is carried out along S. Let Y (y) denote income at region y. By (2.2),
consumption demand at y for a product manufactured at x is given by

(2.6) µY (y)
(
p(x)eτ |x−y|

)−σ

G(y)σ−1,

where |x − y| is a distance along S. By Assumptions 11 and 13, the total sales Q(x) of a
product manufactured at x must equal

(2.7) Q(x) = µ

∫
S

Y (y)
(
p(x)eτ |x−y|

)−σ

G(y)σ−1eτ |x−y|dy.

Consider next manufacturing firms at x. From (2.4) and (2.7), the firm’s profit Π(x)
must be

(2.8) Π(x) = p(x)Q(x)− w(x)
(
F + cMQ(x)

)
.

Substitute Q(x) in (2.7) into (2.8), and maximize Π(x) under the conditions that w(x) and
G(x) are known on S (as explained in Assumption 1). Then, we see that

(2.9) p(x) =
cMσ

σ − 1
w(x).

Consequently,

Π(x) = w(x)

[
Q(x)cM

σ − 1
− F

]
.

But this profit must be zero by Assumption 3. Thereby, we see that the output Q(x) is
equal to

Q(x) ≡ Q =
F (σ − 1)

cM

and the input l(x) is equal to

l(x) ≡ l = F + cMQ = Fσ.

Both Q and l are uniform to all manufacturing firms on S.
It then follows from (2.7) that

Q = µp(x)−σ

∫
S

Y (y)e−(σ−1)τ |x−y|G(y)σ−1dy.

Then, from (2.9),

(2.10) w(x) =
σ − 1

σcM

[
µ

Q

∫
S

Y (y)e−(σ−1)τ |x−y|G(y)σ−1dy

] 1
σ

.

Let us here verify that n(x) and λ(x) are proportional. Indeed, Assumption 5 means
that n(x) is equal to the number of manufacturing firms at x. Therefore, as in Assumption
8, we have

(2.11) n(x) =
µλ(x)

l
=
µλ(x)

Fσ
.
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As a consequence, substituting p(x) in (2.9) and this n(x) into (2.5), the price index is now
described as

(2.12) G(x) =

[
µ

Fσ

(
σcM

σ − 1

)1−σ ∫
S

λ(y)w(y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

.

According to [9], it is allowed to choose units of measurement in such a way that cM =
(σ − 1)/σ and F = µ/σ are the case. Then, we verify that (2.12) becomes the second
equation of (1.1). In addition, since

Y (x) = µλ(x)w(x) + (1− µ)ϕ(x)

by Assumptions 8 and 10, we verify that (2.10) is nothing more than the first equation of
(1.1).

2.3.3 Evolution equation for λ(x). Manufacturing workers at x migrate in response to
differences between real wage of x and those of other regions as assumed in Assumption
9. The real wage is defined as the nominal wage deflated by the ”cost-of-living index”,
i.e., G(x)µ(pA)1−µ. Since pA = 1 (by Assumption 7), the real wage is given by the third
equation of (1.1). As the averaged real wage is

∫
S
ω(x)λ(x)dx, the fourth equation of (1.1)

naturally expresses motion of manufacturing workers at x.

3 Mathematical Formulation. In this section, we will formulate the problem (1.1) as
the initial value problem for an abstract evolution equation in a Banach space.

3.1 Function Spaces. Let us set up function spaces for w and λ.
Let C(S) be the Banach space of all continuous functions on S equipped with the norm

∥u∥C := maxx∈S |u(x)| for u ∈ C(S). We consider a subset of C(S) given by

C+(S) := {u ∈ C(S)|u > 0 on S} .

It is reasonable to consider that the nominal wage is positive and is distributed on S
continuously. So we assume that w belongs to C+(S) at any time. Meanwhile, let L1(S)
be the Banach space of all integrable functions on S equipped with the norm ∥u∥L1 :=∫
S
|u(x)|dx for u ∈ L1(S). We consider a subset of L1(S) given by

L1
M(S) :=

{
u ∈ L1(S)

∣∣∣∣u ≥ 0 on S,

∫
S

u(x)dx = 1

}
.

As the population density is a nonnegative function on S and is normalized to have a unit
L1 -norm, we consider that λ belongs to L1

M(S) at any time.
Actually, both the nominal wage and the population density are functions from the half

real line [0,∞) with values in C+(S) and L
1
M(S), respectively. Let X denote one of C(S) and

L1(S). Then, C([0,∞);X) is the space of all continuous functions on [0,∞) with values in
X, and Cb([0,∞);X) is the space of all uniformly bounded continuous functions on [0,∞).
We equip Cb([0,∞);X) with a norm

(3.1) ∥f∥Cb
:= sup

t∈[0,∞)

e−t∥f(t)∥X .

When B is a bounded subset of X, the space of all continuous functions with values in B
is denoted similarly by C([0,∞);B). Clearly, C([0,∞);B) is a subset of Cb([0,∞);X).
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3.2 Formulation. Let ϕ ∈ L1
M(S) be given. We want to formulate equations (1.1) as

equations in a Banach space. In the following, the constant γ > 0 of (1.1) is fixed to be 1
without loss of generality.

We first formulate the first equation in (1.1) as a fixed point problem in C(S). To do so,
we introduce the operator Φ : C+(S)× L1

M(S) → C+(S) as

Φ(w, λ)(x) =

[∫
S

µλ(y)w(y) + (1− µ)ϕ(y)∫
S
λ(z)w(z)1−σe−(σ−1)τ |y−z|dz

e−(σ−1)τ |x−y|dy

] 1
σ

.

Then, the first equation of (1.1) is written as

(3.2) w = Φ(w, λ), w ∈ C+(S), λ ∈ L1
M(S).

Second, we formulate the fourth equation in (1.1) as an ordinary differential equation
in L1(S). To do so, we introduce the operators G, ω : C+(S)× L1

M(S) → C+(S) as

(3.3)

G(w, λ)(x) =

[∫
S

λ(y)w(y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

,

ω(w, λ)(x) = w(x) [G(w, λ)(x)]
−µ

.

These operators correspond to the second and the third equations of (1.1), respectively.
Using (3.3), we define the operator Ψ : C+(S)× L1

M(S) → L1(S) as

(3.4) Ψ(w, λ)(x) =

[
ω(w, λ)(x)−

∫
S

ω(w, λ)(y)λ(y)dy

]
λ(x).

Then, the fourth equation in (1.1) is written as

dλ

dt
(t) = Ψ(w(t), λ(t)).

Therefore, for each ϕ ∈ L1
M(S), the problem (1.1) is formulated as the initial value

problem for an abstract evolution equation

(3.5)


w(t) = Φ(w(t), λ(t)), 0 ≤ t <∞,

dλ

dt
(t) = Ψ(w(t), λ(t)), 0 ≤ t <∞,

λ(0) = λ0.

in a product Banach space

C(S)× L1(S) =
{
(w, λ)

∣∣w ∈ C(S), λ ∈ L1(S)
}
.

The initial function λ0 is taken from L1
M(S).

4 Existence Results. In this section, we construct a global solution for (3.5) by using the
analogous arguments in Tabata et al.[26, 22, 23]. This section consists of two subsections.
In Subsection 4.1, the fixed point problem (3.2) is handled for each fixed λ. Based on the
results, a local solution is constructed in Subsection 4.2, and a global solution is constructed
in Subsection 4.3.
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4.1 Fixed Point Problem (3.2). Let us introduce notations in this section. For real
numbers 0 < r1 < r2, we consider a bounded closed subset of C+(S) determined by

Cr1,r2(S) := {u ∈ C+(S)|r1 ≤ u ≤ r2 on S} .

