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Abstract. Let T = U |T | be a polar decomposition of a bounded linear oper-

ator T on a complex Hilbert space with kerU = ker |T |. T is said to be class

p-wA(s, t) if
(
|T ∗|t|T |2s|T ∗|t

) tp
s+t ≥ |T ∗|2tp and |T |2sp ≥

(
|T |s|T ∗|2t|T |s

) sp
s+t

with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. This is a generalization of p-hyponormal

or class A operators. In this paper we prove following assertions. (i) If T is
class p-wA(s, t), then T is normaloid and isoloid. (ii) If T is class p-wA(s, t)
and σ(T ) = {λ}, then T = λ. (iii) If T is class p-wA(s, t), then T is finite

and the range of generalized derivation δT : B(H) 3 X → TX −XT ∈ B(H)
is orthogonal to its kernel. (iv) If S is class p-wA(s, t), T ∗ is an invertible
p-wA(t, s) operator and X is a Hilbert-Schmidt operator such that SX = XT ,
then S∗X = XT ∗.

Dedicated to the memory of Professor Takayuki Furuta with deep gratitude.

1. Introduction and Preliminaries

Let B(H) denote the algebra of all bounded linear operators on a complex Hilbert
space H and let ker(T ), ran(T ) and σ(T ) denote the kernel, the range and the
spectrum of T ∈ B(H), respectively. Recall that an operator T is said to be
hyponormal if T ∗T ≥ TT ∗. Aluthge [1] defined p-hyponormal operator as (T ∗T )p ≥
(TT ∗)p with p ∈ (0, 1], and he proved many interesting properties of p-hyponormal
operators by using Furuta’s inequality [9]. An invertible operator T is said to be
log-hyponormal if log(T ∗T ) ≥ log(TT ∗). It is known that invertible p-hyponormal
operator is log-hyponormal, but the reverse does not hold by [16]. Moreover, by
using Furuta’s inequality, Furuta, Ito and Yamazaki [10] define class A operator as

|T 2| ≥ |T |2

and class A(k) operator as (
T ∗|T |2kT

) 1
k+1 ≥ |T |2.

These classes are an extension of p-hyponormal, log-hyponormal operators, and
moreover, class A and class A(k) operator are extended to class wA(s, t) operators
with 0 < s, t as

(1.1)
(
|T ∗|t|T |2s|T ∗|t

) t
s+t ≥ |T ∗|2t

and

(1.2) |T |2s ≥
(
|T |s|T ∗|2t|T |s

) s
s+t .
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In [8], an operator T is said to be class A(s, t) if T satisfies (1.1). However Ito and
Yamazaki [12] proved that (1.1) implies (1.2). This is a striking result. An operator
T is said to be class A(s, t) if T satisfies (1.1). Hence Ito and Yamazaki proved
that class wA(s, t) coincides with class A(s, t). It is known that every invertible
p-hyponormal operator is log-hyponormal, every p-hyponormal, log-hyponormal
operator is class A(s, t) for all 0 < s, t and if T is invertible and class A(s, t) for all
0 < s, t then T is log-hyponormal ([8], [11], [12], [16]).

It is well known that class A(s, t) operators enjoy many interesting properties as
hyponormal operators, for example, Fuglede-Putnam type theorem, Weyl type the-
orem, subscalarity and Putnam’s inequality. Although there are many outstanding
problems which are still open for hyponormal operators, for example, the invariant
subspace problem, investigating new generalizations of hyponormal operators is one
of recent interest in operator theory.

For T ∈ B(H), set |T | = (T ∗T )
1
2 as usual. By taking U |T |x = Tx for x ∈ H

and Ux = 0 for x ∈ ker |T |, T has a unique polar decomposition T = U |T | with
kerU = ker |T |. An operator T is said to be class p-wA(s, t) [15] if

(1.3)
(
|T ∗|t|T |2s|T ∗|t

) tp
s+t ≥ |T ∗|2tp

and

(1.4) |T |2sp ≥
(
|T |s|T ∗|2t|T |s

) sp
s+t

where 0 < p ≤ 1 and 0 < s, t, s + t ≤ 1. In [5], the authors proved that a set of
class p-wA(s, t) operators are increasing for 0 < s, t and decreasing for 0 < p ≤ 1.

