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Abstract. The pairwise comparisons in AHP (Analytic Hierarchy Process) are made
using a scale list that indicates the importance of one entity over another entity with
respect to a given criteria. Moreover, the pairwise comparison matrix represents the
intensities of the decision maker’s preference between individual pairs of alternatives.
The matrix is usually determined from the 1-point to 9-point scale. Various methods
for paired comparison method have been proposed, making more intuitive and highly
accurate decision making possible. However, the number of pairwise comparisons in-
creases as the number of criteria increases. Therefore, the burden of decision makers
would become heavier.

In this paper, we propose an algorithm for the allocation problem of the burden
and verify the algorithm by using a programming language called Haskell1, which
is specialized in the functional programming. This research contributes not only to
allocation algorithm, but also aids researchers and decision makers in applying the
AHPs effectively.

1 Introduction Pairwise Comparison Method is always used in comparing entities in
pairs, whereby there are more than two entities to evaluate. Because the process of evaluat-
ing is very simple, the pairwise comparison has been broadly used in studies of preference,
precedence and social choice etc.. Methods which utilize pairwise comparison focus on
superiority/inferiority between entities or its differences. Pairwise Comparison Method is
proposed as a typical method in AHP. In 1971, Thomas L. Saaty proposed AHP as a sup-
porting tool for decision making to connect human’s subjective evaluation with reasonable
decision. In AHP, decision maker regards a problem as hierarchy relation of criteria /alter-
natives levels for systematic approaches to problem. As a result, AHP is useful in multiple
criteria problem and in subjective decision-making problem. In real, AHP has been broadly
applied to decision making in business or to consensus building in public works, etc.. How-
ever, AHP uses a great number of pairwise comparisons to calculate numerical weights of
criteria and alternatives in general. While pairwise comparison methods have merits of
simple process and accurate evaluation, many studies have indicated demerits that decision
maker’s comparing burden is heavy if comparing entities increase in Cowan (2001). There
exists similar demerit in AHP because AHP needs to compare with many pairs of criteria
if the number of criteria increases for more exact evaluation. Furthermore, if the number
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of alternatives increases then it is necessary to compare with many pairs of alternatives
for each criterion at a higher level. Han (2014) pointed out the heavy burden of pairwise
comparison in AHP and proposed a method to decrease the value of C.I..

Therefore, in this study we concentrate on the problem of sharing the heavy burden of
pairwise comparison work with multiple decision makers under the assumption of making
consensus building. The problem is transformed into group AHP problem, which is a
necessary consensus building process to solve the problem.

Next, we outline the configuration of the study. Section 2 describes the background and
the objective of the study and treat of past studies. In section 3, we describe basic theory
related to burden sharing of pairwise comparison works. Section 4 considers fair sharing
burden problem and propose efficient solution procedure. Section 5 discusses the conclusion
of the study and subjects in future.

2 Review of Related study During last three decades, many attempts were made in
directing investors so that AHP and Fuzzy are proposed as tools for portfolio optimization
for financial decision making.

Saaty (1980) and Durer et al. (1994) analyzed a complex portfolio system. Furthermore,
to select securities using data envelopment analysis (DEA), Tiryaki (2001) evaluate the
financial performance of companies. Bolster et al. (1995) used AHP to determine investor
suitability, based on age, to select among seven investment securities. The results of their
study showed varying patterns of investment for the different age groups.

Thalheimer and Ali (1979) applied AHP to time series analysis and to portfolio selection
on mutual savings banks to determine the optimal portfolio choice. They opined that an
investor should invest in short-term stocks, risk-less assets, and well diversified investment
to achieve the highest utility from investable fund. Oyatoye et al. (2010) applied AHP
to investment portfolio selection in the banking sector. They underlines the importance
of different criteria, factors and alternatives that are essential to successful investment
decisions in the financial crisis in 2008. We find that each criterion plays an important role
in the portfolio. Nevertheless, the effect of the AHP-portfolio on the total returns is trivial.
Therefore, we determine that the decision maker prefers the government bond to the others.
We also determine that the portfolio generated by AHP accords with the decision maker’s
preference.

3 Background and objective of study For proper number of criteria and alternatives
in case single decision maker, concept of magical number is introduced to be 7 ± 2, as
suggested by Miller (1956).

