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On generalized digital lines ∗

Fumie Nakaoka, Fumikazu Tamari and Haruo Maki

Abstract. In the present paper, we introduce and study the concept of generalized
digital lines, say (Z, κ(q, n)), where q and n are positive integers with 2 ≤ q < n and
n 6≡ 0 (mod q); especially, for q = 2 and n = 3, (Z, κ(2, 3)) is identical with the digital
line (Z, κ) (=the Khalimsky line due to E.D. Khalimsky).

1 Introduction and preliminaries The Khalimsky line or so called the digital line is
the set Z of integers equipped with the topology κ having Gκ := {{2m−1, 2m, 2m+1} | m ∈
Z} as a subbase ([25]: e.g. [26], [27, p.905, p.906], [28, Definition 2, p.175], [10, Example
4.6, p.23], [8, p.50], [13, p.164], [14, p.31], [44, p.601], [43, p.46], [18, p.926], [37, Example
2.4], [19, p.1034, p.1035], [36, Section 3(I)]). In 1970, the concept of the digital line was
published by Khalimsky [25] above from Russia. In 1990, Khalimsky, Kopperman and
Meyer [26] investigated the concepts of connected ordered topological spaces, digital planes
and a proof of digital Jordan closed curve theorem using purely digital topological methods
(cf. the references of [26], [27]). The digital line is denoted by (Z, κ). Roughly speaking,
(Z, κ) has a covering Gκ by infinitely many open subsets which are three points subset
{2m− 1, 2m, 2m + 1}, where m ∈ Z, and two adjacent open sets {2m− 1, 2m, 2m + 1} and
{2m + 1, 2m + 2, 2m + 3} are connected with a singleton {2m + 1} as their intersection of
two such open subsets. For any integer m, the singleton {2m + 1} is open in (Z, κ) and
{2m} is closed in (Z, κ). From a point of view in general topology approaches, the digital
line (Z, κ) is a typical and geometrical example of a topological space which satisfies a T1/2

separation axiom. In 1970, Levine [31] published, from Italy, the concept of T1/2-spaces
by introducing the concept of generalized closed subsets [31, Definition 2.1] of a topological
space; a topological space is called T1/2 [31, Definition 5.1] if every generalized closed set is
closed. The class of T1/2-spaces is properly placed between the classes of T0- and T1-spaces
[31, Corollary 5.6]. In 1977, Dunham [11, Theorem 2.5] proved that a topological space
(X, τ) is T1/2 if and only if each singleton {x} is open or closed in (X, τ), where x ∈ X.
Therefore, we know that (Z, κ) is T1/2 (cf. [26, p.7], [10, Example 4.6]). In 1996, Dontchev
and Ganster [10] investigated the class of T3/4-spaces which is properly placed between the
classes of T1- and T1/2-spaces; and the authors proved that (Z, κ) is T3/4 [10, Example 4.6].

The purpose of the present paper is to construct generalized digital lines, say (Z, κ(q, n))
(cf. Definition 2.2 below) and investigate its fundamental properties (cf. Theorem A below
and related properties).

Throughout the present paper, (X, τ) represents a nonempty topological space on which
no separation axioms are assumed unless otherwise mentioned and P (X) denotes the power
set of X.

Theorem A Let (Z, κ(q, n)) be a generalized digital line in the sense of Definition 2.2,where
the integers q and n satisfy the following conditions: 2 ≤ q < n and n 6≡ 0 (mod q), say
n ≡ r (mod q) (1 ≤ r ≤ q − 1). Then, we have the following fundamental properties.

(i) κ(q, n) 6= P (Z) holds;
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(ii) (ii-1) if 2 ≤ r, then (Z, κ(q, n)) is pre-T2; (ii-2) if r = 1, then (Z, κ(q, n)) is semi-T2;
especially if q = 2, then (Z, κ(q, n)) is T3/4;

(iii) (Z, κ(q, n)) is connected.

The proof of Theorem A(i) (resp. (ii), (iii)) is shown in Section 5 (resp. Section 6,
Section 7). When q = 2 and n = 3, then we see (Z, κ(2, 3)) = (Z, κ) (cf. Remark 2.3).

In the present paper, sometimes, we use the following notation:
Notation. For integers a, b ∈ Z with a ≤ b, [a, b]Z = {x ∈ Z | a ≤ x ≤ b} (by [6], this

set is called a digital interval if a � b). For a set A, we denote by |A| the cardinality of A
(e.g. Lemma 2.8, Proof of Theorem 5.1(ii)).

2 Open sets and classifications of generalized digital lines

Definition 2.1 Let n and q be given two positive integers. Let G(q, n) := {Bk(q, n) | k ∈ Z}
be the family of subsets Bk(q, n) of Z, where k ∈ Z and Bk(q, n) := {kq+ i ∈ Z | 1 ≤ i ≤ n}.

Definition 2.2 (the generalized digital line) Suppose that the following conditions: 2 ≤ q <
n and n ≡ r (mod q) (1 ≤ r ≤ q − 1) hold for the integers q and n in Definition 2.1 above.
Then, a generalized digital line is the set of the integers, Z, equipped with the topology
κ(q, n) having G(q, n) as a subbase. It is denoted by (Z, κ(q, n)).

Remark 2.3 In Definition 2.2 above, let q = 2 and n = 3. Then, for each k ∈ Z, Bk(2, 3) =
{2(k + 1)− 1, 2(k + 1), 2(k + 1) + 1} and the space (Z, κ(2, 3)) coincides with the digital line
(Z, κ) (cf. [26], e.g. [10], Section 1 above).

We investigate the smallest open set (resp. closed set) containing a point of (Z, κ(q, n)).

Definition 2.4 For a subset A of a topological space (X, τ),
(i) Ker(A) :=

⋂{U | A ⊂ U,U ∈ τ}, (e.g. in [35, Definition 2.1], Ker(A) is denoted by
AΛ);

(ii) Cl(A) :=
⋂{F | A ⊂ F, F is closed in (X, τ)}.

Definition 2.5 Let (X, τ) be a topological space, A and B subsets of (X, τ) and x ∈ X.
(i) A is called the smallest open set containing x if x ∈ A,A ∈ τ and G = A holds for

any open set G such that x ∈ G and G ⊂ A. The uniqueness of the smallest open sets is
assured by Remark 2.6(i) below.

(ii) B is called the smallest closed set containing x, if x ∈ B,X \B ∈ τ and F = B holds
for any closed set F such that x ∈ F and F ⊂ B.

Remark 2.6 (i) If subsets A and B are the smallest open subsets containing x ∈ X, then
A = B.

(ii) For an open subset A of X and a point x ∈ A, the following properties are equivalent:
(1) A is the smallest open set containing x;
(2) for any open set U containing x,A ⊂ U holds.

Lemma 2.7 Let (X, τ) be a topological space and A ⊂ X, x ∈ X.
(i) If A is the smallest open set containing x, then Ker({x}) = A holds.
(ii) If Ker({x}) = A and A ∈ τ , then A is the smallest open set containing x.
(iii) A is the smallest closed set containing x if and only if Cl({x}) = A holds. ¤

Lemma 2.8 Let X be a set and G = {Vi| i ∈ A} be a collection of subsets of X. Let
(X, τ) be a topological space, where τ is the topology having G as subbase. Suppose that,
for each point w ∈ X, the collection {V | V ∈ G, w ∈ V }:=Gw is a finite subcollection of
G,i.e., |Gw| < ∞. Then, for a point x ∈ X and a subset A ⊂ X, the following properties on
Ker({x}), Cl({x}) and Cl(A) hold.
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(i) Ker({x}) =
⋂{V | V ∈ G, x ∈ V }(= ⋂{V | V ∈ Gx}) and it is the smallest open set

containing x.
(ii) Moreover, suppose that Ker({x})∩Ker({y}) = ∅ or Ker({x}) = Ker({y}) hold for

any distinct points x, y of X.
Then, Cl({x}) = Ker({x}).
(iii) Cl(A) = X \ UA, where UA = {y ∈ X | Ker({y}) ∩A = ∅}.

Proof. (i) We claim that Ker({x}) ⊃ ⋂{V | V ∈ Gx} holds. For each open set G containing
x, we are able to set G =

⋃{Bi | i ∈ I}, where the subset Bi is a finite intersection of
some elements of G and I is an index set. For each open set G, there exists an element
i0 ∈ I such that x ∈ Bi0 and Bi0 =

⋂{Vj | Vj ∈ Gx, j ∈ J} for some finite set J ⊂ A.
Then, we have G ⊃ Bi0 ⊃

⋂{V | V ∈ Gx} 3 x and so Ker({x}) ⊃ ⋂{V | V ∈ Gx}.
Conversely, the implication Ker({x}) ⊂ ⋂{V | V ∈ Gx} is easily proved. Thus we have that
Ker({x}) =

⋂{V | V ∈ Gx} holds and it is open. By Lemma 2.7 (ii), the set Ker({x}) is
the smallest open set containing x.

(ii) For a given point x ∈ X, let F := X \U , where U :=
⋃{Ker({y}) | y 6∈ Ker({x})}.

Then, by the assumption in (ii), F = Ker({x}) holds. Indeed, first we show that U ⊂
X \Ker({x}). Let z ∈ U . Then, there exists a point y ∈ X such that y 6∈ Ker({x}) and
z ∈ Ker({y}). It is shown that Ker({y})∩Ker({x}) = ∅ holds; and so z 6∈ Ker({x}). Thus,
we have the property that U ⊂ X \Ker({x}). Finally, we show that U ⊃ X \Ker({x}),
because U :=

⋃{Ker({y}) | y 6∈ Ker({x})} ⊃ ⋃{{y}| y 6∈ Ker({x})} = X \ Ker({x}).
Therefore, U = X \Ker({x}) holds, i.e., F = Ker({x}) holds. Since Ker({y}) is open by
(i), F := X \U is a closed subset containing x and so Cl({x}) ⊂ F = Ker({x}). Conversely,
we claim that Ker({x}) ⊂ Cl({x}). Let y be a point such that y 6∈ Cl({x}). Then, there
exists an open subset Vy containing y such that Vy ∩ {x} = ∅. Since Ker({y}) ⊂ Vy,
we have Ker({y}) ∩ {x} = ∅ and so Ker({x}) 6= Ker({y}). Using assumption we have
Ker({x}) ∩Ker({y}) = ∅ and hence y 6∈ Ker({x}) for any y 6∈ Cl({x}). Thus we conclude
that Cl(x) = Ker({x}) holds.

(iii) It is shown that Cl(A) ⊂ X \UA. Indeed, let a 6∈ X \UA. Then, Ker({a})∩A = ∅
and so a 6∈ Cl(A) (cf. (i) above). Conversely, let b 6∈ Cl(A). Then, there exists an open set
V containing the point b such that V ∩ A = ∅. Thus, we have that Ker({b}) ∩ A = ∅ and
so b 6∈ X \ UA. This shows that X \ UA ⊂ Cl(A) holds. ¤

Remark 2.9 (i) The following example shows that even if A is the smallest open set con-
taining a point x there exists a proper open subset G such that G ⊂ A. Let (Z, κ) be
the digital line, x := 0 and A =: {−1, 0, 1} be the smallest open set containing x. Then,
Ker({x}) = A; however, subsets G := {1}, G′ := {−1} are open proper subsets of A. Note
that x 6∈ G and x 6∈ G′.

(ii) The following example shows that the converse of Lemma 2.7 (i) is not true in general.
Let (R, τ) be the Euclidian line. A subset A := {0} is not open; Ker({0}) = {0} holds.