Lemma 1.1. [5] If T ∈ B(H) is class p-wA(s, t) and 0 < s ≤ s1, 0 < t ≤ t1, 0 <
p1 ≤ p ≤ 1, then T is class p1-wA(s1, t1).

Ito and Yamazaki [12] proved that (1.1) implies (1.2). However it is not known
that whether (1.3) implies (1.4) or not. Class A(1, 1) is said to be class A and
class A( 1

2 ,
1
2 ) is said to be w-hyponormal (see [8, 11, 12, 20]). It is known that an

operator T of class A is normaloid, i.e., its spectral radius r(T ) coincides with its
norm ‖T‖. Also, class A operator T are isoloid, i.e., its isolated point of spectrum
σ(T ) is a point spectrum of T . The first aim of this paper is to prove that class
p-wA(s, t) operator is normaloid and isoloid.

Following [19], we say that an operator T ∈ B(H) is finite if

‖I − (TX −XT )‖ ≥ 1

holds for all X ∈ B(H). The above inequality is the starting point of the study
of commutator approximations, a topic with roots in quantum theory [18]. Let B
denote a Banach algebra. Recall that b ∈ B is said to be orthogonal to a ∈ B,
written b ⊥ a, if the inequality

‖a‖ ≤ ‖a+ µb‖

holds for all µ ∈ C. The above definition of orthogonality has natural geometric
meaning, namely, b ⊥ a if and only if the line {a + µb : µ ∈ C} is tangent to the
ball of center zero and radius ‖a‖. If B = H, then the orthogonality means usual
sense 〈a, b〉 = 0.

The generalized derivation δS,T : B(H) → B(H) for S, T ∈ B(H) is defined by
δS,T (X) = SX − XT for X ∈ B(H), and we note δT,T = δT . If the following
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inequality

‖S − (TX −XT )‖ ≥ ‖S‖

holds for all S ∈ ker δT and for all X ∈ B(H), then we say that the range of δT is
orthogonal to the kernel of δT .

Let T ∈ B(H) and let {en} be an orthonormal basis of a Hilbert space H. The
Hilbert-Schmidt norm is given by

‖T‖2 =

( ∞∑
n=1

‖Ten‖2
) 1

2

.

An operator T is said to be a Hilbert-Schmidt operator if ‖T‖2 < ∞ (see [7] for
details). C2(H) denotes a set of all Hilbert-Schmidt operators. For S, T ∈ B(H),
the operator ΓS,T defined as ΓS,T : C2(H) 3 X → SXT ∈ C2(H) has been studied
in [3]. It is known that |Γ| ≤ ‖S‖‖T‖ and (ΓS,T )∗X = S∗XT ∗ = ΓS∗,T∗X. For
more information see [3].

In [19], J. P. Williams proved that normal operators and operators with a com-
pact direct summand are finite. S. Mecheri ([13],[14]) extended Williams’s results
to more general classes of operators containing the classes of hyponormal operators
and paranormal operators and studied range kernel orthogonality for these classes.

The second aim of this paper is to prove that (1) class p-wA(s, t) operators with
0 < s+ t ≤ 1, 0 < p ≤ 1 are finite, and (2) if T ∈ B(H) is class p-wA(s, t), then the
range of generalized derivation δT is orthogonal to its kernel, and (3) if S ∈ B(H)
is class p-wA(s, t) and if T ∗ ∈ B(H) is an invertible class p-wA(t, s) operator and
X is a Hilbert-Schmidt operator such that SX = XT , then S∗X = XT ∗.

