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ABSTRACT. Let ag,a1,...,any be complex numbers. We consider the
Toeplitz matrix T, where the (i, j)-th component is a;—; if ¢ > j and
aj—; if i < j. If Ty is positive and |ag| = |a1| # 0, then ag, as, ...,an can
be represented in terms of ag and a1 and there exists a unique positive
definite sequence f such that f(i) = a; for any ¢ = 0,1,2,..., N. In
particular, it holds |f(n)| = |ao| for any n. We also provides some
applications related to this fact.

1 Introduction

Let N={0,1,2,...} and f is a complex-valued function on N. An n x n matrix
A = (a;;) with complex entries is said to be positive and it is denoted by A > 0
if

Z mozjaij 2 0 for all 1,009, ...,0, € C.

ij=1
It is well-known that A > 0 if and only if there exists a k x n matrix B in
which A = B*B for some k£ € N\ {0}. We call that f is a positive definite
sequence if, for any positive integer N, the following (N +1) x (N +1) Toeplitz
matrix

F0) (1)
)

FN) - (1) f(0)

is positive, where the (7, j)-th component of Ty is f(i—j) ifi > j and f(j —7)
if i < j. We remark that the positivity of T implies |f(:)| < f(0) for any
1=1,2,...,N.
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For any n € N and # € R, the function f given by f(n) = "Vl is a
positive definite sequence. In fact, for any positive integer N, Ty is positive
since
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This function is a typical example of positive definite sequence.
Our result is as follows:

Theorem 1. Let N > 1. If |ag| = |a1| # 0 and

aO all DY aN
aq Qo
T = >0,
ay
aN DY a/l ao

then there exists a unique positive definite sequence f such that
f@@)=a;  foranyi=0,1,..., N.
Moreover, it holds

= f(0) (m)" (in particular, |f(n)| = f(0)) for any n € N\ {0}.

fln 7(0)
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2 Proof of Theorem and Application

— =2l

1
Let T = | « where «, 3,7 are complex numbers and |o| = 1. The
8

Py =0

following fact is known and is used in this paper.

(1) T > 0 if and only if |5] <1 and v = af.

The statement (f) for operators had been considered in [6], and we extend
as follows:



Lemma 2. Let u,v,w be bounded linear operators on a Hilbert space H and
u isometric (that is, u*u = 1). Then

I v w*
T=|(u 1 v | >0ifand onlyif||v|| <1 and w = vu.
w v 1

Proof. Assume ||v|| <1 and w = vu. Since (1 — uu*)* =1 — uu*, we have

v(1 — uu®)

1 0
T=(uw]@1 v wo)+ | I—w | (0 1—uu (1-uu)ov*)
vu
0 0
0
0

0
+ 0 0 > 0.
0 1—ov*

*

Y > is positive, we have [|v|| < 1.

Conversely, Assume 7" > 0. Since (11) |

For any vectors x,y € H, we have

x T w*y x
0< <T —ux |, | —ux > = < vy , | —ux >
Y Y WL — VUL + Y Y

= (w'y, z) + (vV'y, —uzx) + (wr —vur + y,y)
= (y, wr — vuzx) + (wr — vur +y,y).
Set y = —(wz — vux), then —||wx — vuz||* > 0. This implies w = vu. O]

Proof of Theorem 1. By the assumption, we have ay > 0. We want to
show that a; = ag(a;/ag)’ for any i = 1,2, ..., N.
For each i = 2,3, ..., N, the matrix

1 (a/ao) (ai/ao) ]
Cll/ao 1 (ai_l/ao) = a_Eg’iTEék’i > 0,
ai/ap  ai-1/ag 1 0

where Ej; is a 3 x (N + 1) matrix and its (a, b)-th component is

o )1 s if(ab)=(11),(2,2),6,9+1)
“® o ; otherwise

Since |ai/ag| = 1, we have a;/ag = (ai/ao)(a;—1a9) for any i = 2,3,..., N
by (T). This implies a; = ag(ai/ag)’ for all i = 1,2, ..., N. By setting f(n) =



ag(ay/ap)™ for any n € N and continuing the above argument to the larger
number than N, then f is a positive definite sequence with f(i) = a; for any
1=20,1,...,N and

f(n) = f(0) (%)” for any n € N'\ {0}.

We assume that there exists another positive definite sequence g with
g(i) = a; for any i = 0,1,..., N. For M > N, we then have

g9(0) g(1) -+ g(M)
9(1> 9(0) . >0
gM) -+ g(1) g(0)

Since f(0) = g(0), f(1) = (1) and [g(0)| = |g(1)[, we have
_ a0 (fOYY 2 o) (FOYY
s0n) =90 (23 = ro) (55) " = ron)
by the above argument. So, f = g. O]

Corollary 3. Let f be a positive definite sequence. If there exists a positive
integer K in which f(0) = |f(K)|, then

f(nK) = f(0) (%) foranyn=1,2,....