We define an operator χ : L1
M(S)× L1

M(S) → C+(S) as

χ(ϕ, λ)(x) :=

∫
S

ϕ(y)e−(σ−1)τ |x−y|∫
S
λ(z)e−(σ−1)τ |y−z|dz

dy.

For simplicity, let us denote χ(λ, λ) by χ(λ).
Since |x− y| ≤ π for any x, y ∈ S, it is easy to see that

(4.1) e−(σ−1)τπ ≤ e−(σ−1)τ |x−y| ≤ 1, x, y ∈ S.

Then, χ(ϕ, λ) satisfies

maxx∈S [χ(ϕ, λ)(x)] ≤ e(σ−1)τπ, ϕ, λ ∈ L1
M(S),(4.2)

minx∈S [χ(ϕ, λ)(x)] ≥ e−(σ−1)τπ, ϕ, λ ∈ L1
M(S).(4.3)

4.1.1 Problem (3.2) for the general exponents

Theorem 4.1. Let λ ∈ L1
M(S) satisfy

(4.4) max
x∈S

[χ(λ)(x)] < 1/µ.

Then, put aλ and bλ as

(4.5)


aλ =

(1− µ)minx∈S [χ(ϕ, λ)(x)]

1− µminx∈S [χ(λ)(x)]
,

bλ =
(1− µ)maxx∈S [χ(ϕ, λ)(x)]

1− µmaxx∈S [χ(λ)(x)]
,

respectively. Then, (3.2) has at least one solution w in Caλ,bλ(S).

Proof. Let λ satisfy (4.4). We want to show that Φ(·, λ) is a compact operator from M =
Caλ,bλ(S) into itself, and to apply the Schauder fixed point theorem to Φ(·, λ).

It is clear that Φ(·, λ) maps M into itself. In fact, for w ∈M ,

(4.6)

Φ(w, λ) ≤
[
µbσλ max

x
[χ(λ)(x)] + (1− µ)bσ−1

λ max
x

[χ(ϕ, λ)(x)]
] 1

σ

=
[
µbσλ max

x
[χ(λ)(x)] + bσλ

(
1− µmax

x
[χ(λ)(x)]

)] 1
σ

= bλ.

Here, the second equality follows immediately from the definition of bλ (see (4.5)). Similarly,
it is clear to see that Φ(w, λ) ≥ aλ.

The operator Φ(·, λ) is observed to be compact as follows. For u ∈ Φ(M,λ), let u =
Φ(w, λ) with w ∈M . For each x1, x2 ∈ S, put

Xi = [Φ(w, λ)(xi)]
σ, (i = 1, 2).
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Then, we have

(4.7)

|u(x1)− u(x2)| =
∣∣∣X 1

σ
1 −X

1
σ
2

∣∣∣
=

∣∣∣∣∫ 1

0

∂

∂θ
[θX1 + (1− θ)X2]

1
σ dθ

∣∣∣∣
≤ 1

σ

∫ 1

0

[θX1 + (1− θ)X2]
1
σ−1

dθ · |X1 −X2|

≤ 1

σ
a1−σ
λ |X1 −X2|

≤
(
1

σ
a1−σ
λ µbσλ + (1− µ)bσ−1

λ e(σ−1)τπ

)
×max

y∈S

∣∣∣e−(σ−1)τ |x1−y| − e−(σ−1)τ |x2−y|
∣∣∣ .

This shows that Φ(M,λ) is equicontinuous, i.e.,

∀ϵ > 0, ∃δ > 0, ∀u ∈ Φ(M,λ), |x1 − x2| < δ ⇒ |u(x1)− u(x2)| < ϵ.

It is obvious that Φ(M,λ) is uniformly bounded, i.e.,

∃K ≥ 0, ∀u ∈ Φ(M,λ), ∥u∥C ≤ K.

Therefore, Φ(M,λ) is a relatively compact subset by the Arzelà-Ascoli theorem. Thus,
Φ(·, λ) turns out to be a compact operator.

Hence, thanks to the Schauder fixed point theorem, (3.2) has at least one solution .

Under (4.4), Theorem 4.1 guarantees existence of solution to (3.2) in Caλ,bλ(S). As a
matter of fact, when (4.4) holds true, any solution to (3.2) must be in Caλ,bλ(S).

Theorem 4.2. Under (4.4), any solution w ∈ C+(S) to (3.2) satisfies aλ ≤ minx∈S w(x),
and maxx∈S w(x) ≤ bλ, i.e., w ∈ Caλ,bλ(S).

Proof. By estimating the maximum value of w, we have(
max
x∈S

w(x)

)σ

=

(
max
x∈S

Φ(w, λ)

)σ

≤ µ

(
max
x∈S

w(x)

)σ

max
x∈S

[χ(λ)(x)]

+ (1− µ)

(
max
x∈S

w(x)

)σ−1

max
x∈S

[χ(ϕ, λ)(x)].

By solving this inequality for maxx∈S w(x), we obtain maxx∈S w(x) ≤ bλ. It is similar for
aλ ≤ minx∈S w(x).

Uniqueness of the solution is described in the following theorem.

Theorem 4.3. Let λ ∈ L1
M(S) satisfy (4.4). In addition, let λ satisfy

(4.8) χ(λ)(x) <
σ

µ

(
aλ
bλ

)σ−1
{
1− σ − 1

σ

(
aλ
bλ

)1−2σ
}
.

Then, the solution to (3.2) obtained by theorem 4.1 is unique in C+(S).
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Proof. We already know that Φ(·, λ) maps Caλ,bλ(S) into itself. Therefore, it suffices to
show that Φ(·, λ) becomes a contraction mapping under (4.8).

Let DwΦ(w, λ) denote the Fréchet derivative of Φ(w, λ) with respect to w. Then, for
h ∈ C(S), we see that

(DwΦ(w, λ)h)(x)

=
1

σ
Φ(w, λ)1−σ

∫
S

µλ(y)h(y)e−(σ−1)τ |x−y|∫
S
λ(z)w(z)1−σe−(σ−1)τ |y−z|dz

dy

+
σ − 1

σ
Φ(w, λ)1−σ

∫
S

µλ(y)w(y)
∫
S
λ(z)w(z)−σh(z)e−(σ−1)τ |y−z|dz{∫

S
λ(z)w(z)1−σe−(σ−1)τ |y−z|dz

}2 e−(σ−1)τ |x−y|dy

+
σ − 1

σ
Φ(w, λ)1−σ

∫
S

(1− µ)ϕ(y)
∫
S
λ(z)w(z)−σh(z)e−(σ−1)τ |y−z|dz{∫

S
λ(z)w(z)1−σe−(σ−1)τ |y−z|dz

}2 e−(σ−1)τ |x−y|dy.

We estimate the operator norm of DwΦ(w, λ) given by

∥DwΦ(w, λ)∥op := sup
∥h∥C=1

∥DwΦ(w, λ)h∥C.

In view of Theorem 4.2, it is observed that

∥DwΦ(w, λ)∥op ≤ µ

σ

(
aλ
bλ

)1−σ

max
x∈S

[χ(λ)(x)]

+
µ(σ − 1)

σ

(
aλ
bλ

)1−2σ

max
x∈S

[χ(λ)(x)]

+
σ − 1

σ

a1−2σ
λ

b
2(1−σ)
λ

(1− µ)max
x∈S

[χ(ϕ, λ)(x)].