2. Main Results

We begin with the definition of generalized Aluthge transformation.

Definition 2.1. Let T = U |T | ∈ B(H) be the polar decomposition of T with
kerU = ker |T |. For s, t > 0, the generalized Aluthge transformation T (s, t) of T is
defined by

T (s, t) = |T |sU |T |t.

Hence, we have

T (s, t)∗ = |T |tU∗|T |s.
In [15], the authors proved that if T ∈ B(H) is class p-wA(s, t), then T (s, t) is
ρp
s+t -hyponormal for any ρ ∈ (0,min{s, t}].

Proposition 2.2. Let T ∈ B(H) be class p-wA(s, t) with 0 < p ≤ 1 and 0 <
s, t, s+ t ≤ 1. Then

|T (s, t)|
2tp
s+t ≥ |T |2tp

and

|T |2sp ≥ |T (s, t)∗|
2sp
s+t .

Hence

(2.1) |T (s, t)|
2ρp
s+t ≥ |T |2ρp ≥ |T (s, t)∗|

2ρp
s+t

for any ρ ∈ (0,min{s, t}].
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A complex number λ is said to be an approximate eigenvalue of T if there exists
a sequence {xn} of unit vectors such that

(T − λ)xn → 0 (n→∞).

Also λ is said to be a joint approximate eigenvalue of T if there exists a sequence
{xn} of unit vectors such that

(T − λ)xn → 0 and (T − λ)∗xn → 0 (n→∞).

We denote the set of all approximate eigenvalues of T by σa(T ) and denote the set
of all joint approximate eigenvalues of T by σja(T ). We say that λ ∈ σ(T ) belongs
to the (Xia’s) residual spectrum σXr (T ) of T if (T − λ)H 6= H and there exists a
positive number c > 0 such that

‖(T − λ)x‖ ≥ c‖x‖ for x ∈ H.
By the definition, σ(T ) is a disjoint union of σa(T ) and σXr (T ).

Recently, the following result was proved by M. Chō, M.H.M. Rashid, K. Tana-
hashi and A. Uchiyama [5].

Proposition 2.3. [5] Let T ∈ B(H) be class p-wA(s, t) with 0 < p ≤ 1 and
0 < s, t, s + t ≤ 1. Let reiθ ∈ C with 0 < r and (T − reiθ)xn → 0. Then
(|T | − r)xn, (U − eiθ)xn, (U − eiθ)∗xn, (T − reiθ)∗xn → 0.

Lemma 2.4. Let T = U |T | ∈ B(H) be the polar decomposition of T with kerU =
ker |T | and let Tα = U |T |α with 0 < α. Then

0 ∈ σa(T )⇐⇒ 0 ∈ σa(Tα),

0 ∈ σXr (T )⇐⇒ 0 ∈ σXr (Tα),

0 ∈ σ(T )⇐⇒ 0 ∈ σ(Tα).

Proof. Let 0 ∈ σa(T ). Then there exist unit vectors xn such that Txn → 0. Then
|T |xn = U∗U |T |xn = U∗Txn → 0. Hence Tαxn = U |T |αxn → 0 and 0 ∈ σa(Tα).
The converse is similar. Let 0 6∈ σ(T ). Then |T | is invertible and U is unitary.
Hence Tα = U |T |α is invertible and 0 6∈ σ(Tα). The converse is similar. Since σ(T )
is a disjoint union of σa(T ) and σXr (T ), the proof is completed. �

Theorem 2.5. If T = U |T | ∈ B(H) is class p-wA(s, t) with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1 and if Tα = U |T |α with s+ t ≤ α, then

σa(Tα) = {rαeiθ | reiθ ∈ σa(T )},(2.2)

σXr (Tα) = {rαeiθ | reiθ ∈ σXr (T )},(2.3)

σ(Tα) = {rαeiθ | reiθ ∈ σ(T )}.(2.4)

