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Abstract. Let A and B be strictly positive linear operators on a Hilbert space. The
derivative of the path A ♮t B (t ∈ R) gives the relative operator entropy, that is,
d
dt
A ♮t B = St(A|B), which we can regard as the velocity function along A ♮t B. The

derivative of velocity function is the acceleration function, so we define the accelera-
tion by At(A|B) = d

dt
St(A|B). In this paper, we discuss properties of St(A|B) and

At(A|B). Firstly, we interpret some properties of St(A|B) concerning interpolational
property and the noncommutative ratio from the viewpoint of velocity. Secondly, we
show the properties of At(A|B) similar to those of St(A|B).

1 Introduction. Let A and B be strictly positive linear operators on a Hilbert space H.
An operator T on H is said to be positive (we denote it by T ≥ 0) if (Tξ, ξ) ≥ 0 for all
ξ ∈ H and T is said to be strictly positive (we denote it by T > 0) if T is invertible and
positive.

For A,B > 0, we define a path A ♮t B as follows ([2, 3, 6, 8, 14] etc.):

A ♮t B ≡ A
1
2 (A− 1

2BA− 1
2 )tA

1
2 (t ∈ R),

which is passing through A = A ♮0 B and B = A ♮1 B. If t ∈ [0, 1], the path A ♮t B
coincides with the weighted geometric operator mean denoted by A ♯t B (cf. [15]). We
remark that A ♮t B = B ♮1−t A holds for t ∈ R (cf. [8]).

Fujii and Kamei [1] defined the following relative operator entropy for A,B > 0:

S(A|B) ≡ A
1
2 log(A− 1

2BA− 1
2 )A

1
2 .

Furuta [7] defined generalized relative operator entropy as follows (see also [9]):

Sα(A|B) ≡ A
1
2 (A− 1

2BA− 1
2 )α log(A− 1

2BA− 1
2 )A

1
2

= (A ♮α B)A−1S(A|B) (α ∈ R).

We know immediately S0(A|B) = S(A|B). We remark that

S(A|B) =
d

dt
A ♮t B

∣∣∣∣
t=0

and Sα(A|B) =
d

dt
A ♮t B

∣∣∣∣
t=α

.

Yanagi, Kuriyama and Furuichi [16] introduced the Tsallis relative operator entropy as
follows:

Tα(A|B) ≡ A ♯α B −A

α
(α ∈ (0, 1]).
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Since lim
x→0

ax − 1

x
= log a holds for a > 0, we have T0(A|B) ≡ lim

α→0
Tα(A|B) = S(A|B). The

Tsallis relative operator entropy can be defined for any α ∈ R by using ♮α instead of ♯α.
For A,B > 0, t ∈ [0, 1] and r ∈ [−1, 1], operator power mean A ♯t,r B is defined as

follows:

A ♯t,r B ≡ A
1
2

{
(1− t)I + t(A− 1

2BA− 1
2 )r
} 1

r

A
1
2 = A ♮ 1

r
{A ∇t (A ♮r B)} .

We remark that A ♯t,r B = B ♯1−t,r A holds for t ∈ [0, 1] and r ∈ [−1, 1] (cf. [10, 12]). The
operator power mean is a path combining A = A ♯0,r B and B = A ♯1,r B, and interpolates
the arithmetic operator mean, the geometric operator mean and the harmonic operator
mean.

arithmetic operator mean
A ∇t B = (1− t)A+ tB

↑r=1

A ♯t,r B −−−→
r→0

geometric operator mean

A ♯t B = A
1
2 (A− 1

2BA− 1
2 )tA

1
2

↓r=−1

harmonic operator mean

A ∆t B =
(
A−1 ∇t B

−1
)−1

For A,B > 0, α ∈ [0, 1] and r ∈ [−1, 1], expanded relative operator entropy Sα,r(A|B) is
defined as follows (cf. [10]):

Sα,r(A|B) ≡ d

dt
A ♯t,r B

∣∣∣∣
t=α

= A
1
2

[{
(1− α)I + α

(
A− 1

2BA− 1
2

)r} 1
r−1 (A− 1

2BA− 1
2 )r − I

r

]
A

1
2

= (A ♯α,r B)(A ∇α (A ♮r B))−1S0,r(A|B) (r ̸= 0),

Sα,0(A|B) ≡ lim
r→0

Sα,r(A|B) = Sα(A|B).

