LEFT REGULAR AND INTRA-REGULAR ORDERED HYPERSEMIGROUPS IN TERMS OF SEMIPRIME AND FUZZY SEMIPRIME SUBSETS

NIOVI KEHAYOPULU

Received November 22, 2016; revised January 26, 2017

To the memory of Professor Kiyoshi Iséki

Abstract

We prove that an ordered hypersemigroup H is left (resp. right) regular if and only if every left (resp. right) ideal of H is semiprime and it is intra-regular if and only if every ideal of H is semiprime. Then we prove that an ordered hypersemigroup H is left (resp. right) regular if and only if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, \cdot) is left (resp. right) regular if and only if every left (resp. right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, \cdot, \leq) and a subset A of S, we denote by (A] the subset of S defined by $(A] = \{t \in S \mid t \leq a \text{ for some } a \in A\}$. An ordered semigroup (S, \cdot, \leq) is called *left regular* if for every $a \in S$ there exists $x \in S$ such that $a \leq xa^2$. This is equivalent to saying that $a \in (Sa^2]$ for every $a \in S$ or $A \subseteq (SA^2]$ for every $A \subseteq S$. It is called *right regular* if for every $a \in S$ or $A \subseteq (A^2S]$ for every $A \subseteq S$. An ordered semigroup (S, \cdot, \leq) is called *intra-regular* if for every $a \in S$ or $A \subseteq (A^2S]$ for every $a \in S$ such that $a \leq (Sa^2S)$ for every $a \in S$ or $A \subseteq (SA^2S)$ for every $A \subseteq S$.

⁰2010 Mathematics Subject Classification. Primary: 06F99; 08A72.

Key words and Phrases. Hypergroupoid, ordered hypersemigroup, left (right) regular, intra-regular, left (right) ideal, fuzzy left (right) ideal, semiprime, fuzzy semiprime.

S is left (resp. right) regular if and only if the left (resp. right) ideals of S are semiprime and it is intra-regular if and only if the ideals of S are semiprime. We have also seen that an ordered semigroup S is left (resp. right) regular if and only if the fuzzy left (resp. fuzzy right) ideals of S are semiprime and it is intraregular if and only if the fuzzy ideals of S are semiprime. In the present paper we examine these results for an hypersemigroup. For the sake of completeness, let us first give some definitions-remarks already given in [7, 8].

An hypergroupoid is a nonempty set H with an hyperoperation

$$\circ: H \times H \to \mathcal{P}^*(H) \mid (a,b) \to a \circ b$$

on H and an operation

$$*: \mathcal{P}^*(H) \times \mathcal{P}^*(H) \to \mathcal{P}^*(H) \mid (A, B) \to A * B$$

on $\mathcal{P}^*(H)$ (induced by the operation of H) such that

$$A * B = \bigcup_{(a,b) \in A \times B} (a \circ b)$$

for every $A, B \in \mathcal{P}^*(H)$ ($\mathcal{P}^*(H)$ is the set of nonempty subsets of H). As the operation "*" depends on the hyperoperation " \circ ", an hypergroupoid can be denoted by (H, \circ) (instead of $(H, \circ, *)$). If (H, \circ) is an hypergroupoid and $A, B, C, D \in \mathcal{P}^*(H)$, then

 $A \subseteq B$, implies $A * C \subseteq B * C$ and $C * A \subseteq C * B$. Equivalently,

 $A \subseteq B$ and $C \subseteq D$ implies $A * C \subseteq B * D$ and $C * A \subseteq D * B$. We also have $H * H \subseteq H$.

If H is an hypergroupoid then, for every $x, y \in H$, we have

$$\{x\} * \{y\} = x \circ y.$$

Indeed, $\{x\} * \{y\} = \bigcup_{u \in \{x\}, v \in \{y\}} (u \circ v) = x \circ y.$

The following proposition, though clear, plays an essential role in the theory of hypergroupoids.

Proposition 1.1. Let (H, \circ) be an hypergroupoid, $x \in H$ and $A, B \in \mathcal{P}^*(H)$. Then we have the following:

1.
$$x \in A * B \iff x \in a \circ b$$
 for some $a \in A, b \in B$.