Lemma 2.10 Assume that 2 ≤ q < n and n = sq + r, where r, s ∈ N with 1 ≤ r ≤ q − 1.
Then, a subset {y ∈ Z | kq + 1 ≤ y ≤ (k + t)q + r} is open in (Z, κ(q, n)), where k ∈ Z and
t ∈ Z with 1 ≤ t ≤ s.

Proof. Using notation above (cf. the end of Section 1), we show that [kq +1, kq +n]Z∩ [(k−
(s− t))q + 1, (k− (s− t))q + n]Z = [kq + 1, (k + t)q + r]Z holds, because kq − (s− t)q + 1 ≤
kq+1 ≤ (k−(s−t))q+n ≤ kq+n. Since [kq+1, kq+n] ∈ G(q, n) and [(k−(s−t))q+1, (k−
(s − t))q + n]Z ∈ G(q, n) (cf. Definition 2.1), we show that [kq + 1, (k + t)q + r]Z ∈ κ(q, n)
(cf. Defintion 2.2). ¤

Lemma 2.11 Suppose that 2 ≤ q < n for the integers q and n of the sets Bk(q, n) ⊂
Z(k ∈ Z) and the family G(q, n) ⊂ P (Z) in Definition 2.1. Let n = sq + r(s, r ∈ Z with
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0 ≤ r ≤ q− 1). For a point x ∈ Z and Bk′(q, n) ∈ G(q, n), where k′ ∈ Z (cf. Definition 2.1),
the following properties hold.

(i) Assume that n ≡ 0 (mod q). For a point x = kq + i, where k, i ∈ Z with 1 ≤ i ≤
q, x ∈ Bk′(q, n) if and only if k′ ∈ {y ∈ Z | k − (s− 1) ≤ y ≤ k}.

(ii) Assume that n ≡ r (mod q), where 0 < r ≤ q − 1.
(b1) For a point x = kq + i, where k, i ∈ Z with 1 ≤ i ≤ r, x ∈ Bk′(q, n) if and only if

k′ ∈ {y ∈ Z | k − s ≤ y ≤ k}.
(b2) For a point x = kq + j, where k, j ∈ Z with r + 1 ≤ j ≤ q, x ∈ Bk′(q, n) if and only

if k′ ∈ {y ∈ Z | k − s + 1 ≤ y ≤ k}.

Proof. First we recall that Bk′(q, n) = [k′q + 1, k′q + n]Z for k′ ∈ Z (cf. Definition 2.1).
(i) Suppose that x = kq + i ∈ Bk′(q, n) (1 ≤ i ≤ q) and n = sq, where s ∈ Z. Then,

k′q+1 ≤ kq+i ≤ k′q+sq and so kq−sq < kq−sq+i ≤ k′q ≤ kq+i−1 ≤ kq+q−1 < kq+q.
Thus we have k−s < k′ < k+1,i.e., k′ ∈ [k−s+1, k]Z. Conversely, if k′ ∈ [k−s+1, k]Z, then
kq−sq+ i ≤ kq−sq+q ≤ k′q ≤ kq ≤ kq+ i−1 and so kq+ i ≤ k′q+sq and k′q+1 ≤ kq+ i.
Thus, we have x = kq + i ∈ [k′q + 1, k′q + sq]Z = [k′q + 1, k′q + n]Z = Bk′(q, n).

(ii)(b1) Suppose that n = sq + r (0 < r ≤ q− 1) and x = kq + i ∈ Bk′(q, n) (1 ≤ i ≤ r).
Then, k′q + 1 ≤ kq + i ≤ k′q + sq + r and so kq − sq + i − r ≤ k′q ≤ kq + i − 1. Then,
we have kq − sq + i − (q − 1) ≤ kq − sq + i − r ≤ k′q ≤ kq + i − 1 and so kq − sq − q <
kq − sq + 1 − (q − 1) ≤ kq − sq + i − (q − 1) ≤ k′q ≤ kq + r − 1 ≤ kq + (q − 2) < kq + q.
Thus, we have k′ ∈ [k− s, k]Z. Conversely, if k′ ∈ [k− s, k]Z, then kq− sq ≤ k′q ≤ kq and so
kq−sq+ i−r ≤ k′q ≤ kq+ i−1. Thus, we show that k′q+1 ≤ kq+ i ≤ k′q+sq+r = k′q+n
and so x ∈ [k′q + 1, k′q + n]Z = Bk′(q, n).

(b2) Suppose that n = sq + r (0 < r ≤ q−1) and x = kq + j ∈ Bk′(q, n) (r +1 ≤ j ≤ q).
Then, k′q + 1 ≤ kq + j ≤ k′q + sq + r and so kq − sq + j − r ≤ k′q ≤ kq + j − 1. Thus we
have kq − sq < kq − sq + j − r ≤ k′q ≤ kq + j − 1 and so kq − sq < k′q < kq + q. Namely,
we have k′ ∈ [k − s + 1, k]Z. Conversely, if k′ ∈ [k − s + 1, k]Z, then kq − sq + q ≤ k′q ≤ kq
and so kq − sq − r + j < kq − sq + j ≤ kq − sq + q ≤ k′q < kq + j − 1. Thus, we show that
k′q+1 < kq+j < k′q+sq+r = k′q+n and so x ∈ [k′q+2, k′q+n−1]Z ⊂ [k′q+1, k′q+n]Z =
Bk′(q, n). ¤

Remark 2.12 For the generalized digital line (Z, κ(q, n)) (cf. Definition 2.2), its topology
κ(q, n) satisfies the assumptions in Lemma 2.8. Indeed, for each point x ∈ Z, by Lemma 2.11,
it is shown that Gx = {Bk′(q, n)| x ∈ Bk′(q, n)} is a finite subcollection of G(q, n). Namely,
{k′| x ∈ Bk′(q, n)} is a finite set for each point x ∈ Z. Thus, for each point x ∈ Z, we can
get Ker({x}) =

⋂{Bk′(q, n)| x ∈ Bk′(q, n)}. We note that Ker({x}) is the smallest open
set containng x in (Z, κ(q, n)).

We are able to determine the structure of Ker({x}) for a point x in (Z, κ(q, n)), where
q < n, using Lemma 2.8 (i) and Remark 2.12 and also Cl({x}) using Lemma 2.8 (iii), cf.
Theorem 2.13 below.

Theorem 2.13 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume
that n ≡ r (mod q), where 1 ≤ r ≤ q − 1. The following properties hold:

(b1) For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, Ker({x}) = {y ∈
Z | kq + 1 ≤ y ≤ kq + r} and it is the smallest open set containing x.

(b2) For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, Ker({x}) =
{y ∈ Z | kq + 1 ≤ y ≤ (k + 1)q + r} and it is the smallest open set containing x.

(b1)′ For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, Cl({x}) = {y ∈
Z | (k − 1)q + r + 1 ≤ y ≤ kq + q} holds;

(b2)′ For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, Cl({x}) = {y ∈
Z | kq + r + 1 ≤ y ≤ kq + q} holds.
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Proof. We recall that 2 ≤ q < n, n = sq + r (s, r ∈ Z with 1 ≤ r ≤ q − 1) and the family
G(q, n) := {Bk′(q, n)| k′ ∈ Z} generates the topology κ(q, n) on Z and Bk′(q, n) = {y ∈
Z | k′q + 1 ≤ y ≤ k′q + n} is open in (Z, κ(q, n)), where k′ ∈ Z.

(b1) Let x = kq + i ∈ Z be a point with 1 ≤ i ≤ r. We have the following property (cf.
Lemma 2.11 (ii) (b1)):
(∗2) x = kq + i ∈ [k′q + 1, k′q + sq + r]Z (1 ≤ i ≤ r) if and only if k′ ∈ [k − s, k]Z.
Using (∗2) and Lemma 2.8 (i) (cf. Remark 2.12), we show that Ker({x}) =

⋂{Bk′(n, q) | k′ ∈
[k−s, k]Z} =

⋂{[(k−a)q+1, (k−a)q+sq+r]Z | a ∈ [0, s]Z} = [kq+1, kq+r]Z and Ker({x})
is the smallest open set containing x.

(b2) Let x = kq + j ∈ Z be a point with r + 1 ≤ j ≤ q. We have the followng property
(cf. Lemma 2.11 (ii)(b2)):

(∗3) x = kq + j ∈ [k′q +1, k′q + sq + r]Z (r +1 ≤ j ≤ q) if and only if k′ ∈ [k− s+1, k]Z.
Using (∗3) and Lemma 2.8 (i) (cf. Remark 2.12), we show that Ker({x})=⋂{Bk′(q, n) |

k′ ∈ [k−s+1, k]Z} =
⋂{[(k−a)q+1, (k−a)q+sq+r]Z | a ∈ [0, s−1]Z} =[kq+1, (k+1)q+r]Z

and Ker({x}) is the smallest open set containing x.
(b1)′ We prove (b1)′ using Lemma 2.8 (iii). Let U{x} := {y ∈ Z | Ker({y}) ∩ {x} = ∅}

for given point x. For x = kq + i with 1 ≤ i ≤ r, we claim that
(∗) U{x} = [(k +1)q +1,+∞)Z ∪ (−∞, (k− 1)q + r]Z, where [d, +∞)Z = {z ∈ Z | d ≤ z}

and (−∞, e]Z = {z ∈ Z | z ≤ e} for some integers d, e ∈ Z.
First we show that
(∗)1 [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z ⊂ U{x} holds.
Let y ∈ [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z.
Case 1. y ∈ [(k + 1)q + 1,+∞)Z: if y = tq + i (1 ≤ i ≤ r and t ∈ Z with k + 1 ≤ t),

then Ker({y}) = [tq + 1, tq + r]Z; it is shown by replacing the point y for the point x in
the result of (b1) above. If y = tq + j (r + 1 ≤ j ≤ q and t ∈ Z with k + 1 ≤ t), then
Ker({y}) = [tq + 1, (t + 1)q + r]Z; it is obtained by replacing the point y for x in the result
of (b2) above. Thus, we show that x = kq + i 6∈ Ker({y}) (1 ≤ i ≤ r) for this case and so
y ∈ U{x}.

Case 2. y ∈ (−∞, (k− 1)q + r]Z: if y = tq + i (1 ≤ i ≤ r and t ∈ Z with t ≤ k− 1), then
Ker({y}) = [tq + 1, tq + r]Z (cf. the result of (b1) above). If y = tq + j (r + 1 ≤ j ≤ q and
t ∈ Z with t ≤ k − 2), then Ker({y}) = [tq + 1, (t + 1)q + r]Z (cf. the result of (b2) above).
For this case, we have x = kq + i 6∈ Ker({y}) (1 ≤ i ≤ r) and so y ∈ U{x}.

Finally, we show the converse implication:
(∗)2 U{x} ⊂ [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z.
Let y ∈ [(k− 1)q + r +1, (k +1)q]Z be any point. By the result of (b2) above, it is shown

that Ker({y}) = [(k − 1)q + 1, kq + r]Z if y ∈ [(k − 1)q + r + 1, kq]Z. By the result of (b1)
above, it is shown that Ker({y}) = [kq + 1, kq + r]Z if y ∈ [kq + 1, kq + r]Z. Moreover, if
y ∈ [kq + r +1, kq + q]Z, we have that Ker({y}) = [kq +1, (k +1)q + r]Z holds (cf. the result
of (b2) above). Thus, we show that, for these points y above, x = kq + i ∈ Ker({y}) and so
y 6∈ U{x}, where 1 ≤ i ≤ r. This concludes that (∗)2 above holds.

Using (∗)1 and (∗)2 above, we have done the proof of the claim (∗) above. Therefore, by
Lemma 2.8 (iii) (cf. Remark 2.12), it is obtained that Cl({x}) = X \U{x} = [(k− 1)q + r +
1, (k + 1)q]Z.