We remark that S0,r(A|B) = Tr(A|B), S1,r(A|B) = −Tr(B|A) hold for r ∈ [−1, 1].
S(A|B) and S0,r(A|B) are given as follows:

S(A|B) =
d

dt
A ♮t B

∣∣∣∣
t=0

and S0,r(A|B) =
d

dt
A ♯t,r B

∣∣∣∣
t=0

.

We illustrate an image for S(A|B) and S0,r(A|B) in Figure 1.
In [6], S(A|B) and S0,r(A|B) are regarded as the velocities on the paths A ♯t B and

A ♯t,r B at t = 0 respectively. According to this viewpoint, it is natural to call Sα(A|B) and
Sα,r(A|B) the velocities on the paths A ♮t B and A ♯t,r B respectively. These interpretations
inspire us to introduce the accelerations Aα(A|B) and Aα,r(A|B) on the paths A ♮t B and
A ♯t,r B at t = α.

In this paper, we can show that the properties concerning the accelerations Aα(A|B)
and Aα,r(A|B), interpolational property, the behavior of noncommutative ratio and so on,
are inherited from those of velocities Sα(A|B) and Sα,r(A|B). The contents of this paper
are as follows: In section 2, we show properties of the velocity Sα(A|B). In section 3, we
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introduce the acceleration Aα(A|B) and we show some properties of Aα(A|B). In section
4, we introduce the acceleration on the path A ♯t,r B and we show some results for velocity
Sα,r(A|B) and acceleration Aα,r(A|B) on the path A ♯t,r B.

-
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Figure 1: An image of S(A|B) and S0,r(A|B).

2 Velocity on the path A ♮t B. As mentioned in section 1, we regard Sα(A|B) as the
velocity on the path A ♮t B at t = α. In this section, we show some properties of the
velocity Sα(A|B).

The next lemma shows interpolational property of the path A ♮t B. This lemma is
fundamental in our discussion.

Lemma 2.1. ([12]) For A,B > 0 and x, y, α ∈ R,

(A ♮y B) ♮α (A ♮x B) = A ♮(1−α)y+αx B

holds.

Let A ♮x B and A ♮y B (x, y ∈ R) be arbitrary points on the path A ♮t B. Concerning
the velocity Sα(A ♮y B|A ♮x B) at t = α, we have the following theorem which was proved
in [12].

Theorem 2.2. ([12]) Let A,B > 0 and α, x, y ∈ R. Then

Sα(A ♮y B|A ♮x B) = (x− y)S(1−α)y+αx(A|B).

In our discussion, for a given path γ(t) = X ♮t Y for X,Y > 0 and t ∈ R, we imagine
that an object moves through base points X (t = 0) and Y (t = 1) on the path γ(t). Then
Sα(A ♮y B|A ♮x B) means the velocity on the path γ1(t) = (A ♮y B) ♮t (A ♮x B)
at t = α, and also S(1−α)y+αx(A|B) means the velocity on the path γ2(t) = A ♮t B at
t = (1 − α)y + αx. Note that γ1(t) and γ2(t) represent the same path, and the point on
γ1(t) at t = α and the point on γ2(t) at t = (1−α)y+αx are the same point by Lemma 2.1.
In this situation, we consider exchanging the path γ1(t) for γ2(t) to change unit length of
the path. Then we can regard Theorem 2.2 as the result on the rate of change of velocities
at the same point.