2. If
$$a \in A$$
 and $b \in B$, then $a \circ b \subseteq A * B$.

Lemma 1.2. [7] Let (H, \circ) be an hypergroupoid and $A_i, B \in \mathcal{P}^*(H), i \in I$. Then we have the following:

(1)
$$(\bigcup A_i) * B = \bigcup (A_i * B)$$

(2) $B * (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B * A_i).$

An hypergroupoid H is called hypersemigroup if, for every $x, y, z \in H$, we have

$$\{x\}*(y\circ z)=(x\circ y)*\{z\}$$

which is equivalent to saying that $\{x\} * (\{y\} * \{z\}) = (\{x\} * \{y\}) * \{z\}$ for every $x, y, z \in H$. If we like, we can identify the $\{x\}$ by x and the $\{z\}$ by z and write $x * (y \circ z)$ instead of $\{x\} * (y \circ z)$ and $(x \circ y) * z$ instead of $(x \circ y) * \{z\}$. So the associativity relation of an hypergroupoid can be also given, for short, as $x * (y \circ z) = (x \circ y) * z$.

Lemma 1.3 [7] If (H, \circ) is an hypersemigroup and $A, B, C \in \mathcal{P}^*(H)$, then we have

$$(A * B) * C = \bigcup_{(a,b,c) \in A \times B \times C} \left((a \circ b) * \{c\} \right)$$
$$= \bigcup_{(a,b,c) \in A \times B \times C} \left(\{a\} * (b \circ c) \right) = A * (B * C)$$
$$= \bigcup_{(a,b,c) \in A \times B \times C} \left(\{a\} * \{b\} * \{c\} \right).$$

Thus we can write (A * B) * C = A * (B * C) = A * B * C. As a consequence, for any product $A_1 * A_2 * \dots * A_n$ of elements of $\mathcal{P}^*(H)$ we can put the parentheses in any place beginning with some A_i and ending in some A_j $(1 \le i, j \le n)$. In addition, using induction, we have the following which gives the form of the elements of the set $A_1 * A_2 * \dots * A_n$.

Lemma 1.4. For any finite family $A_1, A_2, ..., A_n$ of elements of $\mathcal{P}^*(H)$, we have

$$A_1 * A_2 * \dots * A_n = \bigcup_{(a_1, a_2 \dots a_n) \in A_1 \times A_2 \times \dots \times A_n} \left(\{a_1\} * \{a_2\} * \dots * \{a_n\} \right).$$

For an hypergroupoid H, we denote by (A] the subset of H defined by

 $(A] := \{ t \in H \mid t \le a \text{ for some } a \in A \}.$

Exactly as in ordered semigroups, we have (H] = H and ((A]] = (A] for any nonempty subset A of H.

The results of the present paper hold not only for the elements but for the subsets of H as well which shows the pointless character of the results.

2 A characterization of left regular (resp. intraregular) ordered hypersemigroups in terms of semiprime left ideals (resp. ideals)

Notation 2.1. Let (H, \circ) be an hypergroupoid and " \leq " an order relation on H. Denote by " \leq " the relation on $\mathcal{P}^*(H)$ defined by

$$\preceq := \{ (A, B) \mid \forall \ a \in A \ \exists \ b \in B \text{ such that } (a, b) \in \leq \}.$$

So, for $A, B \in \mathcal{P}^*(H)$, we write $A \preceq B$ if for every $a \in A$ there exists $b \in B$ such that $a \leq b$. This is a reflexive and transitive relation on $\mathcal{P}^*(H)$, that is, a preorder on $\mathcal{P}^*(H)$.