(b2)′ We claim that, for a given point x = kq + j (r + 1 ≤ j ≤ q),
(∗∗) U{x} = [(k + 1)q + 1,+∞)Z ∪ (−∞, kq + r]Z holds, where U{x} is defined in the

top of the proof of (b1)′ above. The property (∗∗) is proved by argument similar to that in
the proof of (∗) in (b1)′ above. By Lemma 2.8 (iii) (cf. Remark 2.12), it is obtained that
Cl({x}) = X \ U{x} = [kq + r + 1, (k + 1)q]Z. ¤

In the end of the present section, the following Corollary 2.14 shows the classification
of families of topologies: • {κ(q, n)|n ∈ Z with 2 ≤ q < n and n 6≡ 0 (mod q)}, for a given
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positive integer q ∈ Z with 2 ≤ q. Throughout the proof of Corollary 2.14, the kernel of a
singleton {x} in a topological space (X, τ) also denoted by τ -Ker({x}).
Corollary 2.14 Let n, n′ and q be positive integers such that 2 ≤ q < n, 2 ≤ q < n′, n 6≡ 0
(mod q) and n′ 6≡ 0 (mod q). Then, κ(q, n) = κ(q, n′) if and only if n ≡ n′ (mod q).

Proof. We denote shortly the kernel of a singleton {x} in (Z, κ(q, n)) (resp. (Z, κ(q, n′))) by
κ-Ker({x}) (resp. κ′-Ker({x})).

(Necessity) It follows from assumption that κ-Ker({x}) = κ′-Ker({x}) holds for each
point x ∈ Z. Let n ≡ r (mod q) and n′ ≡ r′ (mod q) for some integer r and r′ with
1 ≤ r ≤ q−1 and 1 ≤ r′ ≤ q−1. We shall show r = r′. First we suppose r ≤ r′. Take a point
x := kq+i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r; then we have κ-Ker({x}) = [kq+1, kq+r]Z
(cf. Theorem 2.13 (b1)). Since x = kq+i (1 ≤ i ≤ r′), by Theorem 2.13 (b1) for the singleton
{x} in (Z, κ(q, n′)) it is shown κ′-Ker({x}) = [kq +1, kq + r′]Z. Thus we have r = r′ for this
first case, because κ-Ker({x}) = κ′-Ker({x}). Finally, we suppose r′ ≤ r. By the similar
fashion to above first case, it is obtained that r′ = r for this case. Therefore, we show r = r′;
and so we conclude that n ≡ n′ (mod q).

(Sufficiency) In oder to prove the sufficiency, we claim the following properties (1) and
(2) of topological spaces; (2) is proved by (1).
Claim: Let (X, τ) and (X, τ ′) be two topological spaces.

(1) If U is an open set in (X, τ), then U =
⋃{τ -Ker({x})| x ∈ U} holds.

(2) If τ -Ker({x}) ∈ τ , τ ′-Ker({x}) ∈ τ ′ and τ -Ker({x}) = τ ′-Ker({x}) hold for each
point x ∈ X, then τ = τ ′ and so (X, τ) = (X, τ ′).

We prove the sufficiency of the present Corollary 2.14. Let (Z, κ(q, n)) and (Z, κ(q, n′))
be two generalized digital lines. We suppose n ≡ r (mod q) and n′ ≡ r (mod q) for an
integer r with 1 ≤ r ≤ q − 1. Let x ∈ Z and x = kq + i for some k ∈ Z and i ∈ Z with
1 ≤ i ≤ q − 1. We consider the following Case 1 and Case 2 on the point x.
Case 1. x = kq + i, where 1 ≤ i ≤ r: by Theorem 2.13 (b1) for the point x = kq + i in
(Z, κ(q, n)), it is obtained that κ-Ker({x}) = [kq + 1, kq + r]Z; and by Theorem 2.13(b1)
for the point x = kq + i in (Z, κ(q, n′)), it is obtained that κ′-Ker({x}) = [kq + 1, kq + r]Z.
Thus, for the point x = kq + i (1 ≤ i ≤ r), κ-Ker({x}) = κ′-Ker({x}) holds.
Case 2. x = kq + j, where r + 1 ≤ j ≤ r: by Theorem 2.13 (b2) for the point x = kq + j in
(Z, κ(q, n)), it is obtained that κ-Ker({x}) = [kq+1, kq+q+r]Z; and, by Theorem 2.13 (b2)
for the point x = kq+i in (Z, κ(q, n′)), it is obtained that κ′-Ker({x}) = [kq+1, kq+q+r]Z.
Thus, for the point x = kq + j (r + 1 ≤ j ≤ q), κ-Ker({x}) = κ′-Ker({x}) holds.

Therefore, for both cases above we see κ-Ker({x}) = κ′-Ker({x}) for any point x. By
using Theorem 2.13 (b1), (b2) and the claim (2) above, we have κ(q, n) = κ(q, n′). ¤

Remark 2.15 Kojima [29] investigated the classification of a family {τ(3,m)|m ∈ Z} of
the natural fuzzy topologies on Z.

3 Semi-open sets in generalized digital lines In the first of the present section,
we recall some notation with definitions and some properties (3.1) - (3.11) on familes of
generalized open sets of a topological space (X, τ) (i.e., semi-open sets, preopen sets, α-
open sets, β-open sets, semi-preopen sets, b-open sets):

(3.1) SO(X, τ) := {A | A is semi-open in (X, τ)} = {A|A ⊂ Cl(Int(A))} = {A | there
exists a subset U ∈ τ such that U ⊂ A ⊂ Cl(U)} [30],

(3.2) PO(X, τ) := {A | A is preopen in (X, τ)} = {A | A ⊂ Int(Cl((A))} = {A| there
exists a subset V ∈ τ such that A ⊂ V ⊂ Cl(A)} [34],

(3.3) τα := {A | A is α-open in (X, τ)} = {A | A ⊂ Int(Cl(Int(A)))} [38].
(3.4) For every topological space (X, τ), PO(X, τ)∩ SO(X, τ) = τα holds [42] and τα is

a topology on X [38] (e.g., [40]);
(3.5) βO(X, τ) := {A | A is β-open in (X, τ)} = {A | A ⊂ Cl(Int(Cl(A)))} [1],
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(3.6) SPO(X, τ) := {A | A is semi-preopen in (X, τ)} = {A | there exists a preopen set
U such that U ⊂ A ⊂ Cl(U)} [4].

(3.7) For every topological space (X, τ),SPO(X, τ) = βO(X, τ) holds [4, Theorem 2.4].
(3.8) BO(X, τ) := {A | A is b-open in (X, τ)} = {A | A ⊂ Int(Cl(A))∪Cl(Int(A))} [5].
(3.9) For every topological space (X, τ),
τ ⊂ PO(X, τ)∩SO(X, τ) ⊂ PO(X, τ)∪SO(X, τ) ⊂ BO(X, τ) ⊂ βO(X, τ) = SPO(X, τ)

hold [4, Theorem 2.2], [5, p.60] (e.g., [17, Proposition 1.1]).
(3.10) The following properties are well known and important ones:
if Vi ∈ SO(X, τ) (resp. PO(X, τ), SPO(X, τ), BO(X, τ)), i ∈ Γ, then

⋃{Vi| i ∈ Γ} ∈
SO(X, τ) (resp. PO(X, τ), SPO(X, τ), BO(X, τ)), where the index set Γ is not necessarily
finite.

(3.11) The complement of a semi-open set (resp. preopen set, α-open set, β-open set,
pre-semi-open set, b-open set) is called a semi-close set (resp. preclosed set, α-closed set,
β-closed set, pre-semi-closed set, b-closed set).

In the present section, we investigate mainly the semi-closure and the semi-kernel of a
singleton of (Z, κ(q, n)) (cf. Theorem 3.2). We note that [39, Lemma 2] if A is a nonempty
semi-open set of (X, τ), then Int(A) 6= ∅.
Lemma 3.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2) and
A ∈ SO(Z, κ(n, q)) with a point x ∈ A. Assume that n ≡ r (mod q), where r ∈ Z with
1 ≤ r ≤ q − 1.

(b1) If x = kq + i ∈ A, where k ∈ Z, and i ∈ Z with 1 ≤ i ≤ r, then there exists a subset
U1(x) ∈ κ(q, n) such that x ∈ U1(x) ⊂ A and U1(x) is the smallest open set containing x,
where U1(x) := {y ∈ Z | kq + 1 ≤ y ≤ kq + r}.

(b2) If x = kq + j ∈ A, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, then there exist a
point kq + h (1 ≤ h ≤ q + r) such that kq + h ∈ Int(A) and an open set V such that V ⊂ A,
where V is defined as follows:

V := {y ∈ Z | kq+1 ≤ y ≤ kq+r} if 1 ≤ h ≤ r; V := {y ∈ Z | kq+1 ≤ y ≤ (k+1)q+r}
if r + 1 ≤ h ≤ q; V := {y ∈ Z | (k + 1)q + 1 ≤ y ≤ (k + 1)q + r} if q + 1 ≤ h ≤ q + r.

Proof. (b1) Suppose that x = kq + i (1 ≤ i ≤ r), x ∈ A and A ∈ SO(Z, κ(q, n)). Since
x ∈ Cl(Int(A)) holds, by using Theorem 2.13 (b1) for the point x, there exists the smallest
open set Ker({x}) = [kq+1, kq+r]Z containing x, say U1(x), such that U1(x)∩Int(A) 6= ∅.
Take a point yx ∈ Z such that yx ∈ U1(x)∩Int(A), say yx = kq+h (1 ≤ h ≤ r). Then, using
Theorem 2.13 (b1) for the point yx = kq+h (1 ≤ h ≤ r), the set Ker({yx}) = [kq+1, kq+r]Z
is the smallest open set containing yx and so yx ∈ [kq + 1, kq + r]Z ⊂ Int(A) ⊂ A. Thus,
it is obtained that U1(x) = [kq + 1, kq + r]Z is the smallest open set containing x such that
U1(x) ⊂ A.

(b2) By using Theorem 2.13 (b2) for the point x, there exists the smallest open set
Ker({x}) = [kq + 1, (k + 1)q + r]Z containing x. Since x ∈ A and A ⊂ Cl(Int(A)) hold, we
have [kq + 1, (k + 1)q + r]Z ∩ Int(A) 6= ∅ and so there exists a point kq + h ∈ Int(A) with
1 ≤ h ≤ q + r. Thus we investigate the following Case 1, Case 2 and Case 3.

Case 1. kq+h ∈ Int(A), where 1 ≤ h ≤ r; Case 2. kq+h ∈ Int(A), where r+1 ≤ h ≤ q;
Case 3. kq + h ∈ Int(A), where q + 1 ≤ h ≤ q + r.

For Case 1, by using Theorem 2.13 (b1) for the point kq + h and the definition of V , it
is shown that Ker({kq + h}) = [kq +1, kq + r]Z ⊂ Int(A) ⊂ A hold and so V ⊂ A. We note
x 6∈ V for this case. For Case 2, by using Theorem 2.13 (b2) for the point kq + h and the
definition of V , it is shown that Ker({kq + h}) = [kq + 1, (k + 1)q + r]Z ⊂ Int(A) ⊂ A hold
and so V ⊂ A. We note x ∈ V for this case. For Case 3, by using Theorem 2.13 (b1) for
the point kq + h = (h + 1)q + h′, where h′ ∈ Z with 1 ≤ h′ ≤ r, and the definition of V , it is
shown that Ker({kq + h}) = [(k + 1)q + 1, (k + 1)q + r]Z ⊂ Int(A) ⊂ A hold and so V ⊂ A.
We note x 6∈ V for this case. ¤
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For the digital line (Z, κ), κ(2, 3) = κ, i.e., q = 2, n = 3 and so r = 1, it is known that
SO(Z, κ(2, 3)) 6= κ(2, 3) and κ(2, 3) ( SO(Z, κ(2, 3)). For example, a subset {q + r, q + q} =
{3, 4} is a semi-open set, where q = 2 and r = 1; it is not open in (Z, κ(2, 3)).

