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Abstract. Recently the geometric operator mean is extended to the multi-variable
one; the Karcher mean. Including these multivarible means, we discuss a construction
method by the Moore-Penrose inverse. The key concept is the orthogonality of operator
means.

1 Introduction. Let m be an operator mean in the sense of Kubo-Ando [12] which
is defined by a positive operator monotone function fm on the half interval (0,∞) with
fm(1) = 1;

Am B = A
1
2 fm

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B on a Hilbert space. Thus every operator mean
can be constructed by a numerical function fm(x) = 1m x which is called the representing
function of m. Among common properties for operator means, we pay attention to the
orthogonality:

(A1 ⊕ A2)m (B1 ⊕ B2) = (A1 m B1) ⊕ (A2 m B2)

and the transformer inequality:

T ∗(Am B)T ≤ (T ∗AT )m (T ∗BT ).

Recall that the Karcher mean X = G(ωj ; Aj) for invertible Aj ≥ 0 with a weight {ωj} is
defined as a unique solution of the Karcher equation [11, 13, 14]:∑

j

ωjS(X|Aj) =
∑

j

ωjX
1
2 log

(
X− 1

2 AjX
− 1

2

)
X

1
2 = 0.

We extend it to non-invertible case in [11], which is an extension of the weighted geo-
metric mean. Moreover in [11], we extended such multi-variable operator mean M(Aj) =
M(ωj ; A1, ...., An) including the Karcher mean: Define an (n-variable) general operator mean
M(ωj ; Aj) as an n-ary operation on positive invertible operators on H satisfying the follow-
ing properties where each weight ωj is assumed to be positive here:

(M1) transformer equality: T ∗ M(ωj ; Aj)T = M(ωj ; T ∗AjT ) for all invertible T .

(M1’) homogeneity: M(ωj ; tAj) = t M(ωj ;Aj) for t > 0.

(M2) normalization: M(ωj ; A) = A.

(M3) monotonicity: Aj ≤ Bj implies M(ωj ;Aj) ≤ M(ωj ; Bj).
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(M4) sub-additivity: M(ωj ; Aj + Bj) ≥ M(ωj ; Aj) + M(ωj ;Bj).
(M5) adjoint sub-additivity: M(ωj ;Aj : Bj) ≤ M(ωj ; Aj) : M(ωj ; Bj).

(M6) orthogonality: M(ωj ;
⊕

m A
(m)
j ) =

⊕
m M(ωj ;A

(m)
j ).

Here : stands for the parallel sum defined by

A : B =
(
A−1 + B−1

)−1
.

In addition, we can define

M(ωj ; Aj) = s-lim
ε→0

M(ωj ; (Aj + ε))

for (non-invertible) positive operators Aj where the above properties preserve, which in-
cludes our extended Karcher mean. Also for t ∈ [0, 1], note that

(M7) joint concavity: M(ωj ; (1 − t)Aj + tBj) ≤ (1 − t)M(ωj ; Aj) + t M(ωj ; Bj)

follows from the sub-additivity and homogeneity. Here we pay attention to the orthogonality
for operator means as in the below.

On the other hand, for the parallel sum (the half of the harmonic mean), rephrasing
them into the harmonic mean, we have

Ah B = A

(
A + B

2

)†

B

if A + B has the generalized inverse [1]. Incidentally the Moore-Penrose generalized inverse
† for operators was discussed in [9, 15]: It is known that if ran X is closed, then ran X∗,
ranXX∗ and ranX∗X are also closed, and (X∗X)† =

(
X∗X

∣∣
ran X∗

)−1 ⊕ 0(ran X∗)⊥ and
X† = (X∗X)†X∗ = X∗(XX∗)†.

In this note, we observe operator means from the viewpoint of the generalized inverse,
which includes our extended version of the Karcher mean. We discuss the constructing
formulae for operator means using the Moore-Penrose inverses if they exist:

A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2 or B

1
2 (B†

1
2 AB†

1
2 m I)B

1
2 .

Our equality condition [6] for the transformer iequality shows that it represents the operator
mean A m B if kerA ⊂ ker B or kerA ⊃ ker B respectively. We also show that they are not
less than the original one if the kernel of the mean Am B includes those for A and B.

2 Transformer equality. In [6], we gave an equality condition for transformer inequal-
ity for certain means:

Theorem F . If ker T ∗ ⊂ kerA ∩ kerB, then T ∗(Am B)T = (T ∗AT )m (T ∗BT ) for an
operator mean m.

This assures the Izumino construction of operator means: Let R = (A + B)
1
2 , then,

there exist the derivatives D and E with A
1
2 = RD and B

1
2 = RE by the range inclusion

theorem in [3, 4]. So we have D∗D + E∗E = Iran R and an operator mean is reduced into
the commutative case [6]:

A m B = R(D∗D m E∗E)R,

which is a space-free version of the Pusz-Woronowics means [16, 17].
But the original proof of the above was based on the integral representation of operator

means, so that we cannot extend the equality in Theorem F to multi-variable means. Under
the closedness of the ranges for operators, we show the equality for our extended (multi-
variable) operator means including the Karcher operator mean:
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Theorem 1. Let M(Aj) = M(ωj ; A1, .., An) be an operator mean (satisfying the orthogonality).
If an operator T on H satisfies ker T ∗ ⊂

∩
j kerAj and ranT is closed, then the transformer

equality holds:
T ∗ M(Aj)T = M(T ∗AjT ).