Proof. Let T = U |T | be class p-wA(s, t) with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1. Let
λ = reiθ ∈ σa(T )\{0} with 0 < r. Then there exists a sequence {xn} of unit vectors
such that (T−reiθ)xn → 0. Hence (T−reiθ)∗xn → 0, (|T |−r)xn → 0, (U−eiθ)xn →
0 and (U−eiθ)∗xn → 0 by Proposition 2.3. Hence λα := rαeiθ ∈ σja(Tα) ⊂ σa(Tα).
Conversely, let µ = r′eφ ∈ σa(Tα) \ {0} with 0 < r′. Then there exists a sequence
unit vectors {xn} such that (Tα − r′eφ)xn → 0. Since Tα is p-wA(s/α, t/α) and
0 < s/α + t/α ≤ 1, we have that µ = r′eφ ∈ σja(Tα) by Proposition 2.3. Hence

µ1/α = (r′)1/αeiφ ∈ σja(T ) ⊂ σa(T ). Therefore

(2.5) σa(Tα) \ {0} = {rαeiθ | reiθ ∈ σa(T )} \ {0}.
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Hence we have (2.2) by Lemma 2.4.
Next we show (2.3). Let λ = reiθ ∈ σXr (T ) \ {0} with 0 < r. We claim

λα = rαeiθ ∈ σ(Tα).
Assume that λα = rαeiθ 6∈ σ(Tα). Let J be a closed interval [1, α] (or [α, 1]) and

let f be an operator valued continuous function f(x) := Tx − rxeiθ (x ∈ J). Then
f(1) is a semi-Fredholm operator with the Fredholm index

ind(f(1)) = dim(ker(T − reiθ))− dim(ker(T − reiθ)∗) ≤ −1,

and f(α) is invertible (so, it is Fredholm with index 0).
We claim that there exists a real number x0 ∈ J such that f(x0) is not semi-

Fredholm. Assume that there exists no such x ∈ J . Since F (J) = {f(x)|x ∈ J}
is connected in the set of all semi-Fredholm operators of H and every operator
in F (J) has the same Fredholm index, we have that f(1) and f(α) have same
Fredholm index. But this is a contradiction.

Since there exists x0 ∈ J such that f(x0) is not semi-Fredholm, we have

rx0eiθ ∈ σ(Tx0
) \ σXr (Tx0

) = σa(Tx0
).

Since s + t ≤ x0 and 0 < r, we have λ = reiθ ∈ σa(T ) by (2.2). But it is a
contradiction. Hence λα = rαeiθ ∈ σ(Tα).

We claim λα = rαeiθ 6∈ σa(Tα). Assume λα = rαeiθ ∈ σa(Tα). Then λ = reiθ ∈
σa(T ) by (2.2). But it is a contradiction. Hence

{rαeiθ | reiθ ∈ σXr (T ) \ {0}} ⊂ σXr (Tα) \ {0}.

Similarly we have

{(r′)1/αeiθ | r′eiθ ∈ σXr (Tα) \ {0}} ⊂ σXr (T ) \ {0}.

Hence (2.3) holds by Lemma 2.4. Since σ(T ) is a disjoint union of σa(T ) and σXr (T ),
the proof of (2.4) is completed,

�

The following result was proved by [5] if s+ t = 1 and ρ 6= 0.

Theorem 2.6. Let T ∈ B(H) be class p-wA(s, t) with 0 < p ≤ 1 and 0 < s, t, s+t ≤
1. Let reiθ ∈ C with 0 ≤ r. Then

ker(T − reiθ) = ker(T (s, t)− rs+teiθ).

Proof. Assume 0 < r. Let x ∈ ker(T − reiθ). Then |T |x = rx, Ux = eiθx by
Theorem 2.2 of [5]. Hence T (s, t)x = |T |sU |T |tx = rs+teiθx and x ∈ ker(T (s, t) −
rs+teiθ).