(4.9)

Then, noting that

(1− µ)max
x∈S

[χ(ϕ, λ)(x)] = bλ

(
1− µmax

x∈S
[χ(λ)(x)]

)
,

we verify that (4.8) implies ∥DwΦ(w, λ)∥op < 1.

4.1.2 Problem (3.2) for the exponents satisfying (4.10)

Theorem 4.4. Assume that the exponents in (1.1) satisfy the relation

(4.10) e(σ−1)τπ < 1/µ.

We put a > 0 and b > 0 as

(4.11)

a =
1− µ

e(σ−1)τπ − µ
< 1,

b =
1− µ

e−(σ−1)τπ − µ
> 1,

respectively. Then, for any λ ∈ L1
M(S), (3.2) has at least one solution w in Ca,b(S).

Proof. It is obvious that (4.10) implies that (4.4) holds for any λ ∈ L1
M(S). It is also

obvious that a ≤ aλ, bλ ≤ b for any λ ∈ L1
M(S). Therefore, Φ(·, λ) is a compact operator

from Ca,b(S) into itself and has at least one fixed point thanks to Theorem 4.1.
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Uniqueness of solutions is obtained by the following theorem.

Theorem 4.5. In addition to (4.10), if the exponents in (1.1) satisfy

(4.12) e(σ−1)τπ <

{
µ

σ

(a
b

)1−σ

+
µ(σ − 1)

σ

(a
b

)1−2σ

+
(σ − 1)(1− µ)

σ

a1−2σ

b2(1−σ)

}−1

,

then, for any λ ∈ L1
M(S), (3.2) possesses a unique solution w ∈ C+(S).

Proof. In the same way as for the proof of Theorem 4.3, we can estimate the operator norm
of DwΦ(w, λ) to verify that Φ(·, λ) is a contraction mapping for any λ ∈ L1

M(S).

Remark. Notice that a→ 1 and b→ 1 if σ → 1 or τ → 0. So, we see that the right-hand
side of (4.12) converges to σ/(σ+µ−1) > 1. On the other hand, the left-hand side converges
to 1 if σ → 1 or τ → 0. Therefore, there exist σ and τ which satisfy (4.12).

The following proposition gives upper and lower bounds for G(w, λ) and ω(w, λ) when
(w, λ) varies in Ca,b(S)× L1

M(S).

Proposition 4.1. We have the estimates

a ≤ G(w, λ) ≤ beτπ, (w, λ) ∈ Ca,b(S)× L1
M(S),(4.13)

ab−µe−µτπ ≤ ω(w, λ) ≤ ba−µ, (w, λ) ∈ Ca,b(S)× L1
M(S).(4.14)

Proof. These are obvious from (3.3) and the condition that a ≤ w(x) ≤ b on S.

In the case when (3.2) admits a unique solution w ∈ C+(S) for each λ ∈ L1
M(S), we

denote it by w = Φf(λ). Then, (3.5) ultimately reduces to the Cauchy problem for an
ordinary differential equation

(4.15)


dλ

dt
(t) = Ψ(Φf(λ(t)), λ(t)), 0 ≤ t <∞,

λ(0) = λ0,

in L1(S) with initial value λ0 ∈ L1
M(S).

4.2 Local solution for (4.15). We construct a local solution to (4.15) by applying the
theory of ordinary differential equations in a Banach spaces (see [33]). To do so, we first
prepare the following propositions.

Proposition 4.2. Let (4.10) be satisfied. More strongly than (4.12) assume that

(4.16) e(σ−1)τπ <

(
µ

σ

a2(1−σ)

b2(1−σ)
+
µ(σ − 1)

σ

a1−2σ

b1−2σ
+

(1− µ)(σ − 1)

σ

a1−2σ

b2(1−σ)

)−1

.

Then, the following three estimates

∥Φf(λ1)− Φf(λ2)∥C ≤ L1∥λ1 − λ2∥L1 , λ1, λ2 ∈ L1
M(S),(4.17)

∥G(Φf(λ1), λ1)−G(Φf(λ2), λ2)∥C ≤ L2∥λ1 − λ2∥L1 , λ1, λ2 ∈ L1
M(S),(4.18)

∥ω(Φf(λ1), λ1)− ω(Φf(λ2), λ2)∥C ≤ L3∥λ1 − λ2∥L1 , λ1, λ2 ∈ L1
M(S).(4.19)

hold true with some constants L1, L2, L3 > 0.
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Proof. It suffices to prove (4.17), because (4.18) and (4.19) are easily verified from (4.17).
We have, for any x ∈ S,

(4.20)

|Φf(λ1)(x)− Φf(λ2)(x)| =
∣∣∣[{Φf(λ1)(x)}σ]

1
σ − [{Φf(λ2)(x)}σ]

1
σ

∣∣∣
≤

∣∣∣∣∫ 1

0

∂

∂θ
[θ {Φf(λ1)(x)}σ + (1− θ) {Φf(λ2)(x)}σ]

1
σ dθ

∣∣∣∣
≤ 1

σ
a1−σ |{Φf(λ1)(x)}σ − {Φf(λ2)(x)}σ| .

Here, put

p(y) = (µλ1(y)Φf(λ1)(y) + (1− µ)ϕ(y)) ·
∫
S

λ2(z)Φf(λ2)(z)
1−σe−(σ−1)τ |y−z|dz

− (µλ2(y)Φf(λ2)(y) + (1− µ)ϕ(y)) ·
∫
S

λ1(z)Φf(λ1)(z)
1−σe−(σ−1)τ |y−z|dz, y ∈ S,

and

q(y) =

∫
S

λ1(y)Φ
1−σ
f (λ1)(y)e

−(σ−1)τ |y−z|dz

·
∫
S

λ2(y)Φ
1−σ
f (λ2)(y)e

−(σ−1)τ |y−z|dz, y ∈ S.

Then,

|{Φf(λ1)(x)}σ − {Φf(λ2)(x)}σ| =

∣∣∣∣∫
S

p(y)e−(σ−1)τ |x−y|

q(y)
dy

∣∣∣∣
≤

∫
S

∣∣∣∣p(y)q(y)

∣∣∣∣ dy ≤ b2(σ−1)e2(σ−1)τπ

∫
S

|p(y)|dy.(4.21)

Therefore, it follows from (4.20) and (4.21) that

(4.22) |Φf(λ1)(x)− Φf(λ2)(x)| ≤
b2(σ−1)e2(σ−1)τπ

σaσ−1

∫
S

|p(y)| dy.

Let us next estimate |p(y)| on S. Note that

(4.23)

∣∣Φf(λ1)
1−σ − Φf(λ1)

1−σ
∣∣ = ∫ 1

0

∂

∂θ
[θΦf(λ1) + (1− θ)Φf(λ2)]

1−σ
dθ

≤ (σ − 1)a−σ |Φf(λ1)− Φf(λ2)| .

Then, the estimate

(4.24)

|p(y)| ≤ (µλ1(y)Φf(λ1)(y) + (1− µ)ϕ(y))

×
∣∣∣∣∫

S

λ1(z)[Φf(λ1)(z)]
1−σe−(σ−1)τ |y−z|dz

−
∫
S

λ2(z)[Φf(λ2)(z)]
1−σe−(σ−1)τ |y−z|dz

∣∣∣∣
+ µ

∫
S

λ1(z)[Φf(λ1)(z)]
1−σe−(σ−1)τ |y−z|dz

× |λ1(y)Φf(λ1)(y)− λ2(y)Φf(λ2)(y)| , y ∈ S,
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yields

(4.25)

|p(y)| ≤
[
µ
{
(σ − 1)a−σb+ a1−σ

}
λ1(y) + (σ − 1)a−σ(1− µ)ϕ(y)

]
× ∥Φf(λ1)− Φf(λ2)∥C

+ a1−σ {µbλ1(y) + (1− µ)ϕ(y)} ∥λ1 − λ2∥L1

+ µa1−σb|λ1(y)− λ2(y)|.

