POSITIVE DEFINITE SEQUENCES WITH CONSTANT MODULUS

Imam Nugraha Albania and Masaru Nagisa

May 1, 2017

Abstract

Let $a_{0}, a_{1}, \ldots, a_{N}$ be complex numbers. We consider the Toeplitz matrix T_{N}, where the (i, j)-th component is a_{i-j} if $i \geq j$ and $\overline{a_{j-i}}$ if $i<j$. If T_{N} is positive and $\left|a_{0}\right|=\left|a_{1}\right| \neq 0$, then $a_{2}, a_{3}, \ldots, a_{N}$ can be represented in terms of a_{0} and a_{1} and there exists a unique positive definite sequence f such that $f(i)=a_{i}$ for any $i=0,1,2, \ldots, N$. In particular, it holds $|f(n)|=\left|a_{0}\right|$ for any n. We also provides some applications related to this fact.

1 Introduction

Let $\mathbb{N}=\{0,1,2, \ldots\}$ and f is a complex-valued function on \mathbb{N}. An $n \times n$ matrix $A=\left(a_{i j}\right)$ with complex entries is said to be positive and it is denoted by $A \geq 0$ if

$$
\sum_{i, j=1}^{n} \overline{\alpha_{i}} \alpha_{j} a_{i j} \geq 0 \text { for all } \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}
$$

It is well-known that $A \geq 0$ if and only if there exists a $k \times n$ matrix B in which $A=B^{*} B$ for some $k \in \mathbb{N} \backslash\{0\}$. We call that f is a positive definite sequence if, for any positive integer N, the following $(N+1) \times(N+1)$ Toeplitz matrix

$$
T_{N}=\left(\begin{array}{cccc}
f(0) & \overline{f(1)} & \ldots & \overline{f(N)} \\
f(1) & f(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \overline{f(1)} \\
f(N) & \cdots & f(1) & f(0)
\end{array}\right)
$$

is positive, where the (i, j)-th component of T_{N} is $f(i-j)$ if $i \geq j$ and $\overline{f(j-i)}$ if $i<j$. We remark that the positivity of T_{N} implies $|f(i)| \leq f(0)$ for any $i=1,2, \ldots, N$.

2010 Mathematics Subject Classification. Primary 47B35, 47B65; Secondary 43A35.
Key words and phrases. positive matrix, Toeplitz matrix, positive definite sequence, positive definite function on group.

For any $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$, the function f given by $f(n)=e^{n \theta \sqrt{-1}}$ is a positive definite sequence. In fact, for any positive integer N, T_{N} is positive since

$$
\begin{aligned}
T_{N} & =\left(\begin{array}{cccc}
1 & e^{-\theta \sqrt{-1}} & \cdots & e^{-N \theta \sqrt{-1}} \\
e^{\theta \sqrt{-1}} & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & e^{-\theta \sqrt{-1}} \\
e^{N \theta \sqrt{-1}} & \cdots & e^{\theta \sqrt{-1}} & 1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
e^{\theta \sqrt{-1}} \\
\vdots \\
e^{N \theta \sqrt{-1}}
\end{array}\right)\left(\begin{array}{llll}
1 & e^{-\theta \sqrt{-1}} & \cdots & e^{-N \theta \sqrt{-1}}
\end{array}\right) \geq 0 .
\end{aligned}
$$

This function is a typical example of positive definite sequence.
Our result is as follows:
Theorem 1. Let $N \geq 1$. If $\left|a_{0}\right|=\left|a_{1}\right| \neq 0$ and

$$
T=\left(\begin{array}{cccc}
a_{0} & \overline{a_{1}} & \cdots & \overline{a_{N}} \\
a_{1} & a_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \overline{a_{1}} \\
a_{N} & \cdots & a_{1} & a_{0}
\end{array}\right) \geq 0
$$

then there exists a unique positive definite sequence f such that

$$
f(i)=a_{i} \quad \text { for any } i=0,1, \ldots, N .
$$

Moreover, it holds

$$
f(n)=f(0)\left(\frac{f(1)}{f(0)}\right)^{n}(\text { in particular, }|f(n)|=f(0)) \text { for any } n \in \mathbb{N} \backslash\{0\}
$$

2 Proof of Theorem and Application

Let $T=\left(\begin{array}{ccc}1 & \bar{\alpha} & \bar{\gamma} \\ \alpha & 1 & \bar{\beta} \\ \gamma & \beta & 1\end{array}\right)$ where α, β, γ are complex numbers and $|\alpha|=1$. The following fact is known and is used in this paper.

$$
T \geq 0 \text { if and only if }|\beta| \leq 1 \text { and } \gamma=\alpha \beta .
$$

The statement (\dagger) for operators had been considered in [6], and we extend as follows:

Lemma 2. Let u, v, w be bounded linear operators on a Hilbert space \mathcal{H} and u isometric (that is, $u^{*} u=1$). Then

$$
T=\left(\begin{array}{ccc}
1 & u^{*} & w^{*} \\
u & 1 & v^{*} \\
w & v & 1
\end{array}\right) \geq 0 \text { if and only if }\|v\| \leq 1 \text { and } w=v u .
$$