Conversely, let x ∈ ker(T (s, t)− rs+teiθ). Since

(2.6) |T (s, t)|
2ρp
s+t ≥ |T |2ρp ≥ |T (s, t)∗|

2ρp
s+t

and T (s, t) is ρp-hyponormal for any ρ ∈ (0,min{s, t}] by Proposition 2.2, we have

T (s, t)∗x = rs+te−iθx

and

|T (s, t)|x = |T (s, t)∗|x = rs+tx

by Theorem 4 of [4]. Then

0 ≤ |T (s, t)|
2ρp
s+t − |T |2ρp ≤ |T (s, t)|

2ρp
s+t − |T (s, t)∗|

2ρp
s+t ,
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and we have

‖
(
|T (s, t)|

2ρp
s+t − |T |2ρp

) 1
2

x‖2 = 〈
(
|T (s, t)|

2ρp
s+t − |T |2ρp

)
x, x〉

≤ 〈
(
|T (s, t)|

2ρp
s+t − |T (s, t)∗|

2ρp
s+t

)
x, x〉 = 0.

Hence
(
|T (s, t)|

2ρp
s+t − |T |2ρp

) 1
2

x = 0 and

|T |2ρpx = |T (s, t)|
2ρp
s+tx = r2ρpx.

This implies |T |x = rx. Since

rs+te−iθx = T (s, t)∗x = |T |tU∗|T |sx = rs|T |tU∗x,

we have

T ∗x = |T |1−t|T |tU∗x = |T |1−trte−iθx = re−iθx.

Then

‖(T − reiθ)x‖2 = ‖Tx‖2 − reiθ〈x, Tx〉 − re−iθ〈Tx, x〉+ r2‖x‖2

= ‖|T |x‖2 − reiθ〈T ∗x, x〉 − re−iθ〈x, T ∗x〉+ r2‖x‖2

= (r2 − r2 − r2 + r2)‖x‖2 = 0.

Hence x ∈ ker(T − reiθ).
Assume r = 0. Let x ∈ ker(T ). Then |T |x = 0 and T (s, t)x = |T |sU |T |tx = 0.
Conversely, let x ∈ ker(T (s, t)). Then |T (s, t)|x = 0 and |T |x = 0 by (2.6). Thus

x ∈ ker(T ).
�

Corollary 2.7. If T is class p-wA(s, t) with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1, then
T is normaloid.

Proof. Since T (s, t) is ρp
s+t -hyponormal and satisfies

(2.7) |T (s, t)|
2ρp
s+t ≥ |T |2ρp ≥ |T (s, t)∗|

2ρp
s+t

for all ρ ∈ (0,min{s, t}] by Proposition 2.2, we have

σ(T (s, t)) = σ(|T |sU |T |t) = σ(U |T |s+t) = {rs+teiθ | reiθ ∈ σ(T )}

by Lemma 6 of [17] and Theorem 2.5. Since T (s, t) is normaloid, we have

‖|T (s, t)|
2ρp
s+t ‖ = ‖|T (s, t)|‖

2ρp
s+t = ‖T (s, t)‖

2ρp
s+t

= r (T (s, t))
2ρp
s+t =

(
r(T )s+t

) 2ρp
s+t = r(T )2ρp,

and

‖T‖2ρp = ‖|T |‖2ρp = ‖|T |2ρp‖ ≤ ‖|T (s, t)|
2ρp
s+t ‖ = r(T )2ρp

by (2.7). Hence ‖T‖ ≤ r(T ) and therefore ‖T‖ = r(T ). �

Corollary 2.8. If T is class p-wA(s, t) with 0 < p ≤ 1 and 0 < s, t, s+ t ≤ 1, then
T is isoloid.
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Proof. Let reiθ be an isolated point of σ(T ) with 0 ≤ r. Since

σ(T (s, t)) = σ(|T |sU |T |t) = σ(U |T |s+t)

by Lemma 6 of [17] and

σ(U |T |s+t) = {rs+teiθ | reiθ ∈ σ(T )}

by Theorem 2.5, we have rs+teiθ is an isolated point of σ(T (s, t)). We remark
T (s, t) is ρp

s+t -hyponormal for any ρ ∈ (0,min{s, t}] by Proposition 2.2.