A semigroup (S, \cdot) is called an ordered semigroup if there exists an order relation " \leq " on S such that $(a, b) \in \leq$ implies $(ac, bc) \in \leq$ and $(ca, cb) \in \leq$ for every $c \in S$. Using the notation $a \leq b$ instead of $(a, b) \in \leq$, we write $a \leq b$ implies $ac \leq bc$ and $ca \leq cb$ for every $c \in S$. The definition of the ordered semigroup can be naturally transferred to hypersemigroups as follows:

Definition 2.2. (cf. also [13]) Let (H, \circ) be an hypergroupoid and " \leq " an order relation on H. Then H is called an *ordered hypergroupoid*, denoted by (H, \circ, \leq) , if given an element $(x, y) \in \leq$, we have $(x \circ z, y \circ z) \in \preceq$ and $(z \circ x, z \circ y) \in \preceq$ for every $z \in H$. In other words,

$$x \leq y$$
 implies $x \circ z \leq y \circ z$ and $z \circ x \leq z \circ y$ for all $z \in H$.

The concept of right regular ordered semigroups introduced by Kehayopulu in [4] is as follows: An ordered semigroup (S, \cdot, \leq) is called right regular if for every $a \in S$ there exists $x \in S$ such that $a \leq a^2 x$. Later, in an analogous manner she defined and studied the left regular ordered semigroups: An ordered semigroup S is called left regular if for every $a \in S$ there exists $x \in S$ such that $a \leq xa^2$. The concept of left regular ordered semigroups is naturally transferred to an ordered hypersemigroup H as follows: for every $a \in H$, there exists $x \in H$ such that $\{a\} \leq \{x\} * (a \circ a)$. (Clearly $\{x\} * (a \circ a) = (x \circ a) * \{a\} = \{x\} * \{a\} * \{a\}$). This leads to the following definition.

Definition 2.3. An ordered hypersemigroup H is called *left regular* if for every $a \in H$ there exist $x, t \in H$ such that $t \in \{x\} * (a \circ a)$ and $a \leq t$. It is called *right regular* if for every $a \in H$ there exist $x, t \in H$ such that $t \in (a \circ a) * \{x\}$ and $a \leq t$.

Proposition 2.4. Let *H* be an ordered hypersemigroup. The following are equivalent:

- 1. H is left regular.
- 2. $a \in (H * (a \circ a)]$ for every $a \in H$.
- 3. $A \subseteq (H * A * A]$ for every $A \in \mathcal{P}^*(H)$.

Proof. (1) \implies (2). Let $a \in H$. Since H is left regular, there exist $x, t \in H$ such that $t \in \{x\} * (a \circ a)$ and $a \leq t$. We have

$$a \le t \in \{x\} * (a \circ a) \subseteq H * (a \circ a),$$

so $a \in (H * (a \circ a)]$. (2) \Longrightarrow (3). Let $A \in \mathcal{P}^*(H)$ and $a \in A$. Since $a \in H$, by (2), we have $a \in (H * (a \circ a)] = (H * \{a\} * \{a\}] \subseteq (H * A * A],$

4

thus we get $a \in (H * A * A]$, and (3) holds. (3) \Longrightarrow (1). Let $a \in H$. Since $\{a\} \in \mathcal{P}^*(H)$, by (3), we have

$$a \in \{a\} \subseteq \Big(H * \{a\} * \{a\}\Big].$$

Then $a \leq t$ for some $t \in (H * \{a\}) * \{a\}$. By Proposition 1.1, there exists $y \in H * \{a\}$ such that $t \in y \circ a$. Since $y \in H * \{a\}$, again by Proposition 1.1, there exists $x \in H$ such that $y \in x \circ a$. We have

$$t \in y \circ a \subseteq (x \circ a) * \{a\} = \{x\} * (a \circ a)$$

Since $x, t \in H$ such that $t \in \{x\} * (a \circ a)$ and $a \leq t, H$ is left regular. \Box In a similar way we prove the following:

Proposition 2.5. Let *H* be an ordered hypersemigroup. The following are equivalent:

- 1. H is right regular.
- 2. $a \in ((a \circ a) * H]$ for every $a \in H$.
- 3. $A \subseteq (A * A * H]$ for every $A \in \mathcal{P}^*(H)$.

A subset A of a groupoid or an ordered groupoid S is called semiprime if $x^2 \in A$ ($x \in S$) implies $x \in A$ [1, 2, 5]. This concept is naturally transferred in case of hypergroupoids in the definition below:

Definition 2.6. Let *H* be an hypergroupoid. A nonempty subset *A* of *H* is called *semiprime* if for every $t \in H$ such that $t \circ t \subseteq A$, we have $t \in A$.

