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Abstract.

Ochi(1983) proposed an estimator for the autoregressive coefficient of the first-order
autoregressive model (AR(1)) by using two constants for the end points of the process.
Classical estimators for AR(1) , such as the least squares estimator, Burg’s estimator,
and Yule-Walker estimator are obtained as special cases by choice of the constants in
Ochi’s estimator. By writing the first-order autoregressive conditional heteroskedastic
model, ARCH(1), in a form similar to that of AR(1), we extend Ochi ’s estimator to
ARCH(1) models. This allows introducing analogues of the least squares estimator,
Burg’s estimator and Yule-Walker estimator, and we compare the relations of these
with Ochi’s estimator for ARCH(1) models. We then provide a simulation for AR(1)
models and examine the performance of Ochi ’s estimator. Also, we simulate Ochi’s
estimator for ARCH(1) with different parameter values and sample sizes.

1 Introduction Let {x1, · · · , xT } be generated from the first order autoregressive pro-

cess, AR(1),

xt = αxt−1 + ϵt, |α| < 1, ϵt ∼ N(0, σ2), t ∈ [2, · · · , T ](1)

with an unknown coefficient α, and independent and identically distributed (iid) errors ϵt.

Ochi (1983) proposed an estimator of the autoregressive coefficient

Ochi(c1, c2) = α̂c1,c2 =

∑T
t=2 xtxt−1∑T−1

t=2 x2
t + c1x2

1 + c2x2
T

,(2)

where c1 and c2 are nonnegative constants, and can be considered as weights of the end

points. It is also known that Ochi(1, 0), Ochi(0.5, 0.5), and Ochi(1, 1) are the least squares

estimator(LSE), Burg’s estimator, and Yule-Walker estimator, respectively.

Recently, non-linear time series models have been increasing in popularity. Autoregres-

sive conditional heteroskedastic (ARCH) models were proposed by Engle (1982). Chan

and Tong (1986) and Tong (1990) introduced some threshold models, such as threshold
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autoregressive (TAR) models, self-exciting threshold (SETAR) models and smooth thresh-

old autoregressive(STAR) models. Markov switching autoregressive(MAR) models were

developed by Hamilton (1989). Davis et al. (2008) introduced some segmented time series.

For more non-linear models, see Turkman et al. (2014). The ARCH process of order 1,

ARCH(1) is one of the most famous and can be modeled as

yt =
√
θ0 + θ1y2t−1ut, ut ∼ iid N(0, 1),(3)

with parameters θ0 > 0 and |θ1| < 1. Rewriting (3), we have

y2t = (θ0 + θ1y
2
t−1)u

2
t

= θ0 + θ1y
2
t−1 + (θ0 + θ1y

2
t−1)(u

2
t − 1)

= θ0 + θ1y
2
t−1 + ξt,(4)

which has a form similar to that of AR(1) in (1). Here, ξt := (θ0 + θ1y
2
t−1)(u

2
t − 1) is an

uncorrelated process with mean 0 and variance

Var(ξt) = E[(θ0 + θ1y
2
t−1)

2(u2
t − 1)2]− {E[(θ0 + θ1y

2
t−1)(u

2
t − 1)]}2

= E[(θ0 + θ1y
2
t−1)

2]E[(u2
t − 1)2]− {θ0 + θ1E[y2t−1]}2{E[u2

t ]− 1}2

= E[θ20 + θ21y
4
t−1 + 2θ0θ1y

2
t−1]E[u4

t + 1− 2u2
t ]− 0

= 2
(
θ20 + θ21E[y4t−1] + 2θ0θ1E[y2t−1]

)
.

Since

E[y2t ] = θ0 + θ1E[y2t−1] + 0 =
θ0

1− θ1
, E[y2t ] = E[y2t−1],

E[y4t ] = E[y4t−1], u
2
t ∼ χ2

1, and E[u4
t ] = 3, we have

E[y4t ] = E[(θ0 + θ1y
2
t−1)

2]E[u4
t ] = 3(θ20 + θ21 E[y4t−1] + 2θ0θ1E[y2t−1]) =

3θ20(1 + θ1)

(1− θ1)(1− 3θ21)
.

Hence the expression for the variance of ξt can be simplified to

Var(ξt) =
2θ20(1 + θ1)

(1− 3θ21)(1− θ1)
,(5)

and the variance of y2t can be easily found

Var(y2t ) = E[y4t ]− (E[y2t ])
2 =

2θ20
(1− 3θ21)(1− θ1)2

.(6)



3

From variances (5) and (6), we see that θ1 <
√
1/3 is required. This is also discussed in

Shumway and Stoffer (2011).