Assume reiθ = 0. Since T (s, t) is ρp
s+t -hyponormal, we have E0(s, t) = kerT (s, t)

where E0(s, t) is the Riesz idempotent of T (s, t) for 0 ∈ isoσ(T (s, t)) by Theorem
5 of [6]. Hence there exists non-zero vector x ∈ H such that T (s, t)x = 0. Hence
Tx = 0 by (2.7).

Assume reiθ 6= 0. Then

Ers+teiθ (s, t) = ker(T (s, t)− rs+teiθ) = ker((T (s, t)− rs+teiθ)∗)

where Ers+teiθ (s, t) is the Riesz idempotent of T (s, t) for rs+teiθ ∈ isoσ(T (s, t)) by
Theorem 5 of [6]. Hence there exists non-zero vector x ∈ ker(T (s, t)− rs+teiθ) such
that T (s, t)∗x = rs+te−iθx and |T (s, t)|x = |T (s, t)∗|x = rs+tx by Theorem 5 of [6].
Then we have

0 = 〈
(
|T (s, t)|

2ρp
s+t − r2ρp

)
x, x〉 ≥ 〈

(
|T |2ρp − r2ρp

)
x, x〉

≥ 〈
(
|T (s, t)∗|

2ρp
s+t − r2ρp

)
x, x〉 = 0

by (2.7). Hence 〈
(
|T |2ρp − r2rp

)
x, x〉 = 0. Since 0 < ρ ≤ min{s, t} is arbitrary, we

have 〈(|T |ρp − rρp)x, x〉 = 0 by the same arguement. Then

‖ (|T |ρp − rρp)x‖2 = 〈(|T |ρp − rρp)2
x, x〉

= 〈
(
|T |2ρp − r2ρp

)
x, x〉 − 2rρp〈(|T |ρp − rρp)x, x〉 = 0.

Hence (|T |ρp − rρp)x = 0 and this implies |T |x = rx. Then U∗Ux = U∗U |T |r−1x =
|T |r−1x = x. Since rs+te−iθx = T (s, t)∗x = |T |tU∗|T |sx = |T |tU∗rsx, we have
|T |tU∗x = rte−iθx = |T |te−iθx. Hence

(
U∗ − e−iθ

)
x ∈ ker |T |t = ker |T | = kerU .

Hence U
(
U∗ − e−iθ

)
x = 0 and UU∗x = e−iθUx. Then

U∗x = U∗UU∗x = e−iθU∗Ux = e−iθx

because U∗Ux = x. Then

‖
(
U − eiθ

)
x‖2 = 〈

(
U − eiθ

)
x,
(
U − eiθ

)
x〉

= 〈
(
U − eiθ

)∗ (
U − eiθ

)
x, x〉

= 〈U∗Ux− e−iθ
(
U − eiθ

)
x− eiθ

(
U∗ − e−iθ

)
x− x, x〉

= 〈−e−iθx,
(
U − eiθ

)∗
x〉 = 0.

Hence Ux = eiθx. Thus Tx = U |T |x = reiθx and the proof is completed.
�

Theorem 2.9. Let T ∈ B(H) be a class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1 and σ(T ) = {λ}. Then T = λ.
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Proof. Let λ = 0. Since T is normaloid by Corollary 2.7, we have ‖T‖ = r(T ) = 0.
Hence T = 0. Let λ 6= 0. Then S := T/λ is class p-wA(s, t) and σ(S) = {1}. Hence
‖S‖ = r(S) = 1 by Corollary 2.7. Since S−1 is class p-wA(t, s) by [17], we have
‖S−1‖ = r(S−1) = 1 by Corollary 2.7. This implies S = 1. Hence T = λ.