Proposition 2.7. Let (H, \circ) be an hypergroupoid and $A \in \mathcal{P}^*(H)$. The following are equivalent:

- 1. A is semiprime.
- 2. For every $T \in \mathcal{P}^*(H)$ such that $T * T \subseteq A$, we have $T \subseteq A$.

Proof. (1) \Longrightarrow (2). Let $T \in \mathcal{P}^*(H)$, $T * T \subseteq A$ and $t \in T$. Since $t \in H$ and $t \circ t \subseteq T * T \subseteq A$, by (1), we have $t \in A$.

(2) \Longrightarrow (1). Let $t \in H$ such that $t \circ t \subseteq A$. Since $\{t\} \in \mathcal{P}^*(H)$ and $\{t\} * \{t\} = t \circ t \subseteq A$, by (2), we have $\{t\} \subseteq A$, so $t \in A$, and T is semiprime.

Lemma 2.8. Let H be an ordered hypergroupoid and $A, B \in \mathcal{P}^*(H)$. Then we have

$$(A] * (B] \subseteq (A * B].$$

Proof. Let $t \in (A] * (B]$. Then $t \in x \circ y$ for some $x \in (A]$, $y \in (B]$. Since $x \in (A]$, we have $x \leq a$ for some $a \in A$. Since $y \in (B]$, we get $y \leq b$ for some $b \in B$. Since $x \leq a$ and $y \leq b$, we have $t \in x \circ y \leq a \circ b$. Then, there exists $z \in a \circ b$ such that $t \leq z$. We get $t \leq z \in a \circ b$, so $t \in (a \circ b]$. On the other

hand, since $a \in A$ and $b \in B$, we have $a \circ b \subseteq A * B$. Then $(a \circ b] \subseteq (A * B]$, and $t \in (A * B]$.

The concepts of left and right ideals of ordered groupoids introduced by Kehayopulu in [3] are naturally transferred in case of ordered hypergroupoids as follows: A nonempty subset A of an ordered hypergroupoid H is called a *left* (resp. *right*) *ideal* of H if

- 1. $H * A \subseteq A$ (resp. $A * H \subseteq A$) and
- 2. if $a \in A$ and $H \ni b \leq a$, then $b \in A$, that is if (A] = A.

It is called an *ideal* of H if it is both a left and a right ideal of H.

Theorem 2.9. An ordered hypersemigroup H is left regular if and only if every left ideal of H is semiprime.

Proof. \Longrightarrow . Let A be a left ideal of H and $a \in H$ such that $a \circ a \subseteq A$. Since H is left regular and $a \in H$, there exist $x, t \in H$ such that $t \in \{x\} * (a \circ a)$ and $a \leq t$. We have $t \in \{x\} * (a \circ a) \subseteq H * A \subseteq A$. Then $a \leq t \in A$, and $a \in A$. \Leftarrow . Let $a \in H$. We have

$$(a \circ a) * (a \circ a) \subseteq H * (a \circ a) \subseteq \left(H * (a \circ a)\right).$$

The set $(H * (a \circ a)]$ is a left ideal of H. Indeed, it is a nonempty subset of H and we have

$$H * \left(H * (a \circ a) \right] = (H] * \left(H * (a \circ a) \right] \subseteq \left(H * \left(H * (a \circ a) \right) \right]$$
$$= \left((H * H) * (a \circ a) \right] \subseteq \left(H * (a \circ a) \right],$$

and

$$\left(\left(H*(a\circ a)\right]\right] = \left(H*(a\circ a)\right]$$

(as ((A]] = (A] for any subset A of S). Since $(H * (a \circ a)]$ is semiprime, we have $(a \circ a) \subseteq (H * (a \circ a)]$, and $a \in (H * (a \circ a)]$. Then, by Proposition 2.4, H is left regular.