Suppose the process {y1, · · · , yT } is generated from (3). To estimate the parameters

θ = (θ0, θ1)
′ in the ARCH(1) process, we apply Ochi’s estimator to the squared process (4).

The main purpose of this paper is to investigate the performance of Ochi’s estimator for (4)

Ochi∗(c1, c2) = θ̂c1,c2 =

(
T−1∑
t=2

yty
′
t + c1y1y

′
1 + c2yTy

′
T

)−1 T−1∑
t=1

yty
2
1+t,(7)

by simulation. In this, c1, c2 ≥ 0, and

yt =

(
1
y2t

)
.

To compare Ochi’s estimator (7) with the LSE, Burg’s estimator, and Yule-Walker estima-

tor, we give the derivations of the three estimators in the ARCH(1) case.

The paper is organized as follows. In Section 2, we extend the LSE, Burg’s estimator

and Yule-Walker estimator to the ARCH(1) model. In Section 3, we evaluate and compare

Ochi’s estimator and the three estimators in AR(1) and ARCH(1) models by simulation.

Finally, in Section 4, we discuss these results and conclude.

2 LSE, Burg’s estimator, and Yule-Walker estimator for ARCH(1) model

2.1 The least squares estimator By minimizing the sum of squared errors

T∑
t=2

{y2t − (θ0 + θ1y
2
t−1)}2,

we can obtain the LSE (e.g., Taniguchi et al., 2008)

θ̂LSE =

(
θ̂0
θ̂1

)
= (Z ′Z)−1Z ′Y ,

where

Y = (y22 , · · · , y2T )′, Z =



1 y21
...

...
1 y2t−1
...

...
1 y2T−1

 ,(8)
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and

Z ′ =

((
1
y21

)
,

(
1
y22

)
, · · · ,

(
1

y2T−1

))
= (y1,y2, · · · ,yT−1).

Then the LSE can be rewritten as

θ̂LSE =

(
T−1∑
t=1

yty
′
t

)−1 T−1∑
t=1

yty
2
t+1.(9)

Recalling the form of Ochi’s estimator (7) with constants c1 and c2, we see that when c1 = 1

and c2 = 0, Ochi’s estimator becomes the LSE.

2.2 Burg’s method Burg’s idea (Burg, 1975) is simple. With a previous given value

yt−1 and a next given value yt+1, forward and backward linear prediction can be represented

as

ŷ2t = θ̂0 + θ̂1y
2
t−1, t ∈ {2, 3, · · · , T}(10)

and

ỹ2t = θ̂0 + θ̂1y
2
t+1, t ∈ {1, 2, · · · , T − 1},(11)

respectively. The sum of the squared errors for (10) is

Sf =
T∑

t=2

(y2t − θ0 − θ1y
2
t−1)

2(12)

and for (11) is

Sb =
T−1∑
t=1

(y2t − θ0 − θ1y
2
t+1)

2.(13)

Minimizing the sum of (12) and (13),

S = Sf + Sb =
T∑

t=2

(y2t − θ′yt−1)
2 +

T−1∑
t=1

(y2t − θ′yt+1)
2

= y41 + 2
T−1∑
t=2

y4t + y4T + (θ′y1)
2 + 2

T−1∑
t=2

(θ′yt)
2 + (θ′yT )

2 − 2θ′

(
T∑

t=2

y2t yt−1 +
T−1∑
t=1

y2t yt+1

)
,

by setting the gradient with respect to θ as 0

∂S

∂θ
= 2y1(θ

′y1)
′ + 4

T−1∑
t=2

yt(θ
′yt)

′ + 2yT (θ
′yT )

′ − 2

(
T∑

t=2

y2t yt−1 +
T−1∑
t=1

y2t yt+1

)
= 0,
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we have

θ̂Burg =

(
y1y

′
1 + 2

T−1∑
t=2

yty
′
t + yTy

′
T

)−1( T∑
t=2

y2t yt−1 +

T−1∑
t=1

y2t yt+1

)

=

(
y1y

′
1 + 2

T−1∑
t=2

yty
′
t + yTy

′
T

)−1
y21 + 2

∑T−1
t=2 y2t + y2T

2
∑T−1

t=1 y2t y
2
t+1

 .