After that, magical number of 5 to 9 has been changed to number of less than equal to
4 in order to satisfy transitive law as possible in Cowan (2001). In short, proper number of
criteria and alternatives is 3 or 4 in AHP for one decision maker. The number is regarded
as physical limitation of decision maker in this study. Let’s consider an interview test in
entrance examination as an example. If the number of candidates for ranking increases
then candidates will be split into multiple interviewers due to the physical limitation of
interviewer. The ranking is decided by consensus building in meeting. In the above example,
interview time is limited by physical situation of interviewer for one group of candidates.
If proper interview time is given then the necessary numbers of interviewers and interview
rooms are fixed.

In AHP pairwise comparison, decision maker continues to evaluate by referring to scale
list. For example, when he/she considers comparison between alternative A and B, if A is
more important than B then he/she evaluates as corresponding integer from 1 to 9 referred
to scale list. In the contrary case, he/she evaluate as corresponding fraction from 1/1 to 1/9.
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This procedure has different complexity of evaluating from questionaries’ format. In AHP
pairwise comparison, evaluating value is easy to lead into confusion, which results from
violation of transitive law. It is necessary to investigate efficient method such as hybrid
type of using interval and precedence criteria, simultaneously.

In this study, we suppose a decision maker’s physical constraints and focus on sharing
heavy burden of AHP pairwise comparison work with multiple decision makers for improving
process of pairwise comparison. The objective of this study is to propose an efficient solution
procedure to support AHP pairwise comparison with decision maker’s physical limitation
and to investigate what pairwise comparisons should be.

4 Pairwise comparison and combinatorial design theory In this section, we con-
sider a wine-tasting problem as a series of allocation problem. There are 7 wines of different
brands, such as A, B, C, D, E, F, G which are evaluated based on some criteria by an expert
sommelier.

In addition, we suppose a physical constraint of sommelier that they can test only 3
brands. That is, one sommelier can compare in three combinatorial pairs from three types
of wines. The number of all pairs is from seven types of wine. Because one sommelier
can test three pairs of wines, it is necessary to split all pairwise comparisons into seven
sommeliers. All wines are named by A, B, . . ., G and only three types of wines must be
assigned to each sommelier. How to assign all types of wines to seven sommeliers fairly?
The above problem has been studied in the design theory and some methods are proposed
such as cyclic design method. As a result of utilizing cyclic design method, optimal design
is obtained as follows;

{A,B,C}, {A,D,E}, {A,F,G}, {B,D,F}, {B,E,G}, {C,D,G}, {C,E,F}.

In Table 1, we illustrate the above optimal design as matrix, which called incidence
matrix. Titles of row and column are wine and sommelier in matrix, respectively. If there
is a design then 1 is assigned, otherwise 0. As a result, we obtain 7× 7 matrix in Table 1.

Table 1: Incidence matrix of wine and sommelier
wine 1 2 3 4 5 6 7

wine A 1 1 1 0 0 0 0
wine B 1 0 0 1 1 0 0
wine C 1 0 0 0 0 1 1
wine D 0 1 0 1 0 1 0
wine E 0 1 0 0 1 0 1
wine F 0 0 1 1 0 0 1
wine G 0 0 1 0 1 1 0

In incidence matrix, there are three 1 in any column and it means that any sommelier
test three brands of wines. And there are three 1 in any row and it means that any brand
of wines tested by three sommeliers. Furthermore, we know that the matrix reflects all
pairs of wine and sommelier. Partially, the combinatorial design theory traces its origin to
recreational mathematics in middle of 19th century. However, the theory has been activated
and developed by the design of experiments (DOE). It is the start of DOE that R. A. Fisher
studied an agricultural test in Rothamsted in 1919. He introduced terms of plot, treatment,
block and variety to his experiment. These terms and related symbols due to R. A. Fisher
are used as they stand in design theory. For example, symbol of treatment for each plot is
used to denote variety in DOE, which was suggested by Fisher (1937) and Ishii (1972).
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Now we consider representation of design by symbol. The number of treatments is
denoted by v. In the example of wine test, the number of wine brands is denoted by v = 7
and number of sommeliers is b = 7. Next, r denotes the number of blocks for each treatment
and r = 3 in the wine test problem. Symbol k denotes the number of plots for each block
and k = 3 in the wine test problem. Finally, λ denotes the number of blocks in the case
there are any treatment pairs and λ = 1 in the wine test problem. (Table 2)

Table 2: Symbols in wine test problem
plot (k) treatment (v) block (b) r λ

wine test
Sommelier’s
Constraints

Number of
wines

Number of
sommeliers

Number of
Sommeliers
on each wine

One testing

3 7 7 3 1

Under the above setting of notation, (v, b, r, k, λ) is used to describe combinatorial design
problems suggested by Mazur (2010). Note that v, b, r, k must satisfy the following equation:

(1) vC2 = bk = vr.