The next Corollary 2.3 is an immediate consequence of Theorem 2.2.
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Corollary 2.3. For A,B > 0 and α, x, y ∈ R, the following hold:

Sα(B|A) = −S1−α(A|B).(1)

Sα(A|A ♮x B) = xSαx(A|B).(2)

Sα(A ♮y B|A ♮y+1 B) = Sα+y(A|B).(3)

Proof. (1) is obtained by putting x = 0 and y = 1, (2) is obtained by putting y = 0 and (3)
is obtained by putting x = y + 1.

Next, from the above point of view, we discuss the noncommutative ratio R(v;A,B) ≡
(A ♮v B)A−1 for v ∈ R which is defined in [11]. Note that it is independent of α in Sα(A|B).

Theorem 2.4. ([11]) For A,B > 0 and v ∈ R,

R(v;A,B)Sα(A|B) = Sα+v(A|B)

for all α ∈ R.

In particular, by putting α = 0 in Theorem 2.4, we have following relation.

Corollary 2.5. ([11]) For A,B > 0 and v ∈ R, following hold:

R(v;A,B)S(A|B) = Sv(A|B).

By Theorem 2.4 and (3) in Corollary 2.3, we have

(♡) R(v;A,B)Sα(A|B) = Sα(A ♮v B|A ♮v+1 B) for α, v ∈ R.

As an extension of this relation, we obtain the following Theorem 2.6. Here, we consider
exchanging the path γ1(t) = (A ♮y B) ♮t (A ♮x B) for γ2(t) = (A ♮y+v B) ♮t (A ♮x+v B),
that is, moving base points of the path preserving unit length. Then, Theorem 2.6 shows a
relation between velocity on the path γ1(t) at t = α and velocity on the path γ2(t) at t = α
by using the noncommutative ratio.

Theorem 2.6. Let A,B > 0 and α, v, x, y ∈ R. Then

R(v;A,B)Sα(A ♮y B|A ♮x B) = Sα(A ♮y+v B|A ♮x+v B).

Proof. By Theorem 2.2 and Theorem 2.4, we have

R(v;A,B)Sα(A ♮y B|A ♮x B) = (x− y)R(v;A,B)S(1−α)y+αx(A|B)

= (x− y)S(1−α)y+αx+v(A|B)

= {(x+ v)− (y + v)}S(1−α)(y+v)+α(x+v)(A|B)

= Sα(A ♮y+v B|A ♮x+v B).

Remark. We know that R(v(x− y);A,B) = R(v;A ♮y B,A ♮x B) holds for A,B > 0 and
v, x, y ∈ R, since

R(v(x− y);A,B) = (A ♮v(x−y) B)A−1

= A
1
2 (A− 1

2BA− 1
2 )v(x−y)+yA

1
2A− 1

2 (A− 1
2BA− 1

2 )−yA− 1
2

= (A ♮(1−v)y+vx B)(A ♮y B)−1 = ((A ♮y B) ♮v (A ♮x B)) (A ♮y B)−1

= R(v;A ♮y B,A ♮x B).
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From this relation and (♡), we can give an alternative proof of Theorem 2.6 as follows: By
putting u = v(x− y), we have R(u;A,B) = R( u

x−y ;A ♮y B,A ♮x B). Then

R(u;A,B)Sα(A ♮y B|A ♮x B) = R
(

u

x− y
;A ♮y B,A ♮x B

)
Sα(A ♮y B|A ♮x B)

= Sα((A ♮y B) ♮ u
x−y

(A ♮x B)|(A ♮y B) ♮ u
x−y+1 (A ♮x B))

= Sα(A ♮(1− u
x−y )y+ ux

x−y
B|A ♮− uy

x−y+( u
x−y+1)x B)

= Sα(A ♮y+u B|A ♮x+u B).