By (4.22) and (4.25), we have

(4.26) ∥Φf(λ1)− Φf(λ2)∥C ≤ α1∥Φf(λ1)− Φf(λ2)∥C + α2∥λ1 − λ2∥L1

with α1, α2 such that

α1 =
b2(σ−1)e2(σ−1)τπ

a2σ−1σ
[µ {(σ − 1)b+ a}+ (σ − 1)(1− µ)] ,

α2 =
b2(σ−1)e2(σ−1)τπ

aσ−1σ
{2µb+ 1− µ} .

Since (4.16) means that α1 < 1, we observe from (4.26) that (4.17) holds true with L1 =
α2/(1− α1).

We are now ready to construct a local solution to (4.15).
We have to use, however, an auxiliary problem for (4.15). For a given λ̃ ∈ C([0, c];L1

M(S)),

let Ψ̃(w, λ) : C+(S)× L1
M(S) → L1(S) be an operator defined by

(4.27) Ψ̃(w, λ) =

[
ω(w, λ̃)(x)−

∫
S

ω(w, λ̃)(y)λ(y)dy

]
λ(x).

Consider an auxiliary problem

(4.28)


dλ

dt
(t) = Ψ̃(Φf(λ̃(t)), λ(t)), 0 ≤ t <∞,

λ(0) = λ0,

of (4.15).

Proposition 4.3. Under (4.10) and (4.12), let λ̃ ∈ C([0, 1];L1
M(S)) be given. Then, (4.28)

possesses a unique local solution λ ∈ C1([0, c];L1
M(S)), provided that (1 ≥) c > 0 is suffi-

ciently small, but c being independent of the given function λ̃.

Proof. We employ the usual techniques for ODEs in Banach spaces. Set a subset of L1(S)
given by

L1
1(S) :=

{
f ∈ L1(S)

∣∣∣∣∫
S

f(x)dx = 1

}
,

and define an operator T̃ : C([0, c];L1
1(S)) → C([0, c];L1(S)) by

T̃ (λ) = λ0 +

∫ t

0

Ψ̃(Φf(λ̃(s)), λ(s))ds.

Using T̃ , we rewrite (4.28) into an equivalent problem

λ(t) = [T̃ (λ)](t), 0 ≤ t <∞.
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It is verified that Ψ̃(Φf(λ̃), λ) is Lipscitz continuous with respect to λ ∈ L1
1(S). Indeed,

by (4.14) and (4.27), we see that

(4.29)
∥∥∥Ψ̃(Φf(λ̃), λ1)− Ψ̃(Φf(λ̃), λ2)

∥∥∥
L1

≤ 3ba−µ∥λ1 − λ2∥L1 , λ1, λ2 ∈ L1
1(S).

Meanwhile, T̃ maps C([0, c];L1
1(S)) into itself. Indeed, since T̃ maps C([0, c];L1

1(S)) into
C([0, c];L1(S)), it is sufficient to see that

∫
S
T̃ (λ)(x)dx = 1. But,∫

S

T̃ (λ)(x)dx−
∫
S

λ0(x)dx =

∫
S

∫ t

0

Ψ̃(Φf(λ̃(s)), λ(s))dsdx

=

∫ t

0

∫
S

Ψ̃(Φf(λ̃(s)), λ(s))dxds = 0

due to (4.27).
Finally, T̃ is a contraction mapping if c is sufficiently small. Indeed, from (4.29),∥∥∥T̃ (λ1)− T̃ (λ2)

∥∥∥
C([0,c];L1)

≤ max
t∈[0,c]

e−t

∫ t

0

∥∥∥Ψ̃(Φf(λ̃), λ1)− Ψ̃(Φf(λ̃), λ2)
∥∥∥
L1
ds

≤ 3ba−µ max
t∈[0,c]

e−t

∫ t

0

∥λ1(s)− λ2(s)∥L1ds

≤ 3ba−µ max
t∈[0,c]

e−t

∫ t

0

∥λ1(s)− λ2(s)∥L1e−sesds

= 3ba−µ(1− e−c)∥λ1 − λ2∥X .

Therefore, if c is sufficiently small, T̃ becomes a contraction mapping. Thus, (4.28) has a
unique fixed point λ ∈ C1([0, c];L1

1(S)) for sufficiently small c > 0.
As a matter of fact, the solution λ ∈ C([0, c];L1

1(S)) above is in C([0, c];L1
M(S)). In fact,

it is sufficient to verify λ(t) ≥ 0 on S for t ∈ [0, c]. But, since

λ(t) = λ0 exp

{∫ t

0

[
ω(w, λ̃(s))−

∫
S

ω(w, λ̃(s))(y)λ(s, y)dy

]
ds

}
,

λ0 ≥ 0 on S implies λ(t) ≥ 0 on S.
As seen above, the time c > 0 is independent of the given function λ̃.

We finally construct a unique local solution to (4.15).

Theorem 4.6. Under (4.10) and (4.16), for each λ0 ∈ L1
M(S), there exists a unique local

solution λ ∈ C1([0, 1];L1
M(S)) to (4.15), provided that (1 ≥) c > 0 is sufficiently small, but

c being independent of the initial value λ0.

Proof. By virtue of Proposition 4.3, for each λ0 ∈ L1
M(S), we can define an operator

Fλ0 : λ̃ ∈ C([0, c];L1
M(S)) 7→ λ ∈ C([0, c];L1

M(S)), where λ is the local solution of (4.28).
By the definition of Fλ0 , it is verified that

[Fλ0(λ̃)](t) = λ0 +

∫ t

0

Ψ̃(Φf(λ̃(s)), [Fλ0(λ̃)](s))ds, 0 ≤ t ≤ c.

Since a fixed point of Fλ0 is a solution to (4.15), we will prove that Fλ0 is a contraction
mapping from C([0, c];L1

M(S)) into itself.
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For λ̃1, λ̃2 ∈ C([0, c];L1
M(S)),

(4.30)

∥∥∥Fλ0(λ̃1)(t)− Fλ0(λ̃2)(t)
∥∥∥
L1

≤
∫ t

0

∥∥∥Ψ̃(Φf(λ̃1), Fλ0(λ̃1))− Ψ̃(Φf(λ̃2), Fλ0(λ̃2))
∥∥∥
L1
ds

≤
∫ t

0

∥∥∥ω(Φf(λ̃1), λ̃1)Fλ0(λ̃1)− ω(Φf(λ̃2), λ̃2)Fλ0(λ̃2)
∥∥∥
L1
ds

+

∫ t

0

∥∥∥∥∫
S

ω(Φf(λ̃2), λ̃2)Fλ0(λ̃2)dy · Fλ0(λ̃2)

−
∫
S

ω(Φf(λ̃1), λ̃1)Fλ0(λ̃1)dy · Fλ0(λ̃1)

∥∥∥∥
L1

ds.