For instances, wine test problem is expressed by (7, 7, 3, 3, 1) design. The above design prob-
lem is efficiently utilized to sharing heavy burden of comparing work to multiple sommeliers
for the AHP problem constrained by physical limitation of decision maker.

5 Fair sharing problem of burden Suppose the physical limitation k and the number
of wines v are given, the required number of sommeliers b and the number of blocks of each
wine r are determined by (1). Therefore, there exists a fair sharing if and only if

(2)
vC2

k
is integer and v is odd.

In this study, we suppose k = 3, that is, each decision maker can cover with only 3 entities
because of physical limitation. The assumption is based on a minimum number of entities for
testing exactly and there are 3 combinatorial pairwise comparisons. For example, if wines of
{A,B,C} are assigned then decision maker test three pairwise comparison of (A,B), (B,C)
and (A,C). However, there is no meaning to share comparison work when decision maker
test only two wines of {A,B} because there is only one pairwise comparison.

In general, accuracy of AHP pairwise comparison is calculated based on CI (Consistency
Index) and Han (2014) pointed out that the greater the number of options, the greater the
burden of decision-makers by pairwise comparisons.

Table 3 considers wine test problem with 7 wines (v = 7) and 3 physical limitations
(k = 3). There are vC2 = 21 pairwise comparisons for each wine and design of assigning
3 wines to 7 sommeliers (b = 7). In short, sommelier 1 tests 3 wines of {A,B,C} and
compares with 3 pairs of (A,B), (B,C) and (A,C). Figure 4 describes wine test problem
with 9 wines (v = 9) and 3 physical limitations (k = 3). In case 8 wines (v = 8) there
are all pairwise comparisons of vC2 = 8×7

1×2 = 28 and necessary number of sommeliers is
obtained b = 28/3 = 9.33 . . . from the assumption of physical limitation. Therefore, there
is no optimal design because the number of sommeliers is not positive integer.

Now Table 4 describes necessary number of sommeliers and the existence of optimal
design based on situation with 9 wines (v = 9) and 3 physical limitations (k = 3).

Table 5 describes the judgements of existence of design. Column 6, 7 and 8 describe
whether the condition (2) is satified.
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Table 3: All pairwise comparisons and optimal design for fair sharing — Example of 7 wines
constrained to 3 physical limitations

all pairwise comparisons
AB BC CD DE EF FG
AC BD CE DF EG
AD BE CF DG
AE BF CG
AG BG
AF

assignment
sommelier-1:{A,B,C}
sommelier-2:{A,D,E}
sommelier-3:{A,F,G}
sommelier-4:{B,D,F}
sommelier-5:{B,E,G}
sommelier-6:{C,D,G}
sommelier-7:{C,E,F}

Table 4: All pairwise comparisons and optimal design for fair sharing — Example of 9 wines
constrained to 3 physical limitations

all pairwise comparisons
AB BC CD DE EF FG GH HI
AC BD CE DF EG FH GI
AD BE CF DG EH FI
AE BF CG DH EI
AF BG CH DI
AG BH CI
AH BI
AI

assignment
Sommelier-1 :{A,B,C}
Sommelier-2 :{A,D,E}
Sommelier-3 :{A,F,G}
Sommelier-4 :{A,H, I}
Sommelier-5 :{B,D,F}
Sommelier-6 :{B,E,H}
Sommelier-7 :{B,G, I}
Sommelier-8 :{C,D, I}
Sommelier-9 :{C,E,G}
Sommelier-10:{C,F,H}
Sommelier-11:{D,G,H}
Sommelier-12:{E,F, I}

In Figure 1, we list up the optimal design by cyclic method after judging the existence
of design. For detail cyclic method, refer to note of Rosa (1991).

In this study we consider an AHP problem to rank wines. The AHP problem is illustrated
by AHP chart in Figure 1. For simplicity, we suppose that there are wines of less than 10
and one decision maker (sommelier, appraiser) has physical limitation of 3 wines for testing.
For the problem, we propose an efficient algorithm to share heavy testing burden fairly with
multiple tester (sub-sommeliers) based on the combinatorial design theory. It is necessary
to investigate the existence of optimal design and construction of the design for fair burden
sharing. The above AHP problem is revised by add sub-sommeliers layer such as Figure 1.