Corollary 2.5 means that R(v;A,B) is the ratio of Sv(A|B) and S(A|B). Related to it,
the difference between Sv(A|B) and S(A|B) is as follows:

Proposition 2.7. For A,B > 0 and v ∈ R,

Sv(A|B)− S(A|B) = vTv(A|B)A−1S(A|B)

holds.

Proof. From Corollary 2.5, we have

Sv(A|B)− S(A|B) = R(v;A,B)S(A|B)− S(A|B)

= (A ♮v B −A)A−1S(A|B) = vTv(A|B)A−1S(A|B).

We remark that the above difference was also represented by using Petz-Bregman divergence
(see [13]).

3 Acceleration on the path A ♮t B. Since the relative operator entropy Sα(A|B) is
regarded as the velocity on the path A ♮t B at t = α, it is natural to call the derivative of
St(A|B) acceleration on A ♮t B.

Definition 3.1. For A,B > 0 and α ∈ R, we define the acceleration on the path A ♮t B at
t = α as follows:

Aα(A|B) ≡ d

dt
St(A|B)

∣∣∣∣
t=α

.

The acceleration Aα(A|B) is represented explicitly as follows:

Theorem 3.2. Let A,B > 0 and α ∈ R. Then

Aα(A|B) = Sα(A|B)A−1S(A|B) = Sα(A|B)(A ♮α B)−1Sα(A|B).

In particular,

A0(A|B) = S(A|B)A−1S(A|B).

Proof. For a > 0, we have
d

dt
at log a = at(log a)2.
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Then

Aα(A|B) =
d

dt
St(A|B)

∣∣∣∣
t=α

= A
1
2 (A− 1

2BA− 1
2 )α(log(A− 1

2BA− 1
2 ))2A

1
2

= A
1
2 (A− 1

2BA− 1
2 )α log(A− 1

2BA− 1
2 )A

1
2A−1A

1
2 log(A− 1

2BA− 1
2 )A

1
2

= Sα(A|B)A−1S(A|B),

which shows the first equality. On the other hand, we have

Sα(A|B)A−1S(A|B) = Sα(A|B)(A ♮α B)−1(A ♮α B)A−1S(A|B)

= Sα(A|B)(A ♮α B)−1Sα(A|B).

Remark. Theorem 3.2 shows that if we put γ(t) = A ♮t B, then it satisfies the geodesic

equation γ̈(t)− γ̇(t)
(
γ(t)

)−1
γ̇(t) = 0 since γ̇(t) = St(A|B) and γ̈(t) = At(A|B). Conversely,

A ♮t B is given as the solution of the geodesic equation for initial conditions γ(0) = A and
γ(1) = B. We show it here according to [5] which treats matrices, but the same arguments
are valid for operator valued functions, since, even for a operator valued function γ(t),
it holds that (γ(t)−1)

′
= −(γ(t))−1γ(t)

′
(γ(t))−1 and that (log γ(t))

′
= γ(t)

′
(γ(t))−1 if

γ(t)γ(t)
′
= γ(t)

′
γ(t).

By putting f(t) = γ(0)−
1
2 γ(t)γ(0)−

1
2 = A− 1

2 γ(t)A− 1
2 , we have

f
′′
(t)− f

′
(t)
(
f(t)

)−1
f

′
(t) = 0

and that f(0) = A− 1
2 γ(0)A− 1

2 = I and f(1) = A− 1
2 γ(1)A− 1

2 = A− 1
2BA− 1

2 . Since(
f

′
(t)(f(t))−1

)′
= f

′′
(t)(f(t))−1 − f

′
(t)(f(t))−1f

′
(t)(f(t))−1

= f
′′
(t)(f(t))−1 − f

′′
(t)(f(t))−1 = 0,

then we have f
′
(t)(f(t))−1 = C, that is, f

′
(t) = Cf(t). It is known that f(t) and f

′
(t) are

selfadjoint, so we have

C∗ = f(0)C∗ = (Cf(0))∗ = (f
′
(0))∗ = f

′
(0) = Cf(0) = C.