Now we will give a second proof of the Theorem using only sets: \Longrightarrow . Let A be a left ideal of H and $T \in \mathcal{P}^*(H)$ such that $T * T \subseteq A$. Since H is left regular, by Proposition 2.4, we have $T \subseteq (H * T * T] \subseteq (H * A] \subseteq (A] = A$. \Leftarrow . Let $A \in \mathcal{P}^*(H)$. We have

$$(A * A) * (A * A) \subseteq (H * H) * A * A \subseteq H * A * A \subseteq (H * A * A].$$

Since (H*A*A] is a left ideal of H, it is semiprime, and we have $A*A \subseteq (H*A*A]$ and $A \subseteq (H*A*A]$. Thus H is left regular. \Box In a similar way we prove the following:

6

Theorem 2.10. An ordered hypersemigroup H is right regular if and only if every right ideal of H is semiprime.

Our aim now is to characterize the intra-regular ordered hypersemigroups in terms of semiprime ideals. The concept of an intra-regular ordered semigroup introduced by Kehayopulu in [6] is as follows: An ordered semigroup (S, \cdot, \leq) is called intra-regular if for every $a \in S$ there exist $x, y \in S$ such that $a \leq xa^2y$. This concept is naturally transferred to an ordered hypersemigroup as follows: For every $a \in H$, $\{a\} \leq \{x\} * (a \circ a) * \{y\}$. This leads to the following definition

Definition 2.11. An ordered hypersemigroup (H, \circ, \leq) is called *intra-regular* if for every $a \in H$ there exist $x, y, t \in H$ such that $t \in \{x\} * (a \circ a) * \{y\}$ and $a \leq t$.

Clearly,
$$\{x\} * (a \circ a) * \{y\} = (x \circ a) * (a \circ y) = \{x\} * \{a\} * \{a\} * \{y\}.$$

Proposition 2.12. Let $(H, *, \leq)$ be an ordered hypersemigroup. The following are equivalent:

- 1. H is intra-regular.
- 2. $a \in (H * (a \circ a) * H]$ for every $a \in H$. 3. $A \subseteq (H * A * A * H]$ for every $A \in \mathcal{P}^*(H)$.

Proof. (1) \Longrightarrow (2). Let $a \in H$. Since H is intra-regular, there exist $x, y, t \in H$ such that $t \in \{x\} * (a \circ a) * \{y\}$ and $a \leq t$. We have

$$a \le t \in \{x\} * (a \circ a) * \{y\} \subseteq H * (a \circ a) * H,$$

so $a \in (H * (a \circ a) * H]$. (2) \Longrightarrow (3). Let $A \in \mathcal{P}^*(H)$ and $a \in A$. By (2), we have

$$a \in (H * (a \circ a) * H] = (H * \{a\} * \{a\} * H] \subseteq (H * A * A * H],$$

so $a \in (H * A * A * H]$ and (3) is satisfied. (3) \Longrightarrow (1). Let $a \in H$. Since $\{a\} \in \mathcal{P}^*(H)$, by (3), we have

$$a \in \{a\} \subseteq \Big(H * \{a\} * \{a\} * H\Big].$$

Then $a \leq t$ for some $t \in H * \{a\} * \{a\} * H = (H * (a \circ a)) * H$. Then there exist $u \in H * (a \circ a)$ and $y \in H$ such that $t \in u \circ y$. Since $u \in H * (a \circ a)$, there exist $x \in H$ and $w \in (a \circ a)$ such that $u \in x \circ w$. We have

$$t \in u \circ y \subseteq (x \circ w) * \{y\} = \{x\} * \{w\} * \{y\} \subseteq \{x\} * (a \circ a) * \{y\}.$$

For the elements $x, y, t \in H$, we have $t \in \{x\} * (a \circ a) * \{y\}$ and $a \leq t$, so H is intra-regular. \Box

Theorem 2.13. An ordered hypersemigroup H is intra-regular if and only if every ideal of H is semiprime.