We see that Burg’s estimator gives θ̂0 a different form from Ochi’s estimator. However,

θ1 is estimated as a special case of Ochi’s estimator (7) by setting c1 = c2 = 0.5.

2.3 Yule-Walker estimator The Yule-Walker method is derived by considering the

following expectations

E[y2t y
2
t ] = θ0E[y2t ] + θ1E[y2t y

2
t−1] + E[ξty

2
t ](14)

= θ0µ+ θ1E[y2t y
2
t−1] + V [ξt],

E[y2t y
2
t−1] = θ0E[y2t−1] + θ1E[y2t−1y

2
t−1] + E[ξty

2
t−1](15)

= θ0µ+ θ1E[y2t−1y
2
t−1]

= θ0µ+ θ1E[y2t y
2
t ],

where

µ = E[y2t ] = θ0 + θ1E[y2t−1] + E[ξt] = θ0 + θ1µ.(16)

Hence,

µ =
θ0

1− θ1
, and θ0 = µ(1− θ1).(17)

From (16) and(15), we can see that

θ1 =
E[y2t y

2
t−1]− µ2

E[y2t y
2
t ]− µ2

=
C1

C0
.

That is, θ1 can be estimated by the lag 1 autocorrelation function of the series. Then the

Yule-Walker estimator of the parameters θ = (θ0, θ1)
′ can be obtained by

θ̂YW =

 1
T

∑T
t=1 y2t

(
1− Ĉ1

Ĉ0

)
Ĉ1/Ĉ0

 ,(18)
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where Ĉ0 and Ĉ1 are the sample autocovariance functions of y2t for lags 0 and 1, respectively.

Comparing this with Ochi’s estimator (7), we can see that the Yule-Walker estimator of θ1

is a centered version of Ochi∗(1,1).

3 Simulation and results In this section we provide a simulation study for Ochi’s

estimator, the LSE, Burg’s estimator and Yule-Walker estimator for AR(1) models in (1)

and ARCH(1) models in the form (3). The models and parameters used in the simulations

are given in Table 1.

Table 1: Simulation setting
AR(1) ARCH(1)

xt = αxt−1 + ϵt, t ∈ {2, · · · , T} y2t = (θ0 + θ1y
2
t−1)u

2
t , t ∈ {2, · · · , T}

θ0 = 1

α = (0, 0.05, 0.1, · · · , 0.95)′ θ1 ∈ {0, 0.05, 0.1, · · · , 0.5, 0.55 <
√
1/3}

ϵt ∼ iid N(0, 1) ut ∼ iid N(0, 1)
{x1, x2, · · · , xT } {y21 , y22 , . . . , y

2
T }

T ∈ {100, 200, 300, 500, 1000}
Replications of time series sequences N = 1000

c1, c2 ∈ {0, 0.2, 0.5, 0.7, 1}

3.1 Simulation of Ochi’s estimator for AR(1) For model (1) with σ2 = 1 and α as

each of (0, 0.05, 0.1, · · · , 0.95)′, we generate N = 1000 sequences as time series with length

1000. That is, 20 × 1000 sequences of length 1000 are generated. For each sequence, we

consider five different sample sizes T ,

x1, x2, · · · , xT , T ∈ {100, 200, 300, 500, 1000}

and estimate the parameter α by Ochi’s estimator (2) for each T . In the calculation, we

try all 25 pairs of (c1, c2), c1, c2 ∈ {0, 0.2, 0.5, 0.7, 1} for the constants of Ochi’s estimator.

Then, we evaluate the performance of the different pairs (c1, c2) by comparing the resulting

mean square errors (MSEs) for different sample sizes as α changes.

Figure 1 shows a part of the simulation results for T = 100 and T = 200. As expected,

a bigger sample size T gives a smaller MSE, and hence provides a better estimate of α. For

each sample size, MSE is calculated for all 25 pairs of (c1, c2). The MSE curves are plotted

as dashed lines. MSE curves for four special pairs are plotted as solid lines, in red for (0, 0),

green for (0.5, 0.5), blue for (1, 0), and light blue for (1, 1). We see that as α grows, the MSE
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curves decrease.This means that better estimation is obtained when α is bigger. At around

α = 0.5, the MSEs for different pairs of (c1, c2) do not show big differences. When α < 0.4,

the two extreme cases, (c1, c2) = (0, 0) and (c1, c2) = (1, 1), give the biggest and smallest

MSEs, respectively. However, when α > 0.6, these two curves exchange their positions. In

contrast, Burg’s method(Ochi(0.5, 0.5)) and the LSE (Ochi(1,0)) give intermediate MSEs.