Hence
f

′
(t)(f(t))−1 = C = C∗ = (f

′
(t)(f(t))−1)∗ = (f(t))−1f

′
(t),

and then f
′
(t)f(t) = f(t)f

′
(t). So we have (log f(t))

′
= f

′
(t)(f(t))−1 = C and then

log f(t) = Ct +D. By f(0) = I and f(1) = A− 1
2BA− 1

2 , we have expC = A− 1
2BA− 1

2 and

D = 0, that is, f(t) = (A− 1
2BA− 1

2 )t. Therefore, we obtain

γ(t) = A
1
2 f(t)A

1
2 = A

1
2 (A− 1

2BA− 1
2 )tA

1
2 = A ♮t B.

Through Theorem 3.2, we know that the acceleration Aα(A|B) has the similar properties
to the velocity Sα(A|B). First, we have Theorem 3.3 which corresponds to Theorem 2.2.
As mentioned in section 2, the point on the path γ1(t) = (A ♮y B) ♮t (A ♮x B) at t = α
and the point on γ2(t) = A ♮t B at t = (1− α)y + αx are the same point. Then Theorem
3.3 shows the result on the rate of change of accelerations at the same point.
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Theorem 3.3. Let A,B > 0 and α, x, y ∈ R. Then

Aα(A ♮y B|A ♮x B) = (x− y)2A(1−α)y+αx(A|B).

Proof. By Theorem 3.2, Lemma 2.1 and Theorem 2.2, we have

Aα(A ♮y B|A ♮x B)

= Sα(A ♮y B|A ♮x B)((A ♮y B) ♮α (A ♮x B))−1Sα(A ♮y B|A ♮x B)

= (x− y)2S(1−α)y+αx(A|B)(A ♮(1−α)y+αx B)−1S(1−α)y+αx(A|B)

= (x− y)2A(1−α)y+αx(A|B).

Corollary 3.4. For A,B > 0, and α, x, y ∈ R, the following hold:

Aα(B|A) = A1−α(A|B).(1)

Aα(A|A ♮x B) = x2Aαx(A|B).(2)

Aα(A ♮y B|A ♮y+1 B) = Aα+y(A|B).(3)

Secondly, related to the noncommutative ratio, we have Theorem 3.5 which corresponds
to Theorem 2.4.

Theorem 3.5. For A,B > 0 and v ∈ R,

R(v;A,B)Aα(A|B) = Aα+v(A|B)

for all α ∈ R. In particular,

R(v;A,B)A0(A|B) = Av(A|B).

Proof. By Theorem 3.2 and Theorem 2.4, we have

R(v;A,B)Aα(A|B) = R(v;A,B)Sα(A|B)A−1S(A|B)

= Sα+v(A|B)A−1S(A|B) = Aα+v(A|B).

The following Theorem 3.6 is an extension of Theorem 3.5. Similarly to Theorem 2.6,
Theorem 3.6 shows a relation between acceleration on the paths γ1(t) = (A ♮y B) ♮t (A ♮x B)
and γ2(t) = (A ♮y+v B) ♮t (A ♮x+v B) at t = α by using the noncommutative ratio.

Theorem 3.6. Let A,B > 0 and α, v, x, y ∈ R. Then

R(v;A,B)Aα(A ♮y B|A ♮x B) = Aα(A ♮y+v B|A ♮x+v B).

Proof. By Theorem 3.3 and Theorem 3.5, we have

R(v;A,B)Aα(A ♮y B|A ♮x B) = (x− y)2R(v;A,B)A(1−α)y+αx(A|B)

= (x− y)2A(1−α)y+αx+v(A|B)

= {(x+ v)− (y + v)}2 A(1−α)(y+v)+α(x+v)(A|B)

= Aα(A ♮y+v B|A ♮x+v B).