Solution procedure of fair sharing problem

• Step1: Set the wine test problem to classic AHP chart.

• Step2: Define a physical limitation of decision maker

• Step3: Find necessary number of sub decision makers

• Step4: Apply our algorithm to find optimal design assigning each wine to each sub
decision maker, fairly.
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Table 5: Judgement of existence of design
no. of pairwise
comparison

(t)

required no.
of sommeliers

(b)

Physical
limitation

(k)

no. of wines

(v)

no. of blocks
of each wine

(r)

Final Judgement
(Fairness Condition)

3 1 3 3 1 Passed
6 2 3 4 1.5 Failure
10 3.33 3 5 2 Failure
15 5 3 6 2.5 Failure
21 7 3 7 3 Passed
28 9.33 3 8 3.5 Failure
36 12 3 9 4 Passed
45 15 3 10 4.5 Failure

Selection of Wine

Aroma Color Viscosity Taste Habitate

appraiser(1)

A B C

appraiser(2)

A D E

appraiser(3)

A F G

appraiser(4)

B D F

appraiser(5)

B E G

appraiser(6)

C D G

appraiser(7)

C E F

wine A wine B wine C wine D wine E wine F wine G

Same Weight

Allocation

Merging

Figure 1: Result of assignment in AHP

• Step5: Revise the classic AHP chart by adding layer of sub decision makers

• Step6: Solve the problem by Group AHP

For the above solution procedure, computational complexity and validity are clear based on
theory of combinatorial design and AHP.

6 Theoretical Approach and Methodology Let us consider optimal designs for k = 3
and v = 7. Identifying matrixes which become the same by permutation of their rows, we
have 30 incidence matrixes as in Table 6.

Assume that there are 15 brands of wine (v = 15)

A,B,C,D,E,F,G,H, I, J,K,L,M,N,O.
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Table 6: All incidence matrixes for the case k = 3 and v = 7



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0





1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1





1 1 1 0 0 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
0 1 0 1 1 0 0
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0




1 1 1 0 0 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 1 0 0
0 0 1 0 0 1 1





1 1 1 0 0 0 0
1 0 0 1 0 0 1
1 0 0 0 1 1 0
0 1 0 1 1 0 0
0 1 0 0 0 1 1
0 0 1 1 0 1 0
0 0 1 0 1 0 1





1 1 1 0 0 0 0
1 0 0 1 0 0 1
1 0 0 0 1 1 0
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 1 0 0
0 0 1 0 0 1 1




1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 0 0 1 1
0 1 1 0 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0





1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 0 0 1 1
0 1 1 0 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1





1 1 0 1 0 0 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1
0 1 1 0 1 0 0
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0




1 1 0 1 0 0 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1
0 1 1 0 0 0 1
0 1 0 0 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 1 1





1 1 0 1 0 0 0
1 0 1 0 0 0 1
1 0 0 0 1 1 0
0 1 1 0 1 0 0
0 1 0 0 0 1 1
0 0 1 1 0 1 0
0 0 0 1 1 0 1





1 1 0 1 0 0 0
1 0 1 0 0 0 1
1 0 0 0 1 1 0
0 1 1 0 0 1 0
0 1 0 0 1 0 1
0 0 1 1 1 0 0
0 0 0 1 0 1 1




1 1 0 0 1 0 0
1 0 1 1 0 0 0
1 0 0 0 0 1 1
0 1 1 0 0 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0





1 1 0 0 1 0 0
1 0 1 1 0 0 0
1 0 0 0 0 1 1
0 1 1 0 0 0 1
0 1 0 1 0 1 0
0 0 1 0 1 1 0
0 0 0 1 1 0 1





1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 1 1 0 0 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0




1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 1 0 0 0 1
0 1 0 1 0 1 0
0 0 1 1 1 0 0
0 0 0 0 1 1 1





1 1 0 0 1 0 0
1 0 1 0 0 0 1
1 0 0 1 0 1 0
0 1 1 1 0 0 0
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1





1 1 0 0 1 0 0
1 0 1 0 0 0 1
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 1 0 1 0 0 1
0 0 1 1 1 0 0
0 0 0 0 1 1 1