In particular, when α is close to 1, Burg’s method is slightly better than the LSE. When

the sample size is large, different pairs of (c1, c2) give only small differences in MSE.

The figures for the variance and squared bias show that as α increases the variance

becomes smaller but the squared bias becomes bigger. In particular, Ochi(1, 1) (the Yule-

Walker estimator) shows the largest squared bias among these methods. We can also see

from the last panel of the figure that the mean of the estimated α is slightly less than the

real α (gray line).

3.2 Simulation of Ochi’s estimator for ARCH(1) We set the true parameters in

model (4) as θ0 = 1 and θ1 ∈ {0, 0.05, 0.1, · · · , 0.5, 0.55 <
√
1/3}, and then we use Ochi’s

estimator (7) to estimate the parameters by simulation with different constants c1, c2 ∈

{0, 0.2, 0.5, 0.7, 1}. For every value of θ1, N = 1000 sequences of length 1000 are generated.

For each sequence, we consider different values of T ;

y21 , y22 , . . . , y
2
T , T ∈ {100, 200, 300, 500, 1000}.

We estimate θ0 and θ1 and then compute the MSEs, variances, and squared biases of the

estimates for each case.

Figure 2 shows the MSE, variance, and squared biase for Ochi’s estimator for estimating

θ0 and θ1. Different colors indicate different lengths of the time series (or sample sizes),

with these sizes T ∈ {100, 200, 300, 500, 1000}. In each panel, for each T , 25 curves obtained

from different pairs of (c1, c2), c1, c2 ∈ {0, 0.2, 0.5, 0.7, 1}, are plotted with respect to θ1.

The first panel shows MSE curves obtained in estimating θ0. The MSE curve obtained

from (c1 = 1, c2 = 1) is plotted as a solid line, and the other 24 MSE curves are plotted

as dashed lines. The graph shows that as the sample size T increases, the corresponding

MSE becomes smaller. For big sample sizes, such as T = 1000, the choice of (c1, c2) makes

almost no difference. In contrast, with smaller sample sizes, there are bigger differences
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Figure 1: Comparison of Ochi(c1, c2) estimators for AR(1) model.

among different pairs of (c1, c2). We also see that (c1, c2) = (1, 1) gives a better estimation

for θ0 than the other pairs do. However, increasing θ1 enlarges MSE and gives worse

estimation of θ0.
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The second panel shows MSE curves in estimating θ1. Comparing this with the first

panel, we see that a similar trend is obtained, except that Ochi∗(c1 = 1, c2 = 1) works

better than the others when θ1 ≤ 0.3; around a θ1 of [0.3, 0.4], the difference of attributable

to (c1, c2) is very small; after that, Ochi∗(c1 = 1, c2 = 1) becomes worse than the others,

and Ochi∗(c1 = 0, c2 = 0) works better, instead. As special cases of Ochi’s estimator,

the LSE (Ochi∗(1, 0)) and Burg’s estimator (Ochi∗(0.5, 0.5)) perform similarly in between

Ochi∗(1, 1) and Ochi∗(0, 0).

Plots of variance and squared biases for both θ0 and θ1 are given in the second and third

rows, respectively in Figure 2. We can see that (c1 = 1, c2 = 1) has better performance

than the other pairs of (c1, c2) for estimating θ0. For θ1, Ochi∗(c1 = 1, c2 = 1) has smaller

variance than with other constants, but its squared bias is bigger.

Since Ochi∗(c1 = 1, c2 = 1) works well in all the cases for estimating θ0, we compare

it with the methods of LSE, Burg and Yule-Walker in Figure 3 by evaluating their MSE,

variance and squared bias curves. In each panel of Figures 3, the results for different sample

sizes are indicated by different colors. For each sample size, four curves with respect to θ1

are plotted, one for each of four different methods. Figure 3 shows that Ochi∗(c1 = 1, c2 = 1)

works well in all the cases for θ0.

The last two graphs in Figure 3 show the means of the estimates, θ̂0 and θ̂1, obtained

with different methods and different sample sizes. In the simulation, the true value of θ0 is

fixed to 1, and the true θ1 takes values from {0, 0.05, 0.1, · · · , 0.55}. We see that when θ1

becomes bigger, the means of the estimates spread from above (with θ̂0) and below (with

θ̂1) the gray lines in the two graphs. That is, θ0 is over estimated and θ1 is under estimated

in the ARCH(1) model. The simulation also shows that, in estimating θ1, Ochi∗(1, 1) and

the Yule-Walker estimator are not exactly the same but their results are particularly close.