 \implies . Let A be an ideal of H and $a \in H$ such that $a \circ a \subseteq A$. Since $a \in H$ and H is intra-regular, there exist $x, y, t \in H$ such that $t \in H * (a \circ a) * \{y\}$ and $a \leq t$. Then $t \in H * (a \circ a) * \{y\} \subseteq H * A * H \subseteq A$. Since $a \in H$ and $a \leq t \in A$, we have $a \in A$. Thus H is semiprime. \Leftarrow . Let $a \in H$. We have

$$(a \circ a) \ast (a \circ a) \subseteq H \ast \{a\} \ast \{a\} \ast H \subseteq \Bigl(H \ast \{a\} \ast \{a\} \ast H \Bigr].$$

The set $(H * \{a\} * \{a\} * H]$ is an ideal of H, so it is semiprime. Hence we have $a \circ a \subseteq (H * \{a\} * \{a\} * H]$, and $a \in (H * \{a\} * \{a\} * H] = (H * (a \circ a) * H]$. By Proposition 2.12, H is intra-regular.

A second proof of the theorem using only sets is as follows: \Longrightarrow . Let A be an ideal of H and $T \in \mathcal{P}^*(H)$ such that $T * T \subseteq A$. Since H is intra-regular, by Proposition 2.12, we have

$$T \subseteq (H * T * T * H] \subseteq (H * A * H] \subseteq (A] = A,$$

so A is semiprime. \Leftarrow . Let A be a nonempty subset of H. Since $(A * A) * (A * A) \subseteq (H * A * A * H]$ and (H * A * A * H] is semiprime, we have $A * A \subseteq (H * A * A * H]$, and $A \subseteq (H * A * A * H]$.

3 A characterization of left regular and intraregular ordered hypersemigroups in terms of fuzzy semiprime subsets

Following Zadeh, any mapping $f : H \to [0, 1]$ of a ordered hypergroupoid H into the closed interval [0, 1] of real numbers is called a *fuzzy subset* of H (or a *fuzzy set* in H) and f_A (: the characteristic function of A) is the mapping

$$f_A: H \to \{0,1\} \mid x \to f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

The concepts of fuzzy right and fuzzy left ideals of an ordered groupoid due to Kehayopulu-Tsingelis [9] are naturally transferred to an ordered hypersemigroup as follows:

Definition 3.1. Let H be an ordered hypergroupoid. A fuzzy subset f of H is called a *fuzzy left ideal* of H if

- 1. $f(x \circ y) \ge f(y)$ for all $x, y \in H$, in the sense that if $x, y \in H$ and $u \in x \circ y$, then $f(u) \ge f(y)$ and
- 2. $x \leq y$ implies $f(x) \geq f(y)$.

A fuzzy subset f of H is called a *fuzzy right ideal* of H if

- 1. $f(x \circ y) \ge f(x)$ for all $x, y \in H$, meaning that if $x, y \in H$ and $u \in x \circ y$, then $f(u) \ge f(x)$ and
- 2. $x \leq y$ implies $f(x) \geq f(y)$.

A fuzzy subset of H is called a *fuzzy ideal* of H it is both a fuzzy left and a fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a fuzzy ideal of H if and only if

- 1. if $f(x \circ y) \ge \max\{f(x), f(y)\}$ for all $x, y \in H$, in the sense that if $x, y \in H$ and $u \in x \circ y$, then $f(u) \ge \max\{f(x), f(y)\}$ and
- 2. if $x \leq y$, then $f(x) \geq f(y)$.

The concept of fuzzy semiprime subsets of groupoids introduced by Kuroki in [12] is as follows: A fuzzy subset f of a groupoid S is called semiprime if $f(a) \ge f(a^2)$ for every $a \in S$, and remains the same in case of ordered groupoids as well [11]. This concept is naturally transferred in case of an hypergroupoid as follows:

Definition 3.2. Let (H, \circ) be an hypergroupoid. A fuzzy subset f of H is called *fuzzy semiprime* if

$$f(a) \ge f(a \circ a)$$
 for every $a \in H$,

in the sense that if $u \in a \circ a$, then $f(a) \ge f(u)$.

Remark 3.3. Let (H, \circ) be an hypergroupoid and f a semiprime fuzzy left ideal (or fuzzy right ideal) of H. Then, for every $a \in H$, we have $f(a) = f(a \circ a)$, meaning that if $u \in a \circ a$, then f(a) = f(u). Indeed: Let $u \in a \circ a$. Since f is a fuzzy left (or right) ideal of H, we have $f(a \circ a) \ge f(a)$, then $f(u) \ge f(a)$. Since f is semiprime, we have $f(a) \ge f(a \circ a)$, then $f(a) \ge f(u)$. Thus we have f(a) = f(u).