1 1 0 0 0 1 0
1 0 1 1 0 0 0
1 0 0 0 1 0 1
0 1 1 0 1 0 0
0 1 0 1 0 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0





1 1 0 0 0 1 0
1 0 1 1 0 0 0
1 0 0 0 1 0 1
0 1 1 0 0 0 1
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1





1 1 0 0 0 1 0
1 0 1 0 1 0 0
1 0 0 1 0 0 1
0 1 1 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0




1 1 0 0 0 1 0
1 0 1 0 1 0 0
1 0 0 1 0 0 1
0 1 1 0 0 0 1
0 1 0 1 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 1





1 1 0 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
0 1 1 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1





1 1 0 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
0 1 1 0 1 0 0
0 1 0 1 0 0 1
0 0 1 1 0 1 0
0 0 0 0 1 1 1




1 1 0 0 0 0 1
1 0 1 1 0 0 0
1 0 0 0 1 1 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1





1 1 0 0 0 0 1
1 0 1 1 0 0 0
1 0 0 0 1 1 0
0 1 1 0 0 1 0
0 1 0 1 1 0 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1





1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 0 1 0 1 0
0 1 1 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1




1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 1 0 1 1 0 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1





1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 1 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1





1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1


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Since bk = vC2 = 105, we needs 35 sommeliers. An example of the optimal designs is

{A,B,C}, {A,D,E}, {A,F,G}, {A,H, I}, {A, J,K}, {A,L,M}, {A,N,O},
{B,D,F}, {B,E,G}, {B,H, J}, {B, I,K}, {B,L,N}, {B,M,O}, {C,D,G},
{C,E,F}, {C,H,K}, {C, I, J}, {C,L,O}, {C,M,N}, {D,H,L}, {D, I,M},
{D, J,N}, {D,K,O}, {E,H,M}, {E, I,L}, {E, J,O}, {E,K,N}, {F,H,N},
{F, I,O}, {F, J,L}, {F,K,M}, {G,H,O}, {G, I,N}, {G, J,M}, {G,K,L}

and the corresponding incidence matrix is shown in Table 7.
It is very troublesome to do this procedure manually. We intend to apply these matrixes

to results of questionnaires and verify the effectiveness of our methods by simulating allo-
cation of the decision-makers. Threfore, we develop a computer program for this purpose.

In this section, we only consider the cases where v and k satisfy the fair sharing condition
(2).

Let W be a finite set with #(W ) = v and b = vC2

k . Optimal design D of W is a set of
subsets of W , such that

1. #(D) = b,

2. #(X) = k for all X ∈ D,

3. #(X ∩ Y ) ≤ 1 for all X, Y ∈ D, X ̸= Y .

Let W = {X|X ⊂ W,#(X) = k}, then, the set of all optimal designs is defined by

∆ = {D|D ⊂ W,#(D) = b,#(X ∩ Y ) ≤ 1 for all X,Y ∈ D, X ̸= Y },

which we would like to enumerate as a sequence of incidence matrixes. However, this
definition is not suitable for computer algorithms. So we have to rebuild ∆ recursively.

We proceed with our argument on more general assumptions. Suppose a finite set
U = {α, β, . . .} and a symmetric relation ∼ between two elements of U are given.

For a nonnegative integer a and a subset S ⊂ U , we define ∆(S, a) by

∆(S, a) = {A|A ⊂ S,#(A) = a, α ∼ β for all α, β ∈ A,α ̸= β}.

Notice that

∆(S, 0) = {∅}

and if #(S) < a

∆(S, a) = ∅.

Now we assume S ̸= ∅ and a > 0. Choosing α ∈ S arbitrarily, ∆(S, a) is expressed as a
disjoint union as follows:

(3) ∆(S, a) = {A|A ∈ ∆(S, a), A ∋ α} ∪ {A|A ∈ ∆(S, a), A ̸∋ α}.

For a subset T ⊂ U , we define by α ∼ T the subset

α ∼ T = {β|β ∈ T, β ∼ α} .

SangHeon Han, Tsutomu Hiroshima, Toru Yarita
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Table 7: An example of incidence matrix for the case k = 3 and v = 15

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0


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Then, the first term of the right hand side of (3) is given by

{A|A ∈ ∆(S, a), A ∋ α} = {{α} ∪B|B ∈ ∆(α ∼ (S \ {α}) , a− 1)} ,

since
{A \ {α}|A ∈ ∆(S, a), A ∋ α} = ∆(α ∼ (S \ {α}) , a− 1) .