Lastly, the difference between Av(A|B) and A0(A|B) is gotten as follows.
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Proposition 3.7. For A,B > 0 and v ∈ R,

Av(A|B)−A0(A|B) = vTv(A|B)A−1A0(A|B).

holds.

Proof. By using Theorem 3.5, we have

Av(A|B)−A0(A|B) = R(v;A,B)A0(A|B)−A0(A|B)

= (A ♮v B −A)A−1A0(A|B)

= vTv(A|B)A−1A0(A|B).

4 Velocity and acceleration on the path A ♯t,r B. In this section, we introduce the
velocity and the acceleration on the path A ♯t,r B and show their properties.

We know that the path A ♯t,r B has interpolational property. The next lemma is the
same property as Lemma 2.1.

Lemma 4.1. ([14]) For A,B > 0, α, x, y ∈ [0, 1] and r ∈ [−1, 1],

(A ♯y,r B) ♯α,r (A ♯x,r B) = A ♯(1−α)y+αx,r B

holds.

Although the noncommutative ratio discussed in section 2 can not be extended totally to
the one concerning A ♯t,r B, the property Corollary 2.5 is extended as follows:

Theorem 4.2. ([12]) For A,B > 0, α ∈ [0, 1] and r ∈ [−1, 1],

Sα,r(A|B) = (A ♯α,r B)(A ∇α (A ♮r B))−1S0,r(A|B).

holds.

We introduce the acceleration on the path A ♯t,r B as follows:

Definition 4.3. For A,B > 0, α ∈ [0, 1] and r ∈ [−1, 1], we define Aα,r(A|B) as

Aα,r(A|B) ≡ d

dt
St,r(A|B)

∣∣∣∣
t=α

.

We call it the acceleration on the path A ♯t,r B at t = α.

We remark that Aα,0(A|B) = Aα(A|B) for α ∈ [0, 1] since St,0(A|B) = St(A|B).

The acceleration Aα,r(A|B) is represented explicitly as follows:

Theorem 4.4. Let A,B > 0, α ∈ [0, 1] and r ∈ [−1, 1]. Then

Aα,r(A|B) = (1− r)Sα,r(A|B)(A ∇α (A ♮r B))−1S0,r(A|B)

= (1− r)Sα,r(A|B)(A ♯α,r B)−1Sα,r(A|B).

In particular,
A0,r(A|B) = (1− r)S0,r(A|B)A−1S0,r(A|B).
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Proof. We have shown the case r = 0 in Theorem 3.2. Hence, we have only to show the
case r ̸= 0. Since

d

dt
St,r(A|B)

= (1− r)A
1
2

{
(1− t)I + t

(
A− 1

2BA− 1
2

)r} 1
r−2

(
(A− 1

2BA− 1
2 )r − I

r

)2

A
1
2

= (1− r)A
1
2

[{
(1− t)I + t

(
A− 1

2BA− 1
2

)r} 1
r−1 (A− 1

2BA− 1
2 )r − I

r

]
A

1
2

×A− 1
2

{
(1− t)I + t

(
A− 1

2BA− 1
2

)r}−1

A− 1
2A

1
2
(A− 1

2BA− 1
2 )r − I

r
A

1
2

= (1− r)St,r(A|B)(A ∇t (A ♮r B))−1Tr(A|B)

= (1− r)St,r(A|B)(A ∇t (A ♮r B))−1S0,r(A|B),

we have
Aα,r(A|B) = (1− r)Sα,r(A|B)(A ∇α (A ♮r B))−1S0,r(A|B).

On the other hand, by Theorem 4.2, we have

(1− r)Sα,r(A|B)(A ∇α (A ♮r B))−1S0,r(A|B) = (1− r)Sα,r(A|B)(A ♯α,r B)−1Sα,r(A|B).

By Theorem 4.4 and Lemma 4.1, we give similar properties to those in sections 2 and
3. First, we have the next theorem and corollary.