Lemma 3.4. Let (H, \circ, \leq) be an ordered hypergroupoid. If A is a left (resp. right) ideal of H, then the characteristic function f_A is a fuzzy left (resp. fuzzy right) ideal of H. "Conversely", if A is a nonempty subset of H such that f_A is a fuzzy left (resp. fuzzy right) ideal of H, then A is a left (resp. right) ideal of H.

Proof. For the hypergroupoid (H, \circ) the lemma is satisfied (cf. [8; Proposition 7]). It remains to prove that the following are equivalent:

(1) $y \in A$ and $H \ni x \leq y \Longrightarrow x \in A$ and

(2) $x \le y \Longrightarrow f_A(x) \ge f_A(y)$.

(1) \implies (2). Let $x \leq y$. If $y \in A$ then, by (1), we have $x \in A$. Then $f_A(x) = 1 \geq f_A(y)$. If $y \notin A$, then $f_A(y) = 0 \leq f_A(x)$.

(2) \implies (1). Let $y \in A$ and $H \ni x \leq y$. Since $x \leq y$, by (2), we have $f_A(x) \geq f_A(y) = 1$. Then $f_A(x) = 1$, and $x \in A$.

Lemma 3.5. Let H be an ordered hypergroupoid. A nonempty subset A of H is an ideal of H if and only if the characteristic function f_A is a fuzzy ideal of H.

Lemma 3.6. Let (H, \circ, \leq) be an ordered hypergroupoid. If I is a subset of H such that f_I is fuzzy semiprime, then I is semiprime. "Conversely", let I be a subset of H such that, for every $a \in H$, either $a \circ a \subseteq I$ or $(a \circ a) \cap I = \emptyset$. If I is semiprime, then f_I is fuzzy semiprime.

Proof. \Longrightarrow . Let $a \in H$ such that $a \circ a \subseteq I$. Then $a \in I$. In fact: Since $a \circ a \subseteq I$, we have $f_I(a \circ a) = 1$. This is because if $u \in a \circ a$, then $u \in I$, so $f_I(u) = 1$. Since f_I is fuzzy semiprime, we have $f_I(a) \ge f_I(a \circ a) = 1$. Since f_I is a fuzzy subset of H, we have $f_I(a) \le 1$. Thus we have $f_I(a) = 1$, and $a \in I$, so I is semiprime.

 \Leftarrow . Let *I* be semiprime. Then $f_I(a) \ge f_I(a \circ a)$. Indeed: If $a \circ a \subseteq I$ then, since *I* is semiprime, we have $a \in I$, then $f_I(a) = 1 \ge f_I(a \circ a)$. If $a \circ a \nsubseteq I$ then, by hypothesis, we have $(a \circ a) \cap I = \emptyset$, then $f_I(a \circ a) = 0$. This is because if $u \in a \circ a$, then $a \notin I$, so $f_I(a) = 0$. Hence we obtain $f_I(a \circ a) = 0 \le f_I(a)$. \Box

Lemma 3.7. Let H be an ordered hypergroupoid. A nonempty subset A of H is a semiprime subset of H if and only if the fuzzy subset f_A of H is fuzzy semiprime.

Theorem 3.8. An ordered hypersemigroup (H, \leq) is left regular if and only if the fuzzy left ideals of H are fuzzy semiprime.

Proof. \Longrightarrow . Let f be a fuzzy left ideal of H and $a \in H$. Then $f(a) \ge f(a \circ a)$. In fact: Let $u \in a \circ a$. Then $f(a) \ge f(u)$. Indeed: Since $u \in H$ and H is left regular, there exist $x, t \in H$ such that $t \in (x \circ u) * \{u\}$ and $a \le t$. Since $t \in (x \circ u) * \{u\}$, we have $t \in w \circ u$ for some $w \in x \circ u$. Since f is a fuzzy left ideal of H, we have $f(w \circ u) \ge f(u)$. Since $t \in w \circ u$, we have $f(t) \ge f(u)$. Since $a \le t$, we have $f(a) \ge f(t)$. Thus we have $f(a) \ge f(u)$.