Proof. Note that ranT ∗ is also closed. Recall that P = TT † and Q = T †T are projections
onto ranT and ranT ∗ respectively, see e.g. [9, 15]. By the assumption ran T⊥ = kerT ∗ ⊂
ker Aj , we have PAjP = Aj for all j. Also QT ∗AjTQ = T ∗AjT implies QM(T ∗AjT )Q =
M(T ∗AjT ) for all j by the orthogonality. Then we have

T ∗ M(Aj)T ≤ M(T ∗AjT ) = Q M(TAjT )Q = T ∗T †∗ M(T ∗AjT )T †T

≤ T ∗ M
(
T †∗T ∗AjTT †)T = T ∗ M(PAjP )T = T ∗ M(Aj)T,

which shows the required equality.

Remark. The assumption ker T ∗ ⊂
∩

j ker Aj in the above is equivalent to ranT ⊃
∨

j ranAj

under the closedness of operators.

Corollary 2. Let m be an (2-variable) operator mean. If kerA ⊂ kerB and ranA is
closed, then

Am B = A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2 = A

1
2 fm(A†

1
2 BA†

1
2 )A

1
2 .

Remark. Contrastively we have

A m B = B
1
2 (B†

1
2 AB†

1
2 m I)B

1
2

if kerB ⊂ kerA and ranB is closed.

3 Means satisfying the kernel condition. Initiated by [5], we observe the kernel
conditions for operator means, see also [7, 8]:

kerA m B ⊃ kerA ∨ kerB (1)

if and only if 1m0 = 0m1 = 0. The geometric or harmonic mean satisfies this, while the
arithmetic mean does not. In [11], we showed kerA#B = kerA ∨ ker B. Moreover, based
on this property, we introduced the Karcher mean X = G(ωj ; Aj) for non-invertible positive
operators Aj under this kernel condition: kerX = ∨j ker Aj .

For invertible operators, we have two expressions:

Am B = A
1
2 (I m A− 1

2 BA− 1
2 )A

1
2 = B

1
2 (B− 1

2 AB− 1
2 m I)B

1
2 . (2)

Then we discuss the means where the inverses in (2) are exchanged into the Moore-Penrose
inverse:

Theorem 3. Let m be an operator mean satisfying the above kernel condition (1). If ranA
(resp. ranB) is closed, then

Am B ≤ A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2

(
resp. ≤ B

1
2 (B†

1
2 AB†

1
2 m I)B

1
2

)
.
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Proof. Let P be the projections onto (kerA)⊥, that is, P = A†A = A† 1
2 A

1
2 . The kernel

condition shows ranA m B ⊂ ranP and hence Theorem 1 implies

Am B = P (A m B)P

≤ (PAP )m (PBP ) = Am(A
1
2 A† 1

2 BA† 1
2 A

1
2 )

= A
1
2

(
P m(A† 1

2 AA† 1
2 )

)
A

1
2 ≤ A

1
2

(
I m(A† 1

2 BA† 1
2 )

)
A

1
2 .

Similarly we have the other case.

Remark. The kernel condition (1) is necessary in the above theorem. In fact, the arithmetic
mean A∇B = (A + B)/2 does not satisfy (1). Let P (= B

1
2 ) be a projection that does not

commute with A. Then PAP 6≥ A, so that

P (P †AP †∇I)P = PAP∇P =
PAP + P

2
6≥ A + P

2
= A∇B.

The difference in the inequality in the above theorem is somewhat larger than we ex-
pected as in the following examples:

Example. For 0 < a < 1, we define a positive-definite matrix A and a projection P： Put

P =
(

1 0
0 0

)
, A =

(
1 a
a 1

)2

=
(

1 + a2 2a
2a 1 + a2

)
.

Then we have A− 1
2 = A† 1

2 =
1

1 − a2

(
1 −a
−a 1

)
and

P
1
2

√
P † 1

2 AP † 1
2 P

1
2 = P

√
PAPP =

√
1 + a2P (≥ P ).

On the other hand,

A† 1
2 PA† 1

2 =
1

(1 − a2)2

(
1 −a
−a a2

)
=

1 + a2

(1 − a2)2
Q,

where Q =
1

1 + a2

(
1 −a
−a a2

)
is a rank 1 projection. Hence we have

A#P = P#A = A
1
2

√
A† 1

2 PA† 1
2 A

1
2 =

√
1 + a2

1 − a2
A

1
2 QA

1
2 =

1 − a2

√
1 + a2

P (≤ P ).

These differences are under the kernel inclusion as in Corollary 2.

To see a general case, we put B =
(

1 b
b 1

)2

for 0 < b < 1. For X = P ⊕ B, Y = A ⊕ P ,

the orthogonality shows

X#Y = (P#A) ⊕ (B#P ) =
1 − a2

√
1 + a2

P ⊕ 1 − b2

√
1 + b2

P.

Thus we have

X#Y ≤ P ⊕ 1 − b2

√
1 + b2

P ≡ M1 and X#Y ≤ 1 − a2

√
1 + a2

P ⊕ P ≡ M2,
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while

X
1
2

√
X† 1

2 Y X† 1
2 X

1
2 =

√
1 + a2P ⊕ 1 − b2

√
1 + b2

P ≥ M1 and

Y
1
2

√
Y † 1

2 XY † 1
2 Y

1
2 =

1 − a2

√
1 + a2

P ⊕
√

1 + b2P ≥ M2.
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