We recall the following definitions: for a subset B of a topological space (X, τ),
sKer(B) =

⋂{U | U ∈ SO(X, τ), B ⊂ U}; sCl(B) =
⋂{F | X \F ∈ SO(X, τ), B ⊂ F}.

It is well nown that [4, Theorem 2.1 (a)] sCl(A) = A ∪ Int(Cl(A)) holds for any subset A
of (X, τ).

Theorem 3.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2) and a point
x ∈ Z. Assume that n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q−1. The following properties
hold:
(b1) Let x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r. Then,

(b1-1) there exists a subset U1(x) ∈ SO(Z, κ(q, n)) such that x ∈ U1(x), where U1(x) :=
{y ∈ Z | kq + 1 ≤ y ≤ kq + r};

(b1-2) if there exists a semi-open set A1 containing the point x such that A1 ⊂ U1(x),
then A1 = U1(x) and x ∈ U1(x) hold, where U1(x) is defined in (b1-1) above;

(b1-3) sKer({x}) = {y ∈ Z | kq + 1 ≤ y ≤ kq + r} ∈ SO(Z, κ(q, n)) and sKer({x}) is
semi-open in (Z, κ(q, n)).
(b2) Let x = kq + j ∈ Z, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q. Then,

(b2-1) there exist two subsets Vi(x) ∈ SO(Z, κ(q, n)), i ∈ {1, 2}, such that {x} = V1(x) ∩
V2(x), where V1(x) := {x} ∪ {y ∈ Z | kq + 1 ≤ y ≤ kq + r} and V2(x) := {x} ∪ {y ∈
Z | (k + 1)q + 1 ≤ y ≤ (k + 1)q + r};

(b2-2) sKer({x}) = {x} and {x} is not semi-open in (Z, κ(q, n));
(b2-3) if there exists a semi-open set G1 (resp. a semi-open set G2) such that x ∈ G1 ⊂

V1(x) (resp. x ∈ G2 ⊂ V2(x)), then G1 = V1(x) (resp. G2 = V2(x)), where V1(x) and V2(x)
are defined in (b2-1) above.
(b1)′ For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r,

sCl({x}) = {y ∈ Z | kq + 1 ≤ y ≤ kq + r} = sKer({x}) hold.
(b2)′ For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q,

sCl({x}) = {x} = sKer({x}) hold.

Proof. (b1) (b1-1) Let x = kq + i (1 ≤ i ≤ r). By using Lemma 3.1 (b1) for the semi-open
set Z of (Z, κ(q, n)) and the point x ∈ Z and a fact that κ(q, n) ⊂ SO(Z, κ(q, n)), there
exists a subset U1(x) ∈ SO(Z, κ(q, n)) such that x ∈ U1(x), where U1(x) = [kq + 1, kq + r]Z.
(b1-2) Suppose that there exists a semi-open set A1 such that x ∈ A1 ⊂ U1(x). Then, by
Lemma 3.1 for A1 and x, it is shown that x ∈ U1(x) ⊂ A1 and so A1 = U1(x).
(b1-3) By (b1-2) above, it is obtained that sKer({x}) = U1(x) holds and sKer({x}) is
semi-open in (Z, κ(q, n)).

(b2) Throughout (b2) we recall that x = kq + j (r + 1 ≤ j ≤ q).
(b2-1) First we claim that V1(x) := {x} ∪ [kq + 1, kq + r]Z is a semi-open set containing x.
Put V1 := [kq+1, kq+r]Z. Using Theorem 2.13 (b1) for a point y ∈ V1, Ker({y}) = V1 is the
smallest open set containing y. It is shown that V1(x) ⊂ Cl(V1). Indeed, by Theorem 2.13
(b1)′, Cl(V1) =

⋃{Cl({kq + h}) | h ∈ [1, r]Z} = [(k − 1)q + r + 1, (k + 1)q]Z and so V1(x) ⊂
Cl(V1). Thus, there exists an open set V1 such that V1 ⊂ V1(x) ⊂ Cl(V1). Namely, V1(x) is a
semi-open set containing x. Finally, we can prove that V2(x) := {x}∪[(k+1)q+1, (k+1)q+r]Z
is a semi-open set containing x. Put V2 := [(k+1)q+1, (k+1)q+r]Z. Using Theorem 2.13 (b2)
for a point z ∈ V2, Ker({z}) = V2 is the smallest open set containing z. By Theorem 2.13
(b1)′, Cl(V2) =

⋃{Cl({(k+1)q+h}) | h ∈ [1, r]Z} = [kq+r+1, (k+1)q+q]Z and x ∈ Cl(V2).
Thus, there exists an open set V2 such that V2 ⊂ V2(x) ⊂ Cl(V2). Namely, V2(x) is a semi-
open set containing x. Obviously, we have {x} = V1(x) ∩ V2(x).
(b2-2) It follows from (b2-1) above that {x} ⊂ sKer({x}) ⊂ V1(x) ∩ V2(x) = {x} and
so sKer({x}) = {x}. By Theorem 2.13 (b2), it is obtained that Int({x}) = ∅ and so
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{x} 6⊂ Cl(Int(({x})) = ∅, i.e., {x} is not semi-open in (Z, κ(q, n)).
(b2-3) Let ξ := {[kq+1, kq+r]Z, [kq+1, (k+1)q+r]Z, [(k+1)q+1, (k+1)q+r]Z} throughout
the present proof. First, we claim that V1(x) = G1. Indeed, using Lemma 3.1 (b2) for G1

and the point x, there exists an open set V such that V ⊂ G1; by Lemma 3.1 (b2), it is
shown explicitly that V ∈ ξ. Because of V ⊂ G1 ⊂ V1(x) = {kq+j}∪ [kq+1, kq+r]Z, where
r+1 ≤ j ≤ q, we have V = [kq+1, kq+r]Z. Thus, V1(x) = {x}∪V ⊂ {x}∪G1 = G1 ⊂ V1(x)
and hence V1(x) = G1. Finally, we prove that V2(x) = G2. Using Lemma 3.1 (b2) for the
semi-open set G2 and the point x, there exists an open set V such that V ⊂ G2; explicitly
that V ∈ ξ. Because of V ⊂ G2 ⊂ V2(x) = {kq + j} ∪ [(k + 1)q + 1, (k + 1)q + r]Z, where
r + 1 ≤ j ≤ q, we conclude that V = [(k + 1)q + 1, (k + 1)q + r]Z. Thus, we obtain
V2(x) = {x} ∪ V ⊂ {x} ∪G2 = G2 ⊂ V2(x) and hence V2(x) = G2.

(b1)′ By Theorem 2.13 (b1)′, (b1) and (b2), for a point x = kq + i (1 ≤ i ≤ r), it
is shown that Int(Cl({x})) = Int([(k − 1)q + r + 1, kq + q]Z) = [kq + 1, kq + r]Z. Then,
sCl({x}) = {x} ∪ Int(Cl({x})) = [kq + 1, kq + r]Z hold. We have sCl({x}) = sKer({x})
(cf. (b1) above).

(b2)′ Let x = kq+j (r+1 ≤ j ≤ q). By Theorem 2.13 (b2′), Cl({x}) = [kq+r+1, kq+q]Z.
By Theorem 2.13 (b2), it is obtained that Int(Cl({x})) = Int([kq + r +1, kq + q]Z) = ∅ and
so sCl({x}) = {x}. It is noted that sCl({x}) = sKer({x}) (cf. (b2-2) above). ¤

Remark 3.3 It is shown that sKer({x}) is not necessarily semi-open (cf. Theorem 3.2
(b2-2)).

4 Preopen sets of generalized digital lines In the present section, we investigate
prekernels and preclosures of singletons in (Z, κ(q, n)). We recall the following definitions:
for a subset A of a topological space (X, τ), pKer(A) :=

⋂{U | A ⊂ U,U ∈ PO(X, τ)}
[21]; pCl(A) :=

⋂{F | A ⊂ F, X \ F ∈ PO(X, τ)} [12]. It is well known that [4, Theorem
1.5 (e)] pCl(A) = A ∪ Cl(Int(A)) holds for any subset A of (X, τ).

Lemma 4.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q− 1. Let x = kq + j ∈ Z, where k ∈ Z and j ∈ Z
with r + 1 ≤ j ≤ q. If A ∈ PO(Z, κ(q, n)) and x ∈ A, then there exist two points kq + a and
kq + q + b such that {kq + a, kq + q + b} ⊂ A for some integers a and b with 1 ≤ a ≤ r and
1 ≤ b ≤ r.

Proof. There exists a subset W ∈ κ(q, n) such that x ∈ W ⊂ Cl(A), because x ∈ A ⊂
Int(Cl(A)). Since Ker({x}) ⊂ W , by Theorem 2.13 (b2), [kq+1, kq+q+r]Z ⊂ Cl(A) holds.
Thus, we have kq + 1 ∈ Cl(A) and kq + q + r ∈ Cl(A). By using Theorem 2.13 (b1) for the
above two points, it is obtained that [kq+1, kq+r]Z∩A 6= ∅ and [kq+q+1, kq+q+r]Z∩A 6= ∅,
respectively. Then there exist two points kq + a ∈ A and kq + q + b ∈ A for some integers
a, b with 1 ≤ a ≤ r and 1 ≤ b ≤ r. ¤

Theorem 4.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1.
(b1) For a point x = kq + i ∈ Z, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, the following
properties hold.

(b1-1) pKer({x}) = {x} and {x} is preopen.
(b1-1)′ If r ≥ 2, then pCl({x}) = {x}, i.e., {x} is preclosed.
If r = 1, then x = kq + 1 and pCl({x}) = {y ∈ Z | (k − 1)q + 2 ≤ y ≤ kq + q}.

(b2) For a point x = kq + j ∈ Z, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, the following
properties (b2-1) - (b2-4) and (b2-3)′ hold. Let Vh,h′(x) := {kq + h, x, kq + q + h′}, where
h, h′ ∈ Z with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r.

(b2-1) Vh,h′(x) ∈ PO(Z, κ(q, n)) and pKer({x}) ⊂ Vh,h′(x) for each integers h and h′

with 1 ≤ h ≤ r, 1 ≤ h′ ≤ r.
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(b2-2) Suppose that r = 1. If there exists a preopen set G containing the point x, then
x ∈ V1,1(x) ⊂ G.

(b2-3) pKer({x}) = V1,1(x) if r = 1; pKer({x}) = {x} if r ≥ 2; for the singleton
{x}, {x} 6∈ PO(Z, κ(q, n)).

(b2-4) If there exists a subset G ∈ PO(Z, κ(q, n)) such that x ∈ G ⊂ Vh,h′(x), then
G = Vh,h′(x).

(b2-3)′ pCl({x}) = {x}, i.e., {x} is preclosed.