 \Leftarrow . By Theorem 2.9, it is enough to prove that every left ideal of H is semiprime. Let now A be a left ideal of H. By Lemma 3.4, f_A is a fuzzy left ideal of H. By hypothesis, f_A is semiprime. Then, by Lemma 3.6, A is semiprime.

The right analogue of the above theorem also holds, and we have

Theorem 3.9. An ordered hypersemigroup H is right regular if and only if every fuzzy right ideal of H is fuzzy semiprime.

Theorem 3.10. An ordered hypersemigroup (H, \circ, \leq) is intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

Proof. \Longrightarrow . Let f be a fuzzy ideal of H and $a \in H$. Then $f(a) \geq f(a \circ a)$. In fact: Let $u \in a \circ a$. Then $f(a) \geq f(u)$. Indeed: Since $u \in H$ and H is intra-regular, there exist $x, y, t \in H$ such that $t \in \{x\} * (u \circ u) * \{y\}$ and $a \leq t$. Since $t \in (x \circ u) * (u \circ y)$, there exist $v \in x \circ u$ and $w \in u \circ y$ such that $t \in v \circ w$. Since f is a fuzzy left ideal of H, we have $f(v \circ w) \geq f(w)$. Since $t \in v \circ w$, we have $f(t) \geq f(w)$. Since f is a fuzzy right ideal of H, we have $f(u \circ y) \geq f(u)$. Since $w \in u \circ y$, we have $f(w) \geq f(u)$. Since $a \leq t$, we have $f(a) \geq f(t)$. Thus we get $f(a) \geq f(u)$. \Leftarrow . By Theorem 2.13, it is enough to prove that every ideal of H is semiprime. Let now A be an ideal of H. By Lemma 3.5, the characteristic function f_A is a fuzzy ideal of H. By hypothesis, f_A is fuzzy semiprime. Then, by Lemma 3.6, A is semiprime.

I would like to thank Professor Klaus Denecke for his interst in my work and his prompt reply.

References

- A.H. Clifford, G.B. Preston, *The Algebraic Theory of Semigroups*, Amer. Math. Soc., Math. Surveys 7, Providence, Rh. Island 1961.
- [2] N. Kehayopulu, On left regular ordered semigroups, Math. Japon. 35, no. 6 (1990), 1057–1060.
- [3] N. Kehayopulu, *Remark on ordered semigroups*, Math. Japon. **35**, no. 6 (1990), 1061–1063.
- [4] N. Kehayopulu, On right regular and right duo ordered semigroups, Math. Japon. 36, no. 2 (1991), 201–206.
- [5] N. Kehayopulu, On left regular and left duo poe-semigroups, Semigroup Forum 44, no. 3 (1992), 306–313.
- [6] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum 46, no. 3 (1993), 271–278.
- [7] N. Kehayopulu, On hypersemigroups, Pure Math. Appl. (PU.M.A.) 25, no. 2 (2015), 151–156.
- [8] N. Kehayopulu, On fuzzy prime and fuzzy semiprime ideals of ≤-hypergroupoids, J. Hyperstruct. 5 (no. 2) (2016), 108-114.
- [9] N. Kehayopulu, M. Tsingelis, *Fuzzy sets in ordered groupoids*, Semigroup Forum 65, no. 1 (2002), 128–132.
- [10] N. Kehayopulu, M. Tsingelis, Left regular and intra-regular ordered semigroups in terms of fuzzy subsets, Quasigroups Related Systems 14, no. 2 (2006), 169–178.
- [11] N. Kehayopulu, Xie Xiang-Yun, M. Tsingelis, A characterization of prime and semiprime ideals of groupoids in terms of fuzzy subsets, Soochow J. Math. 27, no. 2 (2001), 139–144.
- [12] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8, no. 1 (1982), 71–79.
- [13] B. Pibaljommee, B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Systems 28, no. 5 (2015), 2141–2148.

Communicated by Klaus Denecke

University of Athens Department of Mathematics 15784 Panepistimiopolis, Greece email: nkehayop@math. uoa.gr