�

Theorem 2.10. Let T ∈ B(H) be a class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1. Then T is finite.

Proof. We may assume T 6= 0. If σ(T ) = {0}, then T = 0 by Theorem 2.9. Hence
σ(T ) 6= {0}. Hence T has an approximate point spectrum µ 6= 0. Hence there exists
a sequence {xn} of unit vectors such that (T − µ)xn → 0. Then (T − µ)∗xn → 0
by Proposition 2.3. Hence σja(T ) 6= ∅ and T ∈ R1 where R1 is a class of all
operators with a one-dimensional reducing subspace. Thus T is finite by Theorem
6 of [19]. �

Remark. The referee pointed us a simple proof of Theorem 2.10, that is, since
T is normaloid by Corollary 2.7, T is finite by Theorem 5 of [19].

Next we consider a generalization of Theorem 2.10; in other words, we show
the range kernel orthogonality of class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1 by the method of [14]. We begin with the following lemma.

Lemma 2.11. If T ∈ B(H) is a class p-wA(s, t) operator with 0 < p ≤ 1 and
0 < s, t, s+ t ≤ 1 and if S is a normal operator such that TS = ST , then we have

‖S − (TX −XT )‖ ≥ |µ|
for all µ ∈ σp(S) and for all X ∈ B(H).

Proof. Let Mµ be an eigen space of µ ∈ σp(S). Since S is normal, the Fuglede-
Putnam theorem ensures TS = ST implies S∗T = ST ∗. Hence Mµ reduces both
T and S. Now we write matrix representations of T, S and X as

T =

(
T1 0
0 T2

)
, S =

(
µ 0
0 S2

)
and X =

(
X1 X2

X3 X4

)
.

on H =Mµ ⊕M⊥µ . Hence we have

S − (TX −XT ) =

(
µ− (T1X1 −X1T1) A

B C

)
.

for some operators A,B and C and so

‖S − (TX −XT )‖ ≥ ‖µ− (T1X1 −X1T1)‖.(2.8)

Since T is a class p-wA(s, t) operator and Mµ is a reducing subspace of T , the
restriction T1 = T |Mµ

is a class p-wA(s, t) operator. Since T1 is finite by Theorem
2.10, we have

‖(T1X1 −X1T1)− µ‖ ≥ ‖T1(
X1

µ
) + (

X1

µ
)T1 − 1‖|µ| ≥ |µ|.(2.9)

From (2.8) and (2.9), we have

‖S − (TX −XT )‖ ≥ |µ|
for all X ∈ B(H). �

The following result due to S.K. Berberian [2] is well known.
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Proposition 2.12. [2] [Berberian technique] Let H be a complex Hilbert space.
Then there exist a Hilbert space K ⊃ H and ψ : B(H) → B(K) such that ψ is an
∗-isometric isomorphism preserving the order satisfying

(i) ψ(T ∗) = ψ(T )∗, ψ(IH) = IK, ψ(αT + βS) = αψ(T ) + βψ(S), ψ(TS) =
ψ(T )ψ(S), ‖ψ(T )‖ = ‖T‖, ψ(T ) ≤ ψ(S) if T ≤ S for all T, S ∈ B(H) and for all
α, β ∈ C.

(ii) σ(T ) = σ(ψ(T )), σa(T ) = σa(ψ(T )) = σp(ψ(T )), where σp(T ) is the point
spectrum of T .

Theorem 2.13. Let T ∈ B(H) be a class p-wA(s, t) operator operator with 0 <
p ≤ 1 and 0 < s, t, s + t ≤ 1, and let S be a normal operator such that TS = ST .
Then

‖S‖ ≤ ‖S − (TX −XT )‖

for all X ∈ B(H).