For the second term of the right hand side of (3), we have

{A|A ∈ ∆(S, a), A ̸∋ α} = ∆(S \ {α}, a) ,

and accordingly

∆(S, a) = {{α} ∪B|B ∈ ∆(α ∼ (S \ {α}) , a− 1)} ∪∆(S \ {α}, a) .

Now we obtain

(4) ∆(S, a) =


{∅} if a = 0,

∅ if #(S) < a,

{{α} ∪B|B ∈ ∆(α ∼ (S \ {α}) , a− 1)} ∪∆(S \ {α}, a) otherwise.

By using the programming language Haskell, the above construction (4) can be easily
translated to a program code as below. That is the reason why we adopt Haskell.

de l t a : : [ Int ] −> Int −> [ [ Int ] ]
d e l t a 0 = [ [ ] ]
d e l t a ss@ ( alpha : sa ) a

| length s s < a = [ ]
| otherwise = (map ( alpha : ) $ de l t a ( alpha \˜ sa ) ( a − 1) )

++
( de l t a sa a )

We present the whole code in Appendix.

7 Concluding Remarks In this study we considered the case where one decision maker
cannot compare all entities due to the heavy burden of pairwise comparison work. The
necessity to allocate the burden to multiple decision makers leads us to the group-AHP
problem. To solve this problem, we proposed an algorithm to generate an incidence matrix
based on combinatorial design theory. For simplicity, our algorithm covers limited cases in
which the fair sharing condition is satisfied. We will discuss more general cases with real
data and verify the efficiency of our method in our further research.

A Source Code Now we present the whole source code.

module Main where

import System . Environment (getArgs )
import Data .Array ( ( ! ) , array , listArray )

generateVector s : : Int −> Int −> [ [ Int ] ]
g enerateVector s v k

| k == 0 = [ replicate v 0 ]
| v == k = [ replicate v 1 ]
| v > k = (map ( 1 : ) $ generateVector s ( v − 1) (k − 1) )

++

SangHeon Han, Tsutomu Hiroshima, Toru Yarita
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(map ( 0 : ) $ generateVector s ( v − 1) k )
| otherwise = error ” generateVector s ”

r e l a t i onR : : [ Int ] −> [ Int ] −> Bool
r e l a t i onR w w’ = (sum $ zipWith (∗ ) w w’ ) <= 1

takeTheFirstFromDelta : : Int −> Int −> Int −> [ [ Int ] ]
takeTheFirstFromDelta b v k

= indexesToVectors $ head $ de l t a indexSet b
where

vec to r s = generateVector s v k
l = length vec t o r s
indexSet = [1 . . l ]
indexedVectors = listArray (1 , l ) v e c t o r s
indexesToVectors = map ( indexedVectors ! )

matrixOfR = array (1 , l )
[ (n , q n) | n <− [ 1 . . l ] ]

where
q n = array (n + 1 , l )

[ (m, r n m) | m <− [ n + 1 . . l ] ]
r n m = re la t i onR

( indexedVectors ! n )
( indexedVectors ! m)

a \˜ s = f i l t e r (matrixOfR ! a ! ) s

d e l t a : : [ Int ] −> Int −> [ [ Int ] ]
d e l t a 0 = [ [ ] ]
d e l t a ss@ ( alpha : sa ) a

| length s s < a = [ ]
| otherwise = (map ( alpha : ) $ de l t a ( alpha \˜ sa ) ( a − 1) )

++
( de l t a sa a )

de l t a [ ] = [ ]

readArgs : : [ String ] −> ( Int , Int , Int )
readArgs = p . map read

where
p [ ] = (1 , 3 , 3)
p [ v ] = p [ v , 3 ]
p [ v , k ]

| m == 0 && n == 0 = (b , v , k )
| otherwise = error ” readArgs ”
where

c = v∗(v−1) ‘quot ‘ 2
(b ,m) = c ‘quotRem‘ k
n = c ‘rem ‘ v

p = error ” readArgs ”

main : : IO ( )
main = do

(b , v , k ) <− fmap readArgs getArgs
let s = takeTheFirstFromDelta b v k

A NEW APPROACH TO REDUCE THE BURDEN OF PAIRWISE-COMPARISON ON THE AHP
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t = foldr1 (zipWith (+)) s
putStrLn $ unlines $ map show s
putStrLn $ show t

Figure 2: Computed result of our algorithm by haskell
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