Noting (4.14) and (4.19), we obtain that∥∥∥ω(Φf(λ̃1), λ̃1)Fλ0(λ̃1)− ω(Φf(λ̃2), λ̃2)Fλ0(λ̃2)
∥∥∥
L1

≤ ba−µ
∥∥∥Fλ0(λ̃1)(t)− Fλ0(λ̃2)(t)

∥∥∥
L1

+ L3

∥∥∥λ̃1 − λ̃2

∥∥∥
L1
,

and ∥∥∥∥∫
S

ω(Φf(λ̃2), λ̃2)Fλ0(λ̃2)dy · Fλ0(λ̃2)

−
∫
S

ω(Φf(λ̃1), λ̃1)Fλ0(λ̃1)dy · Fλ0(λ̃1)

∥∥∥∥
L1

≤ 2ba−µ
∥∥∥Fλ0

(λ̃1)(t)− Fλ0
(λ̃2)(t)

∥∥∥
L1

+ L3

∥∥∥λ̃1(t)− λ̃2(t)
∥∥∥
L1
.

Therefore, it follows from (4.30) that∥∥∥Fλ0(λ̃1)(t)− Fλ0(λ̃2)(t)
∥∥∥
L1

≤ 3ba−µ

∫ t

0

∥∥∥Fλ0
(λ̃1)(s)− Fλ0

(λ̃2)(s)
∥∥∥
L1
ds

+ 2L3

∫ t

0

∥∥∥λ̃1(s)− λ̃2(s)
∥∥∥
L1
ds, 0 ≤ t ≤ c.

In this way, we arrive at∥∥∥Fλ0(λ̃1)− Fλ0(λ̃2)
∥∥∥
C([0,c];L1)

≤ k
∥∥∥λ̃1 − λ̃2

∥∥∥
C([0,c];L1)

with

k =
2L3(1− e−c)

1− 3ba−µ(1− e−c)
.

Remember that the norm ∥ · ∥C([0,c];L1) was defined by (3.1).

If c > 0 is sufficiently small, then k < 1, and hence Fλ0 becomes a contraction mapping
of C([0, c];L1

M(S)).

As seen above, the time c is independent of the initial value λ0.
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4.3 Global solution for (4.15). We can extend the local solution of (4.15) constructed
above to global one.

Theorem 4.7. Under (4.10) and (4.16), for each λ0 ∈ L1
M(S), there exists a unique global

solution λ ∈ C1([0,∞);L1
M(S)) to (4.15).

Proof. Note that the time c > 0 of the interval [0, c] on which we construct the local solution
is independent of the initial value λ0. Then, the uniqueness of the local solution shows that
the unique local solution λ ∈ C1([0, 2c];L1

M(S)) is obtained by repeating the same argument
but with the initial value λ(c). By repeating this procedure, we finally obtain a unique global
solution to (4.15)

The global solution depends continuously on initial values.

Theorem 4.8. Under (4.10) and (4.16), let λ1, λ2 ∈ C1([0,∞);L1
M(S)) be the global so-

lutions to (4.15) with initial values λ1,0, λ2,0 ∈ L1
M(S), respectively. Then, the Lipschitz

condition

(4.31) ∥λ1(t)− λ2(t)∥L1 ≤ ∥λ1,0 − λ2,0∥L1e(3ba
−µ+2L3)t, 0 ≤ t <∞,

holds true.

Proof. For i = 1, 2, we have

λi(t) = λi,0 +

∫ t

0

Ψ(Φf(λi(s)), λi(s))ds, 0 ≤ t <∞.

So,

(4.32)

∥λ1(t)− λ2(t)∥L1 ≤ ∥λ1,0 − λ2,0∥L1

+

∫ t

0

∥Ψ(Φf(λ1(s)), λ1(s))−Ψ(Φf(λ2(s)), λ2(s))∥L1 ds.

The operator Ψ(Φf(λ), λ) is seen to be Lipscitz continuous in λ ∈ L1
M(S). In fact, by (3.4),

we have

(4.33)

∥Ψ(Φf(λ1), λ1)−Ψ(Φf(λ2), λ2)∥L1 ≤ ∥ω(Φf(λ1), λ1)λ1 − ω(Φf(λ2), λ2)λ2∥L1

+

∥∥∥∥∫
S

ω(Φf(λ2), λ2)(y)λ2(y)dy · λ2 −
∫
S

ω(Φf(λ1), λ1)(y)λ1(y)dy · λ1
∥∥∥∥
L1

.

Then, by (4.14) and (4.19),

(4.34) ∥Ψ(Φf(λ1), λ1)−Ψ(Φf(λ2), λ2)∥L1 ≤ (3ba−µ + 2L3) ∥λ1 − λ2∥L1 .

Hence,

∥λ1(t)− λ2(t)∥L1 ≤ ∥λ1,0 − λ2,0∥L1 +

∫ t

0

(3ba−µ + 2L3) ∥λ1(s)− λ2(s)∥L1 ds.

By the Gronwall’s lemma, we obtain (4.31).
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5 Asymptotic behavior of solutions. In this section, we want to investigate the
asymptotic behavior of solutions of (1.1). First, for each global solution, we construct
a non-empty weak∗ ω-limit set in the space M(S) of measures on S. Second, we ob-
serve that, if

(
λ(x), w(x), G(x)

)
is a stationary solution to (1.1) such that λ(x) ∈ M(S)

and w(x), G(x) ∈ C(S), then either λ(x) is constant on S (hence
(
λ(x), w(x), G(x)

)
is

a homogeneous stationary solution) or λ(x) is a sum of Dirac delta functions on S, i.e.,

λ(x) =
∑K

k=1 αkδk(x). Finally, we prove that the homogeneous stationary solution is al-
ways unstable by using the linearized principle.

These results then suggest that λ(t, x) converges as t → ∞ to a sum of Dirac delta
functions on S. Meanwhile, these results show us very good agreements to the numerical
computations illustrated in the next section.

5.1 ω-limit set. So far, we treated (4.15) as an evolution equation in L1(S). Numerical
results explained in the next section, however, suggest that the global solution to (4.15)
converges as t → ∞ to a measure on S. From these observations we are naturally led to
introduce the space of measures on S which is denoted byM(S) and consider the asymptotic
behavior of solutions in the extended space M(S). As well known, M(S) includes the space
L1
M(S) as a closed subspace with isometric embedding and includes also all the Dirac delta

functions.
As a matter of fact, it is possible to formulate (1.1) as an evolution equation in M(S)

of the same form (4.15). That is, under similar assumptions, we can construct an M(S)-
valued solution for any initial value λ0 ∈ M(S) such that λ0 ≥ 0 with ∥λ0∥M(S) = 1. Such
a generalization is, however, not necessarily indispensable in the subsequent discussions.

Let λ0 ∈ L1
M(S) and let λ(t;λ0), 0 ≤ t <∞, be the unique global solution of (4.15). We

then define the weak∗ ω-limit set of λ0 by

w∗-ω(λ0) =
∩
t≥0

{λ(t′;λ0); t ≤ t′ <∞} (closure in the weak∗ topology of M(S)).

Theorem 5.1. For each λ0 ∈ L1
M(S), w∗-ω(λ0) is a non-empty set of M(S).

Proof. In general, it is known that, for a separable Banach space X, the closed unit ball
of its dual space X∗ is sequentially weak∗ compact, i.e., if ∥fn∥X∗ ≤ 1, then there exists
a subsequence {fnk

} of {fn} which is such that fnk
→ f in the weak∗ topology of X∗.

Furthermore, any closed bounded ball of X∗ is sequentially weak∗ compact.
Since ∥λ∥L1 = 1, we can apply this result with X = C(S) and X∗ = M(S) (see [1]) to

conclude that there exists an increasing sequence tn of time such that λ(tn;λ0) → λ in the
weak∗ topology of M(S), namely, λ ∈ w∗-ω(λ0) ̸= ∅.