Theorem 4.5. Let A,B > 0, α, x, y ∈ [0, 1] and r ∈ [−1, 1]. Then

Sα,r(A ♯y,r B|A ♯x,r B) = (x− y)S(1−α)y+αx,r(A|B).(1)

Aα,r(A ♯y,r B|A ♯x,r B) = (x− y)2A(1−α)y+αx,r(A|B).(2)

Proof. (1) By using Lemma 4.1, we have

Sα,r(A ♯y,r B|A ♯x,r B)

=
d

dt
(A ♯y,r B) ♯t,r (A ♯x,r B)

∣∣∣∣
t=α

= lim
v→0

(A ♯y,r B) ♯α+v,r (A ♯x,r B)− (A ♯y,r B) ♯α,r (A ♯x,r B)

v

= lim
v→0

A ♯(1−(α+v))y+(α+v)x,r B −A ♯(1−α)y+αx,r B

v

= (x− y) lim
v→0

A ♯(1−α)y+αx+v(x−y),r B −A ♯(1−α)y+αx,r B

(x− y)v

= (x− y)S(1−α)y+αx,r(A|B).

(2) From Theorem 4.4, (1) in Theorem 4.5 and Lemma 4.1, we obtain

Aα,r(A ♯y,r B|A ♯x,r B)

= (1− r)Sα,r(A ♯y,r B|A ♯x,r B)
(
(A ♯y,r B) ♯α,r(A ♯x,r B)

)−1
Sα,r(A ♯y,r B|A ♯x,r B)

= (x− y)2(1− r)S(1−α)y+αx,r(A|B)(A ♯(1−α)y+αx,r B)−1S(1−α)y+αx,r(A|B)

= (x− y)2A(1−α)y+αx,r(A|B).
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Corollary 4.6. For A,B > 0, α, x ∈ [0, 1] and r ∈ [−1, 1], the following hold:

Sα,r(B|A) = −S1−α,r(A|B) and Sα,r(A|A ♯x,r B) = xSαx,r(A|B).(1)

Aα,r(B|A) = A1−α,r(A|B) and Aα,r(A|A ♯x,r B) = x2Aαx,r(A|B).(2)
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Monographs in Inequalities 1, Element, Zagreb, 2005.

[9] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Relative operator entropy, operator
divergence and Shannon inequality, Sci. Math. Jpn., 75(2012), 289–298.

[10] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Extensions of Tsallis relative operator
entropy and operator valued distance, Sci. Math. Jpn., 76(2013), 427–435.

[11] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, On relations between operator valued
α-divergence and relative operator entropies, Sci. Math. Jpn., 78(2015), 215–228. (online: e-
2015 (2015), 215–228.)

[12] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Expanded relative operator entropies
and operator valued α-divergence, J. Math. Syst. Sci., 5(2015), 215–224.

[13] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Some operator divergences based
on Petz-Bregman divergence,

[14] E. Kamei, Paths of operators parametrized by operator means, Math. Japon., 39(1994), 395–
400.

[15] F. Kubo and T. Ando, Means of positive linear operators, Math Ann., 248(1980), 205–224.

[16] K. Yanagi, K. Kuriyama and S. Furuichi, Generalized Shannon inequalities based on Tsallis
relative operator entropy, Linear Algebra Appl., 394(2005), 109–118.

(1)
Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. isa@maebashi-it.ac.jp

(2)

Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. m-ito@maebashi-it.ac.jp

Communicated by Junichi fujii

Sci., Math., Jpn. 80(2017), 161-170.



Velocity and acceleration on the paths A ♮t B and A ♯t,r B 11

(3) 1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, Japan, 639-0202.

ekamei1947@yahoo.co.jp

(4) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. tohyama@maebashi-it.ac.jp

(5) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. masayukiwatanabe@maebashi-it.ac.jp