Proof. We may assume that f(0) > 0. Define the (n + 1) x (nK + 1) matrix
F,. x whose (a,b)-th component is

1 ;if(a,b)=(G+1,iK+1)fori=0,1,...,n
fa,b = . .
0 ; otherwise

Then we have




and this matrix is equal to

FE) o fOK) )
Hence, by Theorem 1 we have

) = 50) (580)

]

In the setting of Corollary 3 we have f(0) = |[f(nK)| for all n € N.
In general, the sequence {|f(n)|} is not necessarily constant. For instance,
consider the function f(n) = e3™V=1 Tt is clear that f and f are positive
definite sequences. Then, so is

o) = LI _ o (2”7”) ,

here we have

1 ;ifn=0,3,6,9,...
gn)=9 | .. :
—3 ;ifn=1,245/78,..

Let G be a group and e the unit of G. We say a complex-valued function ¢
on G is positive definite if for any positive integer N and for any g1, g2, ..., gn €
G, the following N x N matrix

o9y 191) o(g5 191) e so(gfvigl)
091 92) (92 g2) -+ @9y 92)

. . , ) > 0.
e(gr'gn) elg3'gn) - wlgn'on)

By definition, p(e) > 0, p(g7') = ©(g), and |o(g)] < p(e) and for any g € G.

Corollary 4. Let ¢ be a positive definite function on G with p(e) # 0 and K
a subgroup of T ={z € C| |z| = 1}. Then

H = gGGMGK
p(e)

1s a subgroup of G and the function P OL4 18 multiplicative on H.




Proof. Tt is obvious that e € H and if ¢ € H, then ¢~ € H. Given g,h € H,
then by the assumption we have that the following matrix

ple)  wlgh) w((gh)™) ple) ©lg) »lgh)
wlg)  wlg'e)  wllgh)'g) | =| wlg) wle) @) | >0
w(gh) »(g ' (gh)) ¢((gh)~"(gh)) p(gh) @(h)  ¢le)
By (), we have
plgh) _ ¢lg) o(h)
ple)  le) ple)
It follows that ¢(gh)/p(e) € K. That is, gh € H. O

Let ¢ be a positive definite sequence, that is, a positive definite function
on Z. By Bochner’s theorem (or Herglotz’s theorem [5]), there exists a positive
finite measure ppon T = {z € C | |z| = 1} which is identified by [0,1)(Z R/Z)
such that

1
o(n) = / 2™V (x) for all n € Z.
0

It is known that

. 1
p{0) = lim o D7 ().

n=—

To see this, it suffices to show that

PO =0 = Jim e 37 on) =0

n—=——

by considering p — p({0})dg instead of p, where &y is a Dirac measure at 0.
Since |sinz| < |z| and 2 < sinz for z € [0,%], we have

1 N 1
2/ —1nx
g e du(z
2N +1 n:N/O Hw)

1 .
1 sin(2N + 1)mx
= d
/0 2N +1 sinx ()
5
S \/
-5

1 sin(2N + 1)z J
2N +1 sin rx
1-6
+f
5
M((_57 5)) +

) |

()

1 sin(2N + )7z
2N +1 sinmx

dp(x)

<

NN

1
(2N + 1) sin WéM(T)'



for any 6 € (0,3). Hence, limsupy_, . SN SN @(n)‘ < Zu((=4,9)).
Since ¢ is arbitrary and p({0}) = 0, then we have limy ﬁ SN veln) =
0.

Proposition 5. Let ¢ be a positive definite function on Z. If lim,, . @(n) =
©(0), then p(n) = ¢(0) for all n € Z.

Proof. Let ¢(n) = f01 2™V () (n € Z). Then, (0) = u(T). Also, we
have 1u({0}) = limy o0 5577 SN v @(n) = ¢(0). This means that p is a non-

negative scalar multiple of Dirac measure at 0 and so we have ¢(n) = ¢(0)
for all n € Z. O

Corollary 6. Let ¢ be a positive definite function on a group G and G is
generated by {g; | 1 € I}. If

lim p(g') = p(e) foralliel,

then ¢(g) = p(e) for all g € G.

Proof. We may assume that ¢(e) # 0. By assumption and since lim,, o, ¢(g1") =
©(e), we have p(g") = ¢(e) for all n by Proposition 5. In particular ¢(g;) =

o(e) for all i € I. Set
#lg)
o(e) € {1}}.

Using Corollary 4, we conclude that H is a subgroup of GG. Since G is generated
by {g; | i € I} and g; € H for any i € I, we have p(g) = p(e) forallg € G. O

H:{QEG

Remark. Let ¢ be a positive definite function on the additive group R.
We assume that the sequence {¢(nx)}5°, converges to ¢(0) for any = € R.
If ¢ is continuous, then there exists a finite positive measure g on R such
that () = [peV~du(t) (v € R) by Bochner’s theorem. We can prove
o(x) = ¢(0) by using the fact

u({0}) = lim — / o(@)dpu(x)

T—oo 2T _T

(see [3]:Appendices A.4). Without the assumption of the continuity of ¢, we
can also have p(z) = ¢(0) by Corollary 6.
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