5.2 Some Heuristic Arguments. To know what is the weak∗ ω-limit lying in w∗-ω(λ0)
is, of course, a very important problem. As mentioned, our numerical results suggest that
the limit function might be given by the form

∑K
k=1 αkδk(x), where 0 < αk < 1 with∑K

k=1 αk = 1 and δk(x) is a Dirac delta function on S with center xk ∈ S. But it is
very hard to prove those evidences analytically. In this subsection, we assume that µ = 1
and try to conclude that, if

(
λ(x), w(x), G(x)

)
is a stationary solution to (1.1) such that

λ(x) ∈ M(S) and w(x), G(x) ∈ C(S), then either λ(x) is in L1(S) even more is identically

equal to 1
2π or λ(x) is given by the form

∑K
k=1 αkδk(x). But the arguments will be rather

heuristic.
Let us first apply the Lebesgue decomposition theorem (see [5]) to λ(x), and assume that

λ(x) = λ∞(x) +
∑K

k=1 αkδk(x), where λ∞(x) ∈ L1(S) and δk(x) is a Dirac delta function
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with center xk ∈ S. Putting

ω =

∫
S

ω(y)λ(y)dy

=

∫
S

ω(y)λ∞(y)dy +
K∑

k=1

αkω(xk),

we decompose S into three parts S− = {x ∈ S; ω(x) < ω}, S0 = {x ∈ S; ω(x) = ω} and
S+ = {x ∈ S; ω(x) > ω}. If λ(x) > 0 at some point x ∈ S−, then λ must be strictly
decreasing in t at this point, which contradicts the stationariness of λ(x); thereby, λ(x) = 0
for every x ∈ S−. Similarly, if λ(x) > 0 at some point x ∈ S+, then λ must be strictly
increasing in t at this point, which again contradicts the stationariness of λ(x), i.e., λ(x) = 0
for every x ∈ S+. Therefore, since λ(xk) = ∞, all the centers xk belong to S0.

Let now x vary in S0. Since ω(x) ≡ ω on S0, w(x) = ωG(x) for all x ∈ S0 (due to
µ = 1). Moreover, we obtain from (1.1) that

G(x)σ = ω1−σ

∫
S0

λ(y)G(y)σe−τ(σ−1)|x−y|dy

= ω1−σ

[
K∑

k=1

αkG(xk)
σe−τ(σ−1)|x−xk| +

∫
S0

λ∞(y)G(y)σe−τ(σ−1)|x−y|dy

]
, x ∈ S0,

and

G(x)1−σ = ω1−σ

∫
S0

λ(y)G(y)1−σe−τ(σ−1)|x−y|dy

= ω1−σ

[
K∑

k=1

αkG(xk)
1−σe−τ(σ−1)|x−xk| +

∫
S0

λ∞(y)G(y)1−σe−τ(σ−1)|x−y|dy

]
, x ∈ S0.

This means that both G(x)σ and G(x)1−σ satisfy the same integral equation

u(x) = ω1−σ

[
K∑

k=1

αku(xk)e
−τ(σ−1)|x−xk| +

∫
S0

λ∞(y)u(y)e−τ(σ−1)|x−y|dy

]
, x ∈ S0.

We further assume that this integral equation has a unique non-trivial solution. Then,
G(x)σ ≡ CG(x)1−σ on S0 with some constant C > 0, and hence G(x) ≡ C1/(2σ−1) must
also be constant on S0. Therefore,

K∑
k=1

αke
−τ(σ−1)|x−xk| +

∫
S0

λ∞(y)e−τ(σ−1)|x−y|dy ≡ ωσ−1 on S0.

Then, it may possibly hold that

K∑
k=1

αke
−τ(σ−1)|x−xk| ≡ ω1 and

∫
S0

λ∞(y)e−τ(σ−1)|x−y|dy ≡ ω2 on S0

with some constants ω1 and ω2 such that ω1 + ω2 = ωσ−1.
In order that the first functional equivalence holds true, it is necessary that either

S0 = {x1, x2, . . . , xK} (i.e. λ∞(x) ≡ 0), together with

K∑
k=1

αke
−τ(σ−1)|xj−xk| ≡ ω1 for j = 1, 2, . . . ,K,
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or α1 = α2 = · · · = αK = 0 (i.e., λ(x) = λ∞(x)). In the former case, it trivially holds that∫
S0

λ∞(y)e−τ(σ−1)|x−y|dy ≡ 0

and ω1 = ωσ − 1. In the latter case, the measure of S0 cannot vanish (otherwise λ(x) = 0
almost everywhere on S) and the functional equivalence∫

S0

λ(y)e−τ(σ−1)|x−y|dy ≡ ωσ−1

takes place on S0. Therefore, S0 must coincide with S together with λ(x) ≡ 1
2π . As noticed

above, S0 = S implies that w(x) and G(x) are also constant on S, i.e.,
(
λ(x), w(x), G(x)

)
is a homogeneous stationary solution.

5.3 Linearized Principle. We prove that the homogeneous stationary solutions to (1.1)
are all unstable. Throughout this subsection, ϕ(x) is assumed to be ϕ(x) ≡ 1

2π on S.
Let us first notice that, when 0 < µ < 1, (1.1) has a unique homogeneous stationary

solution given by 
λ(x) ≡ λ =

1

2π
on S,

w(x) ≡ w = 1 on S,

G(x) ≡ G =

{
1− e−τ(σ−1)π

τ(σ − 1)π

} 1
1−σ

on S,

On the other hand, when µ = 1, (1.1) has an infinite number of homogeneous stationary
solutions that are given by

λ(x) ≡ λ =
1

2π
on S,

w(x) ≡ w on S,

G(x) ≡ G = w

{
1− e−τ(σ−1)π

τ(σ − 1)π

} 1
1−σ

on S,

where w > 0 is an arbitrary positive number.
Let (λ,w,G) be a homogeneous stationary of (1.1). In a neighborhood of this solution,

put the unknown functions ∆λ = λ− λ, ∆w = w−w and ∆G = G−G, and rewrite (1.1).
Using the notations introduced in Subsection 3.2, we havew +∆w(t) = Φ

(
w +∆w(t), λ+∆λ(t)

)
,

d

dt
∆λ(t) = Ψ

(
w +∆w(t), λ+∆λ(t)

)
.

Since{
Φ(w +∆w, λ+∆λ) = Φ(w, λ) + Φw(w, λ)∆w +Φλ(w, λ)∆λ+ o(∥∆w∥+ ∥∆λ∥),
Ψ(w +∆w, λ+∆λ) = Ψ(w, λ) + Ψw(w, λ)∆w +Ψλ(w, λ)∆λ+ o(∥∆w∥+ ∥∆λ∥),

and since Φ(w, λ) = w and Ψ(w, λ) = 0, we get the linearized equation at (λ,w,G) which
is given by  [I − Φw(w, λ)]∆w(t) = Φλ(w, λ)∆λ(t),

d

dt
∆λ(t) = Ψw(w, λ)∆w(t) + Ψλ(w, λ)∆λ(t).
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Furthermore, we introduce the Fourier expansions

∆w(t, x) =
∞∑

n=−∞
Wn(t)e

inξ and ∆λ(t, x) =
∞∑

n=−∞
Λn(t)e

inξ, ξ ∈ [−π, π],

where x = eiξ. Then, thanks to Lemma 5.1 below, it follows that

∞∑
n=−∞

[
1− µ

σ
Xn −

{
µ(σ − 1)

σ
+

(1− µ)(σ − 1)

σ
w−1

}
X2

n

]
Wn(t)e

inx

=
∞∑

n=−∞
2π

[
µ

σ
wXn −

{
µ

σ
w +

1− µ

σ

}
X2

n

]
Λn(t)e

inx,

d

dt

∞∑
n=−∞

Λn(t)e
inx =

∞∑
n=−∞

G
−µ

{
1− µXn

2π
Wn(t) +

µw

σ − 1
XnΛn(t)

}
einx

where

Xn =
τ2(σ − 1)2

(
1 + (−1)|n|+1e−τ(σ−1)π

)
(τ2(σ − 1)2 + n2)

(
1− e−τ(σ−1)π

) .