Proof. (b1) (b1-1) For the point x = kq + i (1 ≤ i ≤ r), by using Theorem 2.13 (b1)′, (b1)
and (b2), it is shown that Int(Cl({x})) = Int([(k−1)q+r+1, kq+q]Z) = [kq+1, kq+r]Z ⊃
{x} and so {x} ∈ PO(Z, κ(q, n)). This implies pKer({x}) = {x}.
(b1-1)′ By Theorem 2.13 (b1), it is shown that, for the case where r ≥ 2, Int({x}) = ∅ and
so pCl({x}) = {x}∪Cl(Int({x})) = {x}. For the case where r = 1, x = kq+1 holds. And, by
Theorem 2.13 (b1) and (b1)′, it is shown that Cl(Int({x})) = Cl({x}) = [(k−1)q+2, kq+q]Z
and so pCl({kq + 1}) = [(k − 1)q + 2, kq + q]Z.

(b2) (b2-1) Put Vh,h′(x) := {x, kq+h, kq+q+h′} for a point x = kq+j (r+1 ≤ j ≤ q)
and each integers h and h′ with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r. Then, by Theorem 2.13, it is
shown that Int(Cl(Vh,h′(x)))=Int([kq + r +1, kq + q]Z∪ [(k−1)q + r +1, kq + q]Z∪ [kq + r +
1, (k +1)q + q]Z)=Int([(k− 1)q + r +1, (k +1)q + q]Z)=[kq +1, (k +1)q + r]Z ⊃ Vh,h′(x) and
so Vh,h′(x) ∈ PO(Z, κ(q, n)). Thus, we show that pKer({x}) ⊂ Vh,h′(x) for each integers h
and h′ with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r.
(b2-2) If r = 1, then V1,1(x) = {kq +1, x, kq + q +1} ⊂ G for any preopen set G containing
x (cf. Lemma 4.1).
(b2-3) Using (b2-1) and (b2-2) above, we have that pKer({x}) = V1,1(x) if r = 1. If r ≥ 2,
then there exist two preopen sets V1,1(x) and V2,2(x) such that V1,1(x) ∩ V2,2(x) = {x}.
Thus we have that pKer({x}) = {x} if r ≥ 2. By Theorem 2.13 (b2)′ and (b2), it is shown
that {x} 6⊂ Int(Cl({x})) = ∅ and so {x} 6∈ PO(Z, κ(q, n)).
(b2-4) Let G ∈ PO(Z, κ(q, n)) such that G ⊂ Vh,h′(x) and x ∈ G. We claim that G =
Vh,h′(x) holds. Indeed, by Lemma 4.1, {kq +a, kq + q + b} ⊂ G ⊂ Vh,h′(x), for some a, b ∈ Z
with 1 ≤ a ≤ r and 1 ≤ b ≤ r. Thus, we have a = h, b = h′ and so G = Vh,h′(x), because
x ∈ G.
(b2-3)′ By Theorem 2.13 (b2), pCl({x}) = {x} ∪Cl(Int({x})) = {x} ∪Cl(∅) = {x}. Thus
{x} is preclosed. ¤

5 Proof of Theorem A(i) and related properties In the present section, the proof
of Theorem A(i) (cf. Section 1) shall be given (cf. Theorem 5.1 (i) or (ii) below); moreover
we investigate some related properties on structures of SO(Z, κ(q, n)) and PO(Z, κ(q, n))
(cf. Theorems 5.1 and 5.2 below).

For a topological space (X, τ), we recall that (X, τ) is said to be extremally disconnected
if the closure of every open set is open; by [23, Proposition 4.1], [22], it is well known that
a topological space (X, τ) is extremally disconnected if and only if SO(X, τ) ⊂ PO(X, τ)
holds. A topological space (X, τ) is said to be a PS-space [2] if PO(X, τ) ⊂ SO(X, τ)
holds. It is well known that the following properties are equivalent to each others: (X, τ)
is a PS-space; SO(X, τ) = SPO(X, τ); τα = PO(X, τ); (X, τα) is submaximal; (X, τ) is
quasi-submaximal (cf. [15, Theorem 4], [16, Proposition 8]; [2, Theorem 2.1]; [3, Theorem
3.4], e.g. [43, Theorem 3.4]).

Theorem 5.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1. Then, the following properties hold.

(i) A singleton {kq + j} is not preopen in (Z, κ(q, n)), where k ∈ Z and j ∈ Z with
r + 1 ≤ j ≤ q. Namely, PO(Z, κ(q, n)) 6= P (Z) holds.
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(ii) A singleton {kq + j} is not semi-open in (Z, κ(q, n)), where k ∈ Z and j ∈ Z with
r + 1 ≤ j ≤ q. Namely, SO(Z, κ(q, n)) 6= P (Z) holds.

(iii) Especially, assume that 2 ≤ r. For a singleton {kq + i}, where k ∈ Z and i ∈ Z with
1 ≤ i ≤ r, we have {kq + i} ∈ PO(Z, κ(q, n)) and {kq + i} 6∈ SO(Z, κ(q, n)).

(iv) There exists a subset V such that V 6∈ PO(Z, κ(q, n)) and V ∈ SO(Z, κ(q, n)).
(v) (e.g., [13, Theorem 2.1 (i)(b)]) Especially, if q = 2, n = 3 and r = 1, then

PO(Z, κ(2, 3)) ⊂ SO(Z, κ(2, 3)) and κ(2, 3)α = κ(2, 3) hold.

Proof. (i) By using Theorem 4.2 (b2)(b2-3) for the point x := kq + j (r + 1 ≤ j ≤ q), it is
obtained that {kq + j} 6∈ PO(Z, κ(q, n)) and so PO(Z, κ(q, n)) ( P (Z).

(ii) We claim that the singleton {kq+j} is not semi-open in (Z, κ(q, n)), where k ∈ Z and
j ∈ Z with r+1 ≤ j ≤ q. Suppose that {kq+j} is semi-open in (Z, κ(q, n)). By Theorem 3.2
(b2)(b2-1), there exists a semi-open set V1(kq+j) = {kq+j}∪[kq+1, kq+r]Z. Then, by using
Theorem 3.2 (b2)(b2-3) for the point x := kq + j and the semi-open set G1 := {kq + j}, it is
shown that {kq + j} = V1(kq + j) holds. Thus, we have |{kq + j}| = 1 = |V1(kq + j)| = r +1
and so r = 0; thus this contradicts to the assumption. Thus, {kq + j} 6∈ SO(Z, κ(q, n)) and
so SO(Z, κ(q, n)) ( P (Z).

(iii) By using Theorem 4.2 (b1)(b1-1) for the point x := kq + i (1 ≤ i ≤ r), the singleton
{kq + i} is preopen in (Z, κ(q, n)). Since 2 ≤ r, the singleton {kq + i} is not semi-open in
(Z, κ(q, n)), because sKer({kq + i})=[kq + 1, kq + r]Z ) {kq + i} and sKer({kq + i}) is the
intersection of all semi-open sets containing the point kq + i (cf. Theorem 3.2 (b1)(b1-3)).

(iv) By using Theorem 3.2 (b2)(b2-1) for the point x := kq + j (r + 1 ≤ j ≤ q), there
exists a semi-open set V1(kq + j) := {kq + j} ∪ [kq + 1, kq + r]Z. We put V := V1(kq + j)
and so V ∈ SO(Z, κ(q, n)). We claim that V 6⊂ Int(Cl(V )). Indeed, by using Theorem 2.13
(b2)′ and (b1′) for the point kq + j and points kq + i (1 ≤ i ≤ r), respectively, it is
shown that Cl(V ) = Cl({kq + j}) ∪ (

⋃r
i=1 Cl({kq + i})) = [(k − 1)q + r + 1, kq + q]Z.

Using Theorem 2.13 (b1) and (b2), we have Int(Cl(V )) = [kq + 1, kq + r]Z and hence
V := V1(kq + j) = {kq + j} ∪ [kq + 1, kq + r]Z 6⊂ [kq + 1, kq + r]Z = Int(Cl(V )). Therefore,
we have V 6∈ PO(Z, κ(q, n)) and V ∈ SO(Z, κ(q, n)). ¤

Proof of Theorem A(i) The proof is shown by using Theorem 5.1 (i) or (ii) above, because
κ(q, n) ⊂ PO(Z, κ(q, n)) or κ(q, n) ⊂ SO(Z, κ(q, n)) hold in general. ¤

Theorem 5.1 (iii) and (v) (resp. (iv)) suggest the property of Theorem 5.2 (i) (resp. (ii))
below.

Theorem 5.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1.

(i) PO(Z, κ(q, n)) ⊂ SO(Z, κ(q, n)) holds if and only if n ≡ 1 (mod q).
(ii) A non-implicaton SO(Z, κ(q, n)) 6⊂ PO(Z, κ(q, n)) holds.
(iii) The topology κ(q, n) is a proper subfamily of SO(Z, κ(q, n)). And, if q + r > 3 then

κ(q, n) is a proper subfamily of PO(Z, κ(q, n)).

Proof. (i) (Necessity) By Theorem 4.2 (b1)(b1-1) for a point x := kq + i (1 ≤ i ≤ r),
it is shown that {kq + i} = pKer({kq + i}) ∈ PO(Z, κ(q, n)). It follows our assumption
that {kq + i} ∈ SO(Z, κ(q, n)); by definition, sKer({kq + i}) = {kq + i} holds. Using
Theorem 3.2 (b1)(b1-3) for the point kq + i, we have sKer({kq + i}) = [kq + 1, kq + r]Z and
so |[kq + 1, kq + r]Z| = 1; therefore r = 1.

(Sufficiency) Suppose that r = 1. Let V ∈ PO(Z, κ(q, n)). The set V has a decomposi-
tion V = AV ∪BV , where AV :=

⋃{V ∩{kq+1}| k ∈ Z} and BV :=
⋃{V ∩[kq+2, kq+q]Z| k ∈

Z}.
First, we show that: (∗1) AV ∈ SO(Z, κ(q, n)). Indeed, we have that V ∩{kq+1} = {kq+

1} or ∅ and sKer({kq +1}) = [kq +1, kq + r]Z = {q +1} hold and {kq +1} ∈ SO(Z, κ(q, n))
by Theorem 3.2 (b1)(b1-3); thus AV ∈ SO(Z, κ(q, n)).
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Secondly, we show that: (∗2) for a point x ∈ BV , there exist a preopen set V1,1(x) :=
{kq+1, x, kq+q+1} such that x ∈ V1,1(x) and V1,1(x) ⊂ V . Indeed, the point x ∈ BV , there
exist integers k and j with r+1 = 2 ≤ j ≤ q such that x = kq+j. Since x ∈ [kq+2, kq+q]Z
, x ∈ V and V ∈ PO(Z, κ(q, n)), we use Theorem 4.2 (b2)(b2-1) and (b2-2) for the point
x = kq+j, the preopen set V , r = 1 and h = h′ = 1. Then, there exist a preopen set V1,1(x)
such that x ∈ V1,1(x) and V1,1(x) ⊂ V , where V1,1(x) := {kq + 1, x, kq + q + 1} ⊂ V .

Thus, by using (∗2), it is obtained that: (∗2′) BV ⊂ ⋃{V1,1(x)| x ∈ BV } ⊂ V hold.
Thirdly, we show that: (∗3) V1,1(x) ∈ SO(Z, κ(q, n)) for the point x = kq + j ∈ BV .

Indeed, using Theorem 3.2 (b2)(b2-1) for the point x = kq + j and r = 1, fortunately,
we have two semi-open sets V1(x) = {x} ∪ [kq + 1, kq + r]Z = {x, kq + 1} and V2(x) =
{x}∪ [(k+1)q+1, (k+1)q+r]Z = {x, kq+q+1}. Since V1(x)∪V2(x) = {kq+1, x, kq+q+1}
and Vi(x) ∈ SO(Z, κ(q, n)) for each i ∈ {1, 2}, we have V1(x)∪V2(x) = V1,1(x) and V1,1(x) ∈
SO(Z, κ(q, n)) for the point x = kq + j ∈ BV .