3.3 Data with heavy-tailed distributions In time series analysis, data with heavy-

tailed distributions are often of interest. Here, we also evaluate Ochi’s estimator, the LSE,

Burg’s estimator, and the Yule-Walker estimator by simulation when errors ϵt and ut have

t distributions with 4, · · · , 10 degrees of freedom. Since the simulations give similar results,

we show only here the cases of ϵt ∼ iid t(5) for the AR(1) model, and ut ∼ iid t(5) for the

ARCH(1) model.
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For the AR(1) model, Ochi(c1, c2) performs similar to its performance in the case of

ϵt ∼ N(0, 1). This can be seen by comparing Figures 1 and 4.

When ut ∼ iid t(5), among Ochi∗(c1, c2), c1, c2 ∈ {0, 0.2, 0.5, 0.7, 1}, Ochi∗(1, 1) is

better at estimating θ0. For θ1, Ochi∗(1, 1) maintains a small MSE and shows stability, as

seen in the first row of Figure 5. Figure 5 also shows the variance and squared bias for θ̂0

and θ̂1 compared for instances of Ochi∗(c1, c2).

Comparing Ochi∗(1, 1) with the LSE, Burg’s estimator, and the Yule-Walker estimator

in Figure 6, we see that Ochi∗(1, 1) works well in most cases for estimating θ0. In estimating

θ1, from the last panel of Figure 6, we can see that Ochi∗(1, 1) and the Yule-Walker estimator

give similar performance, and this performance is close to that of Burg’s estimator and is

more stable than the LSE.

From the ranges of MSE and mean in Figures 5 and 6, we also see that, for the ARCH(1)

model, estimation of θ0 is difficult when ut has heavy-tailed distributions.

4 Conclusions Ochi’s estimator is examined for estimating the parameters in both AR(1)

and ARCH(1) models. The simulation for AR(1) models shows that Ochi(1,1) ( equivalently

Yule-Walker estimator) works well when α < 0.4, and Ochi(0,0) gives a smaller MSE when

α > 0.6. Around α = 0.5, there is not much difference in MSEs of Ochi(c1, c2). Ochi(1,1)

also has bigger squared biases than the other methods. Ochi(1,0) and Ochi(0.5, 0.5) are the

LSE and Burg’s estimator, respectively. They give intermediate MSE values.

Since ARCH(1) models can be written as a form of AR(1), we introduced Ochi’s esti-

mator to ARCH(1). With different pairs of Ochi parameters (c1, c2), we investigated its

performance by simulation and found that Ochi∗(c1 = 1, c2 = 1) works well for estimating

θ0. Ochi∗(c1 = 1, c2 = 1) performs similarly to the Yule-Walker estimator, having relatively

smaller MSEs than given by the LSE and Burg’s estimator for θ1 < 0.3; when θ1 > 0.4, the

LSE and Burg’s estimator work better.

When the data are heavy-tailed, such as when ϵt ∼ t(5), for AR(1), Ochi’s estimator

robustly estimates α. However, for ARCH(1), from the large MSEs, we see that Ochi’s

estimator gives poor estimation of θ0. The MSEs for θ1 are also big, but much smaller than

those for θ0. Moreover, Ochi∗(1, 1) shows performance similar to the performance of the
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Yule-Walker estimator and Burg’s estimator for θ1.
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Figure 2: Comparison of Ochi’s estimators with different pairs of (c1, c2). Left panels show
θ0, right panels show θ1.
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Figure 3: Comparison of Ochi(1, 1) estimator with methods of LSE, Burg and Yule-Walker
for θ0. The last two panels show means of the estimates of parameters θ0 and θ1.
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Figure 4: For AR(1), when ϵt ∼ iid t(5), Ochi’s estimators perform similar to case with
ϵt ∼ iid N(0, 1).
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Figure 5: Comparison of Ochi’s estimators with different pairs of (c1, c2) in case of ut ∼iid
t(5). Left panels show θ0, right panels show θ1.
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Figure 6: Comparison of Ochi(1, 1) estimator and methods of LSE, Burg and Yule-Walker
for θ0 in the case of ut ∼iid t(5). The last two panels show means of the estimates of
parameters θ0 and θ1 in the case of ut ∼iid t(5).