Eliminating Wn(t), it is finally reduced to

d

dt

∞∑
n=−∞

Λn(t)e
inξ =

∞∑
n=−∞

JnΛn(t)e
inξ,

where the coefficients Jn are calculated as

Jn = G
−µ


(
µ
σw + 1−µ

σ

)
X2

n − µ
σwXn{

µ(σ−1)
σ + (1−µ)(σ−1)

σ w−1
}
X2

n + µ
σXn − 1

(1− µXn) +
µw

σ − 1
Xn

 (n ̸= 0).

Note that
∫
S
∆λ(t)dx = 0 implies Λ0(t) = 0. We are now in a position to state the theorem.

Theorem 5.2. When 0 < µ < 1, there is an integer N > 0 such that Jn > 0 for any
|n| ≥ N . When µ = 1, Jn > 0 for any n ̸= 0. Therefore, (λ,w,G) is unstable in both cases.

Proof. It is easy to see that Jn ≶ 0 if and only if Xn ≷ µ(2σ−1)
σ−1+σµ2 . Since lim|n|→∞Xn = 0,

there is an N > 0 for which Xn <
µ(2σ−1)
σ−1+σµ2 holds true for any |n| ≥ N . In particular, when

µ = 1, Xn < 1 implies Jn > 0. Meanwhile, Xn < 1 is always the case.

Remark. Theorem 5.2 has already been announced in [9] but without full proof. We here
wrote a sketch of the whole proof.

Lemma 5.1. Let u ∈ L1(S) and let u(x) =
∑∞

n=−∞ une
inξ be its Fourier expansion, where

x = eiξ for x ∈ S and ξ ∈ [−π, π]. The Fourier expansion of the function
∫
S
u(y)e−τ(σ−1)|x−y|dy

is given by

(5.1)

∫
S

u(y)e−τ(σ−1)|x−y|dy = 2π
∞∑

n=−∞
Ynune

inξ,

where

(5.2) Yn =
τ(σ − 1)

(
1 + (−1)|n|+1e−τ(σ−1)π

)
π (τ2(σ − 1)2 + n2)

.
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Proof. The function
∫
S
u(y)e−τ(σ−1)|x−y|dy is none other than the convolution of u(z) and

e−τ(σ−1)|z| over S. Thereby, since Fourier coefficients for e−τ(σ−1)|z|, z ∈ [−2π, 2π] is calcu-
lated as (5.2), the Fourier expansion of the convolution is given by (5.1).
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6 Numerical Results. This section is devoted to illustrating some examples of numer-
ical computations.

6.1 Numerical Methods. Identifying S with the interval [−π, π] with mod 2π, let us
discretize the variable x ∈ S into I nodal points xi = −π+(i− 1)∆x, i = 1, 2, . . . , I, where
∆x = 2π

I . Temporal variable t ∈ [0,∞) is discretized by tn = (n − 1)∆t, n = 1, 2, 3, . . .
with ∆t > 0. Approximate values of λ(tn, xi), w(tn, xi), G(tn, xi) and ϕ(xi) are denoted
by λni , w

n
i , G

n
i and ϕi, respectively. We use also the notations λn = [λn1 , λ

n
2 , . . . , λ

n
I ], w

n =
[wn

1 , w
n
2 , . . . , w

n
I ], G

n = [Gn
1 , G

n
2 , . . . , G

n
I ] and ϕ = [ϕ1, ϕ2, · · · , ϕI ].

We remember that there are two problems to be discretized. One is the fixed point
problem (3.2), and the other is the evolution problem (4.15).

As for (3.2), we use the iteration method. Indeed, let λn be given and define a mapping

Φ̂σ(·, λn) :RI → RI by

[
Φ̂σ(W,λ

n)
]
i
=

I∑
j=1

µλnj + (1− µ)ϕj∑I
l=1 λ

n
l W

1/σ−1
l e−(σ−1)τ |xj−yl|∆x

e−(σ−1)τ |xi−yj |∆x, i = 1, 2, · · · , I,

W = [W1,W2, . . . ,WI ] ∈ RI .

Then, the iteration is given by

(6.1)

{
W (1) = [wn−1]σ,

W (k+1) = Φ̂σ(W
(k), λn) (k = 1, 2, . . .)

This iteration will be stopped if ∥W (k+1)−W (k)∥∞ ≤ ε1, where, ε1 > 0 is a positive number

that is a priori fixed. Then, we denote W (k) by W (k) = Φ̂σ,f(λ
n), and wn will be set by

wn
i =

([
Φ̂σ,f(λ

n)
]
i

)1/σ

, i = 1, 2, · · · , I. Furthermore, Gn is determined from wn by the

formula

Gn
i =

 N∑
j=1

λnj
(
wn

j

)1−σ
e−(σ−1)τ |xi−yj |∆x

 1
1−σ

, i = 1, 2, . . . , I.

By using wn, Gn thus obtained, we introduce a mapping ω̂ : RI → RI by

[ω̂(λn)]i = wn
i (Gn

i )
−µ

, i = 1, 2, . . . , I.

As for (4.15), we use the explicit Runge-Kutta method of order 4. Indeed, let λn be

given and let ω̂ be determined by the method above. Define a mapping ψ̂ : RI → RI by

[
ψ̂(λn)

]
i
=

[ω̂(λn)]i − I∑
j=1

[ω̂(λn)]jλ
n
j ∆x

λni , i = 1, 2, · · · , I,

and put kn1 , k
n
2 , k

n
3 , k

n
4 as 

kn1 = ψ̂ (λn) ,

kn2 = ψ̂

(
λn +

∆t

2
kn1

)
,

kn3 = ψ̂

(
λn +

∆t

2
kn2

)
,

kn4 = ψ̂ (λn +∆tkn3 ) ,
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respectively, then
λ0 = [λ0(x1), λ0(x2), . . . , λ0(xI)],

λn+1 = λn +
∆t

6

[
kn1 + 2kn2 + 2kn3 + kn4

]
, (n = 0, 1, 2, . . .).

As before, this procedure will be stopped if ∥λn+1 −λn∥∞ ≤ ε2, where ε2 > 0 is an a priori
fixed positive number. We then take λn as an approximation of the weak∗ ω-limit of the
global solution starting from the initial function λ0(x).

6.2 Setting Up. In our computations, we will set µ = 0.5 and ϕ(x) ≡ 1
2π on S. The

initial function λ0(x) is a small perturbation of the homogeneous distribution 1
2π . For

discretization scheme, we set I = 1024, ∆t = 0.01, ε1 = ε2 = 10−10.
The exponents σ and τ are treated as control parameters. We know that the conditions

given by (4.12) guarantee convergence of the iteration scheme to solve the fixed point
problem (3.2). Naturally, those may guarantee convergence of the approximated scheme
(6.1). The pairs (σ, τ) we will pick up here do not necessarily satisfy those conditions. But
the stopping criterion ∥W (k+1) −W (k)∥∞ ≤ ε1 can actually be fulfilled by some suitable
iteration times k.

6.3 Numerical Examples. The following Figures illustrate λ(x) and ω(x) = w(x)G(x)−µ

of stationary solutions
(
λ(x), w(x), G(x)

)
to (1.1) obtained numerically.