Finally, by the properties (∗1), (∗2′) and (∗3) above, it is shown that V = AV ∪ BV ⊂
AV ∪ (

⋃{V1,1(x)| x ∈ BV }) ⊂ V and so V = AV ∪ (
⋃{V1,1(x)| x ∈ BV }) and hence

V ∈ SO(Z, κ(q, n)) (cf. (3.10) in Section 3). Therefore, PO(Z, κ(q, n)) ⊂ SO(Z, κ(q, n))
holds if q < n and n ≡ 1 (mod q).

(ii) By Theorem 5.1 (iv), there exists a semi-open set, say V , such that V 6∈ PO(Z, κ(q, n));
this shows SO(Z, κ(q, n)) 6⊂ PO(Z, κ(q, n)).

(iii) First, let V1(x) := {x} ∪ [kq + 1, kq + r]Z be the semi-open set in Theorem 3.2 (b2)
(b2-1), where x := kq+j (r+1 ≤ j ≤ q, k ∈ Z). The semi-open set V1(x) is not open because
V1(x) ( Ker({x}) and Ker({x}) is the smallest open set containing x (cf. Theorem 2.13
(b2), Ker({x}) = [kq + 1, kq + q + r]Z). Thus, we have that V1(x) ∈ SO(Z, κ(q, n)) and
V1(x) 6∈ κ(q, n) (i.e., κ(q, n) is a proper subfamily of SO(Z, κ(q, n)), because κ(q, n) ⊂
SO(Z, κ(q, n)) holds in general). Finally, let Vh,h′(x) := {kq + h, x, kq + q + h′} be the
preopen set containing x in Theorem 4.2 (b2), where x := kq + j(r + 1 ≤ j ≤ q, k ∈ Z) and
h, h′ ∈ [1, r]Z (cf. (b2-1)). However, the preopen set Vh,h′(x) is not open in (Z, κ(q, n)) if
q + r > 3. Indeed, Ker({x}) = [kq + 1, (k + 1)q + r]Z is the smallest open set containing the
point x := kq+j (cf. Theorem 2.13 (b2)), |Ker({x})| = q+r and |Vh,h′(x)| = 3 hold; and so
the point x is not an interior point of Vh,h′(x). Thus, we have that Vh,h′(x) ∈ PO(Z, κ(q, n))
and if q + r > 3 then Vh,h′(x) 6∈ κ(q, n) (i.e., κ(q, n) is a proper subfamily of PO(Z, κ(q, n)),
because κ(q, n) ⊂ PO(Z, κ(q, n)) holds in general). ¤

6 Some separation axioms of generalized digital lines and proof of Theorem
A(ii) The purpose of the present section is to investigate some separation axioms of
generalized digital lines (cf. Theorem A(ii) in Section 1; and Theorem 6.2, Tables 1 and 2
below). The proof of Theorem A(ii) shall be given by quoting some results in Theorem 6.2
below.

We first recall the following properties (6.1) - (6.6) for a topological space (X, τ).
(6.1) (X, τ) is T1/2 if and only if every singleton {x}, x ∈ X, is open or closed in (X, τ)

([11, Theorem 2.5]).
(6.2) (X, τ) is T3/4 if and only if every singleton {x} of (X, τ) is δ-open or closed (equiv-

alently, regular open or closed) in (X, τ) ([10, Theorem 4.3, Example 4.6]).
(6.3) (X, τ) is semi-pre-T1/2 if and only if every singleton {x} of (X, τ) is semi-preopen

or closed (=preopen or closed) in (X, τ) ([9, Theorem 4.1]).
(6.4) For each integer i ∈ {2, 1, 0}, the semi-Ti axiom [32] (resp. pre-Ti axiom [24], β-

Ti axiom [33]) is defined by using as ordinary Ti axiom except each open set replaced by
semi-open set (resp. preopen sets, β-open set(=semi-preopen sets)).

(6.5) (X, τ) is semi-T1 (resp. pre-T1, β-T1) if and only if every singleton {x}, x ∈ X, is
semi-closed (resp. preclosed, β-closed) in (X, τ).

(6.6) The following implications of separation axioms above are well known:
· T2 ⇒ T1 ⇒ T3/4 ⇒ T1/2 ⇒ T0,
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· T2 ⇒ semi-T2 ⇒ semi-T1 ⇒ semi-T1/2 ⇒ semi-T0,
· T2 ⇒ pre-T2 ⇒ pre-T1 ⇒ pre-T1/2 ⇒ pre-T0,
· T2 ⇒ β-T2 ⇒ β-T1 ⇒ β-T1/2 ⇒ β-T0,
· for each i ∈ {2, 1, 1/2, 0}, Ti ⇒ semi-Ti ⇒ β-Ti,
· for each i ∈ {2, 1, 1/2, 0}, Ti ⇒ pre-Ti ⇒ β-Ti.

In order to investigate some separation axioms of the generalized digital line, we need
the following theorem on topological properties of singletons {x} of (Z, κ(q, n)) (cf. Defin-
tion 2.2).

Theorem 6.1 For a generalized digital line (Z, κ(q, n)) (cf. Definition 2.2) and a point
x ∈ Z, the following properties hold. Assume that n ≡ r (mod q), where r ∈ Z with
1 ≤ r ≤ q − 1.

(b1) For a point x := kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, {x} is semi-preopen
(=β-open). Especially, if 2 ≤ r, then {x} is semi-preclosed (=β-closed).

(b2) For a point x := kq+j, where k ∈ Z and j ∈ Z with r+1 ≤ j ≤ q, {x} is semi-closed
and so semi-preclosed (=β-closed).

Proof. (b1) By using Theorem 2.13 for the point x = kq+i (k ∈ Z, 1 ≤ i ≤ r), it is obtained
that Cl(Int(Cl({kq + i}))) = Cl(Int([(k − 1)q + r + 1, kq + q]Z)) = Cl([kq + 1, kq + r]Z) =
[(k − 1)q + r + 1, kq + q]Z ⊃ {kq + i}; so {x} is semi-preopen (cf. (3.7), (3.5) in Section 3).
We shall show that if 2 ≤ r then the singleton {kq + i} is semi-preclosed, where 1 ≤ i ≤ r.
Since Ker({kq + i}) = [kq + 1, kq + r]Z (cf. Theorem 2.13 (b1)), we have that if 2 ≤ r
then Int({kq + i}) = ∅ and so Int(Cl(Int({kq + i}))) = ∅ ⊂ {kq + i}; therefore, {x} is
semi-preclosed (cf. (3.11) in Section 3).

(b2) Using Theorem 2.13 (b2)′ for the point x = kq + j (k ∈ Z, r + 1 ≤ j ≤ q), we have
Cl({kq + j}) = [kq + r +1, kq + q]Z. Moreover, by using Theorem 2.13 (b2), it is shown that
Int([kq + r +1, kq + q]Z) = ∅ and hence Int(Cl({x})) = ∅ ⊂ {x}. Namely, the singleton {x}
is semi-closed; it is semi-peclosed (cf. (3.7), (3.5) and (3.11) in Section 3). ¤

Theorem 6.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q) and 1 ≤ r ≤ q − 1.
(1) (Ti-axioms, where i ∈ {2, 1, 3/4, 1/2, 0}; cf. (6.1),(6.2)).

(1-1) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is not a T0-space.
(1-2) If r = 1 and q = 2, then (Z, κ(q, n)) is a T3/4-space and so it is a T1/2-space; it is

not a T1-space (cf. [10, Definition 4, Example 4.6]).
(1-3) If r = 1 and 3 ≤ q, then (Z, κ(q, n)) is not a T0-space.

(2) (Semi-Ti-separation axioms, where i ∈ {2, 1, 1/2, 0}; cf. (6.4), (6.5).
(2-1) If r = 1 and 2 ≤ q, then (Z, κ(q, n)) is a semi-T2-space.
(2-2) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is not a semi-T0-space.

(3) (Pre-Ti-separation axioms, where i ∈ {2, 1}; cf. (6.4), (6.5)).
(3-1) If r = 1 and 2 ≤ q, then (Z, κ(q, n)) is not a pre-T1-space.
(3-2) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is a pre-T2-space.

(4) (β-Ti-separation axioms, where i ∈ {2, 1, 1/2}; cf. (6.4), (6.5)).
(Z, κ(q, n)) is a β-T2-space.

(5) (Semi-pre-T1/2-space; cf. (6.3))
(5-1) If 1 ≤ r ≤ q − 2, then (Z, κ(q, n)) is not semi-pre-T1/2.
(5-2) If 1 ≤ r = q − 1, then (Z, κ(q, n)) is semi-pre-T1/2.

Proof. (1) (1-1) Assume that n ≡ r (mod q), where 2 ≤ r and r ≤ q−1. Let x := kq+1 ∈ Z
and y := kq + r ∈ Z for some integer k. We have x 6= y because of r 6= 1. By Theorem 2.13
(b1) for the point x (resp. y), Ker({x}) (resp. Ker({y})) is the smallest open set containing
x (resp. y). And, since Ker({x}) = [kq + 1, kq + r]Z = Ker({y}) hold, y ∈ Ker({x})
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and x ∈ Ker({y}); and hence (Z, κ(q, n)) is not a T0 space, where n ≡ r (mod q) and
2 ≤ r ≤ q − 1.

(1-2) We assume that q = 2; and we claim that (Z, κ(2, n)) is a T3/4-space and it is not
T1, where q = 2 < n and n ≡ 1 (mod 2). First, by using Corollary 2.14 for q = 2, 2 < n
and n′ = 3, it is shown that κ(2, n) = κ(2, 3) holds, since n ≡ 3 (mod 2), q = 2 < 3
and q = 2 < n. Thus, (Z, κ(2, n)) is T3/4 and it is not T1, since it is well known that the
digital line (Z, κ) = (Z, κ(2, 3)) is T3/4 (cf. [10, Example 4.6]) and it is not T1. Finally,
we note that an alternative proof is given by using Theorem 2.13; we can claim that every
singleton {x} is closed or regular open (cf. (6.2) above, [10, Theorem 4.3]) and some singleton
is not closed. Indeed, by Theorem 2.13 (b2)′ for j = 2 = r + 1 and assumptions that
q = 2 = r + 1, it is shown that a singleton {k2 + 2} is closed, where k ∈ Z. For a singleton
{k2 + 1}, it is regular open, where k ∈ Z; its proof is as follows. By using Theorem 2.13
(b1) (b2) (resp. (b1)′) and assumption that q = 2 = r + 1, it is shown that Ker({k2}) =
[(k − 1)2 + 1, k2 + 1]Z,Ker({k2 + 1}) = {k2 + 1} and Ker({k2 + 2}) = [k2 + 1, k2 + 3]Z
(resp. Cl({k2 + 1}) = [k2, k2 + 2]Z) hold; and so Int([k2, k2 + 2]Z) = {k2 + 1}. Thus, we
have that Int(Cl({k2 + 1})) = {k2 + 1}; and hence the singleton {k2 + 1} is regular open.
And, the above singleton {k2 + 1} is not closed.

(1-3) We assume that 3 ≤ q and r = 1. Let x := kq + j ∈ Z, where 2 ≤ j ≤ q and y :=
kq+j′ ∈ Z, where 2 ≤ j′ ≤ q and j 6= j′ for some integer k. We have x 6= y, because of 3 ≤ q
and j 6= j′. By Theorem 2.13 (b2) for r = 1,Ker({x}) = Ker({y}) = [kq + 1, (k + 1)q + r]Z
is the smallest open set containing x and also it is the smallest open set containing y. Thus,
(Z, κ(q, n)) is not a T0-space, where n ≡ 1 (mod q), q < n and 3 ≤ q.