Proof. By Proposition 2.12, it follows that ψ(S) is normal, ψ(T ) is p-wA(s, t) and
ψ(T )ψ(S) = ψ(S)ψ(T ). Since σp(ψ(S)) = σa(ψ(S)) = σa(S) = σ(S), we have

|µ| ≤ ‖ψ(S)− ψ(T )ψ(X)− ψ(X)ψ(T )‖ = ‖S − (TX −XT )‖

for all µ ∈ σ(S) and for all X ∈ B(H) by Lemma 2.11. Hence

supµ∈σ(S)|µ| = r(S) = ‖S‖ ≤ ‖S − (TX −XT )‖.

This completes the proof. �

Now we prove if S ∈ B(H) is a class p-wA(s, t) operator, T ∗ ∈ B(H) is an
invertible class p-wA(t, s) operator and X ∈ B(H) is a Hilbert-Schmidt operator
such that SX = XT , then S∗X = XT ∗. The following key lemma is necessary for
the proof of theorem 2.15.

Lemma 2.14. Let S, T ∗ ∈ B(H) be class p-wA(s, t) operators with 0 < p ≤ 1
and 0 < s, t, s + t ≤ 1 and let X ∈ B(H) be a Hilbert-Schmidt operator. Then the
operator Γ = ΓS,T : C2(H) 3 X → SXT ∈ C2(H) is class p-wA(s, t).

Proof. Since Γ∗X = S∗XT ∗, |Γ|X = |S|X|T ∗|, |Γ∗|X = |S∗|X|T |, we have((
|Γ∗|t|Γ|2s|Γ∗|t

) tp
s+t − |Γ∗|2tp

)
X

=
(
|S∗|t|S|2s|S∗|t

) tp
s+t X

(
|T |t|T ∗|2t|T |t

) tp
s+t − |S∗|2tpX|T |2tp

=
((
|S∗|t|S|2s|S∗|t

) tp
s+t − |S∗|2tp

)
X
(
|T |t|T ∗|2t|T |t

) tp
s+t

+ |S∗|2tpX
((
|T |t|T ∗|2t|T |t

) tp
s+t − |T |2tp

)
and (

|Γ|2sp −
(
|Γ|s|Γ∗|2t|Γ|s

) sp
s+t

)
X

= |S|2spX|T ∗|2sp −
(
|S|s|S∗|2t|S|s

) sp
s+t X

(
|T ∗|s|T |2t|T ∗|s

) sp
s+t

=
(
|S|2sp −

(
|S|s|S∗|2t|S|s

) sp
s+t

)
X|T ∗|2sp

+
(
|S|s|S∗|2t|S|s

) sp
s+t X

(
|T ∗|2sp −

(
|T ∗|s|T |2t|T ∗|s

) sp
s+t

)
.
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Hence |Γ|2sp− (|Γ|s|Γ∗|2t|Γ|s)
sp
s+t ≥ 0 and (|Γ∗|t|Γ|2t|Γ∗|t)

tp
s+t − |Γ∗|2tp ≥ 0. Thus Γ

is class p-wA(s, t). �

Theorem 2.15. Let S ∈ B(H) be a class p-wA(s, t) operator, T ∗ ∈ B(H) be an
invertible class p-wA(t, s) operator and X ∈ B(H) be a Hilbert-Schmidt operator
such that SX = XT . Then S∗X = XT ∗.

Proof. Let ΓS,T−1 : C2(H) 3 X → SXT−1 ∈ C2(H). Since S and (T ∗)−1 are class
p-wA(s, t) operators by Corollary 2.4 of [15], Lemma 2.14 ensures that ΓS,T−1 is
class p-wA(s, t). Since SX = XT , we have ΓS,T−1X = SXT−1 = X. Applying

Proposition 2.3, it follows that (ΓS,T−1)∗X = X. Hence S∗X(T−1)
∗

= X and
S∗X = XT ∗.

�
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