First, let σ = 2.3 and tune τ from 4 to 10. When τ = 4, every solution tends to a
stationary solution

(
λ(x), w(x), G(x)

)
in which λ(x) has only a single spike, see Figure 1.

When τ = 4.5, every solution still tends to a stationary solution
(
λ(x), w(x), G(x)

)
but

λ(x) has at most double spikes, see Figure 2. When τ = 10, the maximum number of spikes
increases to 4, see Figure 3.

Next, let σ = 3 and tune τ from 1 to 8.5. As Figures 4-6 illustrate, when τ = 1, λ(x)
has only a single spike, but as τ is enhanced, the maximum number of spikes increases up
to 10. The tendency that the maximum number of spikes of λ(x) increases as τ is enhanced
is evidently the same as in the case of σ = 2.3. But the maximum number increases earlier
in τ than before.

Finally, Figures 7-9 illustrate a graph of the function λ(x) for the cases where σ = 4
is fixed and τ = 0.6, 1.5, 7. The maximum number of spikes of λ(x) arrives at 4 only by
τ = 1.5. It is quite earlier, since it was τ = 10 when σ = 2.3 and τ = 3.5 when σ = 3. The
maximum number finally reaches 17 only by τ = 7.
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Fig. 1: Case where σ = 2.3, τ = 4
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Fig. 2: Case where σ = 2.3, τ = 4.5
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Fig. 3: Case where σ = 2.3, τ = 10
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Fig. 4: Case where σ = 3, τ = 1
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Fig. 5: Case where σ = 3, τ = 3.5
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Fig. 6: Case where σ = 3, τ = 8.5
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Fig. 7: Case where σ = 4, τ = 0.6
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[5] J. Dieudonné, Treatise on Analysis. vol. 2 (I. G. Macdonald, Trans.), Academic Press, 1976.

[6] M. Fabinger, Cities as solitons: Analytic solutions to models of agglomeration and related
numerical approaches, SSRN: http://ssrn.com/abstract=2630599, 2015.

[7] R. Forslid and G. I. Ottaviano, An analytically solvable core-periphery model, J. Econ. Geogr.
3(3)(2003), 229-240.

[8] M. Fujita and J. F. Thisse, Economics of Agglomeration: Cities, Industrial Location, and
Globalization, Cambridge University Press, 2013.

[9] M. Fujita, P. Krugman and A. Venables, The Spatial Economy: Cities, Regions, and Interna-
tional Trade , MIT Press, 2001.

[10] K. Ikeda, T. Akamatsu and T. Kono, Spatial period-doubling agglomeration of a coreperiphery
model with a system of cities, J. Econ. Dyn. Control 36(5)(2012), 754-778.

[11] C. A. Ioan and G. Ioan, The complete solution of the core-periphery model for two regions
using successive approximations, Acta U. Dan. Œ. 8(1)(2012), 95-106.

[12] P. Krugman, Increasing returns and economic geography, J. Polit. Econ. 99(3)(1991), 483-499.

[13] L. F. Lanaspa and F. Sanz, Multiple equilibria, stability, and asymmetries in Krugman’s core-
periphery model, Pap. Reg. Sci. 80(4)(2001), 425-438.

[14] A. Lange and M. F. Quaas, Analytical characteristics of the core-periphery model, Int. Regional
Sci. Rev. 33(4)(2010), 437-455.

[15] V. Leite, S. B. Castro and J. Correia-da-Silva, The core periphery model with asymmetric
inter-regional and intra-regional trade costs, Port. Econ. J. 8(1)(2009), 37-44.

[16] M. Maffezzoli and F. Trionfetti, Approximation methods: An application to the core-periphery
model, Mimeo, IGIER and CEPN, 2002.

[17] P. Mossay, Increasing returns and heterogeneity in a spatial economy, Reg. Sci. Urban Econ.
33(4)(2003), 419-444.

[18] P. Mossay, The core-periphery model: A note on the existence and uniqueness of short-run
equilibrium, J. Urban Econ. 59(3)(2006), 389-393.

[19] P. M. Picard and T. Tabuchi (2010), Self-organized agglomerations and transport costs, Econ.
Theor. 42(3)(2010), 565-589.

[20] F. Robert-Nicoud, The structure of simple ‘new economic geography’ models (or, on identical
twins), J. Econ. Geogr. 5(2)(2005), 201-234.

[21] A. V. Sidorov and E. Zhelobodko, Agglomeration and spreading in an asymmetric world, Rev.
Dev. Econ. 17(2)(2013), 201-219.



Asymptotic Behavior of Solutions to Racetrack Model in Spatial Economy 31

[22] M. Tabata and N. Eshima, A population explosion in an evolutionary game in spatial eco-
nomics: Blow up radial solutions to the initial value problem for the replicator equation whose
growth rate is determined by the continuous Dixit-Stiglitz-Krugman model in an urban setting,
Nonlinear Anal. Real 23(2015), 26-46.

[23] M. Tabata and N. Eshima, The existence and uniqueness of global solutions to the initial value
problem for the system of nonlinear integropartial differential equations in spatial economics:
The dynamic continuous Dixit-Stiglitz-Krugman model in an urban-rural setting, Abst. Appl.
Anal. 2015.

[24] M. Tabata and N. Eshima, Convergence of global solutions to the Cauchy problem for the
replicator equation in spatial economics, Discrete. Dyn. Nat. Soc. 2016.

[25] M. Tabata, N. Eshima Y. Kiyonari and I. Takagi, The existence and uniqueness of short-run
equilibrium of the Dixit-Stiglitz-Krugman model in an urban-rural setting, IMA J. Appl. Math.
80(2)(2015), 474-493.

[26] M. Tabata, N. Eshima, Y. Sakai and I. Takagi, An extension of Krugman’s coreperiphery
model to the case of a continuous domain: existence and uniqueness of solutions of a system
of nonlinear integral equations in spatial economics, Nonlinear Anal. Real 14(6)(2013), 2116-
2132.

[27] M. Tabata, N. Eshima and Y. Sakai, Existence, uniqueness, and computation of short-run
and long-run equilibria of the Dixit-Stiglitz-Krugman model in an urban setting, Appl. Math.
Comput. 234(2014), 339-355.

[28] M. Tabata, N. Eshima and Y. Sakai, Existence and computation of solutions to the initial value
problem for the replicator equation of evolutionary game defined by the Dixit-Stiglitz-Krugman
model in an urban setting: concentration of workers motivated by disparity in real wages, Appl.
Math. Comput. 254(2015), 419-451.

[29] M. Tabata, T. Hiroyama, A. Yagi, N. Eshima and I. Takagi, A numerical analysis of the
system of equations describing urbanization process, Mem. Grad. Sci. & Technol. Kobe Univ.
14-A(1996), 141-152.

[30] T. Tabuchi and J. F. Thisse, A new economic geography model of central places, J. Urban
Econ. 69(2), 2011, 240-252.

[31] I. Takagi, M. Tabata, T. Hiroyama, and A. Yagi, An economic analysis of urbanization process:
The system of nonlinear ordinary differential equations, J. Res. Inst. Gen. Edu. Kyushu Tokai
Univ. 7(1995), 39-44.

[32] A. M. Turing, The chemical basis of morphogenesis, Philos. T. R. Soc. B. 237(641)(1952),
37-72.

[33] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. 1: Fixed-point Theorems,
Springer-Verlag, 1986.

1 Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565-0871, Japan
2 Department of Applied Physics, Osaka University, Suita, Osaka 565-0871,
Japan

Communicated by Koichi Osaki