(2) (2-1) We first use Theorem 3.2 (b1) and (b2) for r = 1. For each ordered pair (x, y)
of distinct points x and y, we take disjoint semi-open sets Ux and Uy containing x and y,
respectively, as follows: let k, k′, j and j′ be integers such that 2 ≤ j ≤ q and 2 ≤ j′ ≤ q.

Case 1. x = kq + 1, y = kq + j, where 2 ≤ j ≤ q : Ux := {x}, Uy := V2(y) =
{y} ∪ {(k + 1)q + 1} (cf. Theorem 3.2 (b1), (b2)(b2-1)).

Case 2. x = kq + 1, y = k′q + 1, where k 6= k′ : Ux := {x}, Uy := {y} (cf. Theorem 3.2
(b1)).

Case 3. x = kq + 1, y = k′q + j, where 2 ≤ j ≤ q, k 6= k′ : Ux := {x}, Uy := V1(y) =
{y} ∪ {k′q + 1} (cf. Theorem 3.2 (b1), (b2)(b2-1)).

Case 4. x = kq + j, y = kq + j′, where 2 ≤ j ≤ q, 2 ≤ j′ ≤ q and j 6= j′ : Ux := V1(x) =
{x}∪ {kq + 1}, Uy := V2(y) = {y}∪ {(k + 1)q + 1} (cf. Theorem 3.2 (b2)(b2-1)). Notice: for
q = 2, x = y; Case 4 above is removed from the proof for q = 2.

Case 5. x = kq + j, y = k′q + j′, where 2 ≤ j ≤ q, 2 ≤ j′ ≤ q and k 6= k′ : Ux := V1(x) =
{x} ∪ {kq + 1}, Uy := V1(y) = {y} ∪ {k′q + 1} (cf. Theorem 3.2 (b2)(b2-1)).

These properties above conclude that (Z, κ(q, n)) is a semi-T2-space, where q < n, n ≡ 1
(mod q) and q ≥ 2.

(2-2) Under assumption that 2 ≤ r ≤ q− 1, we can take two singletons {x} := {kq + 1}
and {y} := {kq + r}, where k ∈ Z, such that x, y ∈ sKer({kq + i}) = [kq + 1, kq + r]Z ∈
SO(Z, κ(q, n)), where i ∈ Z with 1 ≤ i ≤ r (cf. Theorem 3.2 (b1)). Then, for every semi-
open sets Ux and Uy containing x and y respectively, we have that x ∈ [kq + 1, kq + r]Z =
sKer({y}) ⊂ Uy and y ∈ Ux hold. Thus, (Z, κ(q, n)) is not semi-T0.

(3) (3-1) We show that (Z, κ(q, n)) is not a pre-T1-space if r = 1 and 2 ≤ q. We use
Theorem 4.2 (b1-1)′ for r = 1; pCl({kq + 1}) = [(k − 1)q + 2, kq + q]Z holds and so there
exists a point kq + 1 such that {kq + 1} is not preclosed. Namely, (Z, κ(q, n)) is not pre-T1,
where q < n and n ≡ 1 (mod q) (cf. (6.5)).

(3-2) We shall prove that (Z, κ(q, n)) is pre-T2 if 2 ≤ r ≤ q − 1. We recall that for a
point kq + j ∈ Z, Vh,h′(kq + j) := {kq + j}∪{kq +h, kq + q +h′} is a preopen set containing
the point kq + j, where k ∈ Z, r + 1 ≤ j ≤ q, 1 ≤ h ≤ r and 1 ≤ h′ ≤ r′ (cf. Theorem 4.2
(b2)(b2-1)); moreover, for a point kq + i ∈ Z, {kq + i} is a preopen set, where 1 ≤ i ≤ r
(cf. Theorem 4.2 (b1)(b1-1)). Under the assumption that 2 ≤ r ≤ q − 1, we have that
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kq + 1 6= kq + r and
(∗) V1,1(kq + j) ∩ Vr,r(k′q + j′) = ∅ for two distinct points kq + j and k′q + j′ with

r + 1 ≤ j ≤ q and r + 1 ≤ j′ ≤ q (we assume j 6= j′ if k = k′).
We claim that any two distinct points, say x and y, are separated by preopen sets containing
the points respectively.

Case 1. x = kq + j and y = k′q + j′, where j, j′ ∈ [r + 1, q]Z and j 6= j′ if k = k′:
for these points x and y, we put Ux := V1,1(kq + j) and Uy := Vr,r(k′q + j′). Then, by (∗)
above, it is shown that Ux ∩ Uy = ∅.

Case 2. x = kq + i and y = k′q + j′, where i ∈ [1, r]Z and j′ ∈ [r + 1, q]Z: for these
points x and y, we put Ux := {kq + i} ∈ PO(Z, κ(q, n)) (cf. Theorem 4.2 (b1)(b1-1)) and
Uy := Vr,r(k′q + j′) if i = 1 and Uy := V1,1(k′q + j′) if i 6= 1. Then, it is directly shown that
kq + i 6∈ Uy and so Ux ∩ Uy = ∅.

Case 3. x = kq + i and y = k′q + i′, where i, i′ ∈ [1, r]Z and i 6= i′ if k = k′: for these
points x and y, we put Ux := {kq+i} ∈ PO(Z, κ(q, n)) and Uy := {k′q+i′} ∈ PO(Z, κ(q, n))
(cf. Theorem 4.2 (b1)(b1-1)). Then, it is obvious that Ux ∩ Uy = ∅.

Therefore, for each case it is shown that x ∈ Ux, y ∈ Uy, Ux ∩Uy = ∅ and Ux and Uy are
preopen in (Z, κ(q, n)) and so (Z, κ(q, n)) is pre-T2.

(4) By (2)(2-1) above, (Z, κ(q, n)) is semi-T2 if r = 1 and 2 ≤ q; and so it is β-T2 (cf.
(6.6)). By (3)(3-2) above, (Z, κ(q, n)) is pre-T2 if 2 ≤ r ≤ q− 1; and so it is β-T2 (cf. (6.6)).

(5)(5-1) Under assumption that 1 ≤ r ≤ q− 2, a singleton {kq + j} is not closed, where
r +1 ≤ j ≤ q. Indeed, Cl({kq + j}) = [kq + r +1, kq + q]Z 6= {kq + j}, because r +1 < q (cf.
Theorem 2.13 (b2)′). And, the singleton {kq + j} is not preopen, where r + 1 ≤ j ≤ q (cf.
Theorem 5.1 (i)). Thus, there exists a singleton which is neither closed nor preopen and so
this generalized digital line (Z, κ(q, n)) is not semi-pre-T1/2 (cf. (6.3), i.e. [9, Theorem 4.1]).

(5-2) Let x be a point of Z. If x = kq+j, where r+1 = j = q, then Cl({kq+j}) = {kq+j}
(cf. Theorem 2.13 (b2)′); if x = kq + i, where 1 ≤ i ≤ r = q − 1, then {x} is preopen (cf.
Theorem 4.2 (b1)(b1-1)). Thus, this generalized digital line (Z, κ(q, n)) is semi-pre-T1/2 (cf.
(6.3), i.e., [9, Theorem 4.1]). ¤

Proof of Theorem A(ii) The result (ii-1) is obtained by Theorem 6.2 (3)(3-2) above; the
result (ii-2) is obtained by Theorem 6.2 (2)(2-1) and (1)(1-2) above. ¤

Let us present the tables of separation axioms of (Z, κ(q, n))(cf. Definition 2.2).

Table 1. Separation axioms of (Z, κ(q, n)) for the case

where q < n and n ≡ r (mod q) (1 ≤ r ≤ q − 1)

r, q Ti-axioms semi-Ti-axioms/pre-Ti-axioms β-Ti-axioms

r = 1, q = 2 T3/4, Non T1 semi-T2 / Non pre-T1 β-T2

r = 1, q ≥ 3 Non T0 semi-T2 / Non pre-T1 β-T2

2 ≤ r ≤ q − 1 Non T0 Non semi-T0 / pre-T2 β-T2

Table 2. Semi-pre-T1/2 separation axioms of (Z, κ(q, n))
for the case where q < n and n ≡ r (mod q) (1 ≤ r ≤ q − 1)

r, q semi-pre-T1/2-axiom

r = 1, q = 2 semi-pre-T1/2

r = 1, q ≥ 3 Non semi-pre-T1/2

2 ≤ r ≤ q − 2 Non semi-pre-T1/2

2 ≤ r = q − 1 semi-pre-T1/2

7 The connectedness of generalized digital lines and Proof of Theorem A(iii)
We recall the following: a topological space (X, τ) is said to be semi-connected ([7]) (resp.
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preconnected ([41])), if it cannot be represented as the disjoint union of two nonempty semi-
open (resp. preopen) subsets. The class of semi-connected (resp. preconnected) topological
spaces was introduced by Phullenda Das [7] (resp. Popa [41]) in 1974 (resp. 1987).

Theorem 7.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Suppose that
n ≡ r (mod q), where 1 ≤ r ≤ q − 1. Then,

(i) (Z, κ(q, n)) is connected;
(ii) (Z, κ(q, n)) is not semi-connected;
(iii) if 2 ≤ r, then (Z, κ(q, n)) is not preconnected;
(iv) if r = 1, then (Z, κ(q, n)) is preconnected.

Proof. (i) Suppose that (Z, κ(q, n)) is not connected; i.e., there exists a nonempty open and
closed subset U such that U 6= Z. We shall show a contradiction (cf. (∗5), (∗6) below). Since
U 6= ∅, we pick a point x of Z such that
·(∗1) x ∈ U ; let x := kq + s, where k ∈ Z and s ∈ Z with 1 ≤ s ≤ q.

First, using above integer ”k” of x := kq + s (1 ≤ s ≤ q), we construct the following
sequences of points, {xa}a∈N and {x−a }a∈N defined by:
·(∗2) xa := (k + a)q and x−a := (k − a + 1)q for each a ∈ N. Then, it is easily shown that:
for each a ∈ N,
·(∗3) xa < xa+1, x−a+1 < x−a and x < xa (if a ≥ 2), x ≤ x1, x−a < x.

Secondly, we claim that: for each a ∈ N,
·(∗4)a [x, xa]Z ⊂ U and ·(∗ ∗ 4)a [x−a , x]Z ⊂ U .

Proof of (∗4)a. The proof is done by induction on a ∈ N. For a = 1, we show (∗4)1.
Indeed, by Theorem 2.13 (b1)′ (resp. (b2)′), it is shown that if the point x has a form
x = kq + i (1 ≤ i ≤ r) (resp. x = kq + j (r + 1 ≤ j ≤ q)) then [x, x1]Z ⊂ [(k − 1)q + r +
1, kq + q]Z = Cl({kq + i}) ⊂ U (resp. [x, x1]Z ⊂ [kq + r + 1, kq + q]Z = Cl({kq + j}) ⊂ U)
hold, because x ∈ U and U is closed.

We suppose that (∗4)t is true for an integer t ∈ N with t ≥ 2, i.e., [x, xt]Z ⊂ U ,
where xt = (k + t)q (cf. (∗2) above) and t ≥ 2. We use Theorem 2.13 (b2) for the point
xt = (k + t− 1)q + j, where j = q, and the assumption of induction, we have Ker({xt}) =
[(k + t − 1)q + 1, (k + t)q + r]Z ⊂ U because xt ∈ U and U is open; and so (k + t)q + r ∈
U . By using Theorem 2.13 (b1)′ for the above point (k + t)q + r ∈ U , it is shown that
Cl({(k + t)q + r}) = [(k + t − 1)q + r + 1, (k + t)q + q]Z ⊂ U , because U is a closed
subset such that (k + t)q + r ∈ U . Thus, we prove that (k + t + 1)q ∈ U (i.e., xt+1 ∈ U)
and [xt, xt+1]Z ⊂ [(k + t − 1)q + r + 1, (k + t + 1)q]Z = Cl({(k + t)q + r}) ⊂ U . Since
[x, xt+1]Z = [x, xt]Z ∪ [xt, xt+1]Z, we have that [x, xt+1]Z ⊂ U holds. Namely, we have the
required property (∗4)a for a = t + 1. Thus, for any integer a ∈ N, we have (∗4)a. 3

Proof of (∗ ∗ 4)a. The proof is also done by induction on a ∈ N as follows. For a = 1, the
property (∗ ∗ 4)1 is true. Indeed, if x = kq + i (1 ≤ i ≤ r), then [x−1 , x]Z ⊂ [(k − 1)q + r +
1, kq+q]Z = Cl({kq+i}) = Cl({x}) ⊂ U hold (cf. Theorem 2.13 (b1)′); and so [x−1 , x]Z ⊂ U .
If x = kq + j (r +1 ≤ j ≤ q), then Ker({x}) = [kq +1, (k +1)q + r]Z ⊂ U (cf. Theorem 2.13
(b2)); and so kq + 1 ∈ U . By using Theorem 2.13 (b1)′ for the point kq + 1 above, it is
shown that x−1 = kq ∈ [x−1 , x]Z ⊂ [(k − 1)q + r + 1, kq + q]Z = Cl({kq + 1}) ⊂ U ; and so
[x−1 , x]Z ⊂ U hold.

We suppose that (∗ ∗ 4)t is true for an integer t ∈ N with t ≥ 2, i.e., [x−t , x]Z ⊂ U ,
where x−t = (k − t + 1)q (cf. (∗2) above) and t ≥ 2. We see (k − t)q + 1 ∈ U . Indeed, using
Theorem 2.13(b2) for the point x−t = (k−t)q+j′ with j′ = q and the assumption of induction,
we have (k− t)q +1 ∈ [(k− t)q +1, (k− t+1)q +r]Z = Ker({(k− t)q + q) = Ker({x−t }) ⊂ U
and so (k− t)q + 1 ∈ U . Now, by using Theorem 2.13 (b1)′ for the above point (k− t)q + 1,
it is shown that Cl({(k− t)q + 1}) = [(k− t− 1)q + r + 1, (k− t)q + q]Z ⊂ U . Thus, for the
point x−t+1 := (k − t)q, we prove that [x−t+1, x

−
t ]Z ⊂ [(k − t− 1)q + r + 1, (k − t + 1)q]Z ⊂ U

hold. Since [x−t+1, x]Z = [x−t+1, x
−
t ]Z ∪ [x−t , x]Z, we have that [x−t+1, x]Z ⊂ U holds. Namely,
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we have the required property (∗ ∗ 4)a for a = t + 1. Thus, for any integer a ∈ N, we have
that (∗ ∗ 4)a is true. 3

Finally, we proceed the proof as follows: take a point y ∈ Z such that
·(∗5) y 6∈ U , because U 6= Z; and let y = s0q + i0, where s0 ∈ Z and i0 ∈ Z with 1 ≤ io ≤ q.
Then, we consider the following two cases.

Case 1. x < y: for this case, using the sequence of points {xa}a∈N investigated by
(∗2), (∗3) and (∗4), we can pick a point xt(0) with t(0) ∈ N such that y ≤ xt(0). Indeed, we
take the integer t(0) as t(0) := s0 − k + 1 (cf. the integer k is given in (∗1) above); then
t(0) ≥ 1 and y = s0q + i0 ≤ (s0 + 1)q = (t(0) + k − 1 + 1)q = (k + t(0))q = xt(0) (cf. (∗2)
above); and so x < y < xt(0). By (∗4)a above, it is shown that y ∈ [x, xt(0)]Z ⊂ U ; and so
y ∈ U .

Case 2. y < x: for this case, using the sequence of points {x−a }a∈N investigated by
(∗2), (∗3) and (∗4), we can pick a point x−t(1) with t(1) ∈ N, such that x−t(1) ≤ y. Indeed,
we take the integer t(1) as t(1) := k − s0 + 1; then t(1) ≥ 1 and y = s0q + i0 > s0q =
(k− t(1) + 1)q = x−t(1) (cf. (∗2) above); and so x−t(1) < y < x . By (∗ ∗ 4)a above, it is shown
that y ∈ [x−t(1), x]Z ⊂ U ; and so y ∈ U .

By both cases above, it is obtained that:
·(∗6) y ∈ U holds for the point y 6∈ U (cf. (∗5) above).
This shows a contradiction; therefore, (Z, κ(q, n)) is a connected topological space, where
n ≡ r (mod q) with 1 ≤ r ≤ q − 1.

(ii) For (Z, κ(q, n)) (cf. Definition 2.2) and a point x := kq + i, where k ∈ Z and i ∈ Z
with 1 ≤ i ≤ r, it is known that sKer({x}) = sCl({x}) = [kq+1, kq+r]Z and sKer({x}) is a
nonempty semi-open proper subset of (Z, κ(q, n)) and sCl({x}) is semi-closed in (Z, κ(q, n))
(cf. Theorem 3.2 (b1) and (b1)′). Therefore, (Z, κ(q, n)) is not semi-connected.

(iii) For (Z, κ(q, n)) (cf. Definition 2.2) and a point x := kq + i (k ∈ Z and i ∈ Z with
1 ≤ i ≤ r), pKer({x}) = {x} holds and it is preopen (cf. Theorem 4.2 (b1)(b1-1)); if 2 ≤ r,
then {x} is preclosed (cf. Theorem 4.2 (b1)(b1-1)′). Thus, the singleton {x} is a preopen
and preclosed in (Z, κ(q, n)) if 2 ≤ r; and so (Z, κ(q, n)) is not preconnected if 2 ≤ r.

(iv) We assume that n ≡ r (mod q) and r = 1. In order to prove that (Z, κ(q, n))
is preconnected, we suppose that there exists a preopen and preclosed subset V such that
V 6= ∅ and V 6= Z. Since V 6= ∅, we pick a point x ∈ Z such that
·(∗7) x ∈ V ; let x := kq + s, where k ∈ Z and s ∈ Z with 1 ≤ s ≤ q.
Using the above integer ”k” of x := kq + s (1 ≤ s ≤ q), let {xa}a∈N and {x−a }a∈N be the
similar sequences of points (cf. (∗2) in the proof of (i) above) defined by:
·(∗8) xa := (k + a)q and x−a := (k − a + 1)q for each a ∈ N. And, they have the following
same properties:
·(∗9) xa < xa+1, x−a+1 < x−a and x < xa (if a ≥ 2), x ≤ x1, x−a < x hold.

We first claim that: under the assumption that x := kq+s ∈ V for some s with 1 ≤ s ≤ q,
·(∗10) kq + 1 ∈ V holds; and
·(∗11) [x, x1]Z ⊂ V and [x−1 , x]Z ⊂ V hold.

Proof of (∗10). If x = kq+s, where s = 1, then kq+1 ∈ V (cf. (∗7) above). If x = kq+s ∈
V , where 2 ≤ s ≤ q, we use Theorem 4.2 (b2)(b2-3) for the point kq + j, where j = s and
2 ≤ j ≤ q; and so we have pKer({kq+s}) = V1,1(kq+s) = {kq+1, kq+s, (k+1)q+1} ⊂ V ,
because V is preopen and x := kq + s ∈ V ; thus kq + 1 ∈ V . 3

Proof of (∗11). Using Theorem 4.2 (b1)(b1-1)′ for the point kq + 1, we have [x, x1]Z ⊂
[(k − 1)q + 2, (k + 1)q]Z = pCl({kq + 1}) ⊂ V , because V is preclosed and kq + 1 ∈ V
(cf. (∗10) above). For the points x−1 = kq and x = kq + s (1 ≤ s ≤ q), we see that
[x−1 , x]Z ⊂ pCl({kq + 1}) ⊂ V . 3

Secondly, we claim that: for each a ∈ N,
·(∗12)a [x, xa]Z ⊂ V and ·(∗ ∗ 12)a [x−a , x]Z ⊂ V hold.



18 F. Nakaoka, F.Tamari, H.Maki

Proof of (∗12)a. We shall use induction on a. The former part of (∗11) above shows
that the case where a = 1 is true. We suppose the statement (∗12)a for the case where
a = t > 1 is true; then [x, xt]Z ⊂ V . By Theorem 4.2 (b2)(b2-1) and (b2-3) for the point
xt = (k+ t−1)q+j ∈ V , where j = q, it is shown that pKer({xt}) = V1,1((k+ t−1)q+q) =
{(k+t−1)q+1, xt, (k+t−1)q+q+1}; and so (k+t)q+1 ∈ V holds, because pKer({xt}) ⊂ V .
For the point (k + t)q + 1 ∈ V , we use Theorem 4.2 (b1)(b1-1)′; then, we have [xt, xt+1]Z =
[(k + t)q, (k + t + 1)q]Z ⊂ [(k + t − 1)q + 2, (k + t + 1)q]Z = pCl({(k + t)q + 1}) ⊂ V ; and
so [xt, xt+1]Z ⊂ V hold. Since [x, xt+1]Z = [x, xt]Z ∪ [xt, xt+1]Z, we show that [x, xt+1]Z ⊂ V
holds. Therefore, by induction on a, the statement (∗12)a is proved. 3

The property (∗∗12)a is proved by argument similar to that in the proof of (∗12)a above;
and so it is omitted. 3

Finally, we shall find the following contradiction (cf. (∗14) bellow). There exists a point
y ∈ Z such that:
·(∗13) y 6∈ V , because V 6= Z; and let y = s0q+ i0, where s0 ∈ Z and i0 ∈ Z with 1 ≤ i0 ≤ q.
Since x 6= y, we have the following two cases:

Case 1. x < y: for this case, we pick the following point xb such that xb ≥ y, where
b := s0− k +1. Indeed, we have that b ≥ 1 and xb = (k + b)q = s0q + q ≥ y hold. By (∗12)a

for a = b, it is shown that y ∈ [x, xb]Z ⊂ V ; and so y ∈ V .
Case 2. y < x: for this case, we pick the following point x−d such that x−d < y, where

d := k − s0 + 1. Indeed, we have that d ≥ 1 and x−d = (k − d + 1)q = s0q < y hold, because
1 ≤ i0 ≤ q. By (∗ ∗ 12)a for a = d, it is shown that y ∈ [x−d , x]Z ⊂ V ; and so y ∈ V .

By the both cases above, it is obtained that:
·(∗14) y ∈ V holds for the point y 6∈ V (cf. (∗13) above). This (∗14) shows a contradiction;
therefore, (Z, κ(q, n)) is preconnected, where n ≡ 1 (mod q) (i.e. r = 1). ¤

Proof of Theorem A(iii) The proof is shown by Theorem 7.1 (i) above. ¤

We present the table of connectedness of (Z, κ(q, n)) from Theorem 7.1.

Table. The connectedness of (Z, κ(q, n)) (cf. Definition 2.2)

n, q connectedness; semi-connectedness; preconnectedness

n ≡ r (mod q)(1 ≤ r ≤ q − 1) ⇒ connected; non semi-connected
n ≡ r (mod q) (2 ≤ r ≤ q − 1) ⇒ connected; non preconnected
n ≡ 1 (mod q) ⇒ preconnected
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