Proof. Assume $\|v\| \leq 1$ and $w=v u$. Since $\left(1-u u^{*}\right)^{2}=1-u u^{*}$, we have

$$
\begin{aligned}
T= & \left(\begin{array}{c}
1 \\
u \\
v u
\end{array}\right)\left(\begin{array}{lll}
1 & u^{*} & u^{*} v^{*}
\end{array}\right)+\left(\begin{array}{c}
0 \\
1-u u^{*} \\
v\left(1-u u^{*}\right)
\end{array}\right)\left(\begin{array}{ll}
0 & 1-u u^{*} \\
\left(1-u u^{*}\right) v^{*}
\end{array}\right) \\
& +\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1-v v^{*}
\end{array}\right) \geq 0 .
\end{aligned}
$$

Conversely, Assume $T \geq 0$. Since $\left(\begin{array}{cc}1 & v^{*} \\ v & 1\end{array}\right)$ is positive, we have $\|v\| \leq 1$. For any vectors $x, y \in \mathcal{H}$, we have

$$
\begin{aligned}
0 & \leq\left\langle T\left(\begin{array}{c}
x \\
-u x \\
y
\end{array}\right),\left(\begin{array}{c}
x \\
-u x \\
y
\end{array}\right)\right\rangle=\left\langle\left(\begin{array}{c}
w^{*} y \\
v^{*} y \\
w x-v u x+y
\end{array}\right),\left(\begin{array}{c}
x \\
-u x \\
y
\end{array}\right)\right\rangle \\
& =\left\langle w^{*} y, x\right\rangle+\left\langle v^{*} y,-u x\right\rangle+\langle w x-v u x+y, y\rangle \\
& =\langle y, w x-v u x\rangle+\langle w x-v u x+y, y\rangle .
\end{aligned}
$$

Set $y=-(w x-v u x)$, then $-\|w x-v u x\|^{2} \geq 0$. This implies $w=v u$.
Proof of Theorem 1. By the assumption, we have $a_{0}>0$. We want to show that $a_{i}=a_{0}\left(a_{i} / a_{0}\right)^{i}$ for any $i=1,2, \ldots, N$.

For each $i=2,3, \ldots, N$, the matrix

$$
\left(\begin{array}{ccc}
1 & \overline{\left(a_{1} / a_{0}\right)} & \overline{\left(a_{i} / a_{0}\right)} \\
a_{1} / a_{0} & 1 & \overline{\left(a_{i-1} / a_{0}\right)} \\
a_{i} / a_{0} & a_{i-1} / a_{0} & 1
\end{array}\right)=\frac{1}{a_{0}} E_{3, i} T E_{3, i}^{*} \geq 0,
$$

where $E_{3, i}$ is a $3 \times(N+1)$ matrix and its (a, b)-th component is

$$
e_{a, b}= \begin{cases}1 & ; \text { if }(a, b)=(1,1),(2,2),(3, i+1) \\ 0 & ; \text { otherwise }\end{cases}
$$

Since $\left|a_{1} / a_{0}\right|=1$, we have $a_{i} / a_{0}=\left(a_{1} / a_{0}\right)\left(a_{i-1} a_{0}\right)$ for any $i=2,3, \ldots, N$ by (\dagger). This implies $a_{i}=a_{0}\left(a_{1} / a_{0}\right)^{i}$ for all $i=1,2, \ldots, N$. By setting $f(n)=$
$a_{0}\left(a_{1} / a_{0}\right)^{n}$ for any $n \in \mathbb{N}$ and continuing the above argument to the larger number than N, then f is a positive definite sequence with $f(i)=a_{i}$ for any $i=0,1, \ldots, N$ and

$$
f(n)=f(0)\left(\frac{f(1)}{f(0)}\right)^{n} \text { for any } n \in \mathbb{N} \backslash\{0\} .
$$

We assume that there exists another positive definite sequence g with $g(i)=a_{i}$ for any $i=0,1, \ldots, N$. For $M>N$, we then have

$$
\left(\begin{array}{cccc}
g(0) & \overline{g(1)} & \cdots & \overline{g(M)} \\
g(1) & g(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \overline{g(1)} \\
g(M) & \cdots & g(1) & g(0)
\end{array}\right) \geq 0
$$

Since $f(0)=g(0), f(1)=g(1)$ and $|g(0)|=|g(1)|$, we have

$$
g(M)=g(0)\left(\frac{g(1)}{g(0)}\right)^{M}=f(0)\left(\frac{f(1)}{f(0)}\right)^{M}=f(M)
$$

by the above argument. So, $f=g$.
Corollary 3. Let f be a positive definite sequence. If there exists a positive integer K in which $f(0)=|f(K)|$, then

$$
f(n K)=f(0)\left(\frac{f(K)}{f(0)}\right)^{n} \text { for any } n=1,2, \ldots
$$

Proof. We may assume that $f(0)>0$. Define the $(n+1) \times(n K+1)$ matrix $F_{n, K}$ whose (a, b)-th component is

$$
f_{a, b}=\left\{\begin{array}{ll}
1 & ; \text { if }(a, b)=(i+1, i K+1) \text { for } i=0,1, \ldots, n \\
0 & ; \text { otherwise }
\end{array} .\right.
$$

Then we have

$$
F_{n, K}\left(\begin{array}{cccc}
f(0) & \overline{f(1)} & \cdots & \overline{f(n K)} \\
f(1) & f(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \overline{f(1)} \\
f(n K) & \cdots & f(1) & f(0)
\end{array}\right) F_{n, K}^{*} \geq 0
$$

and this matrix is equal to

$$
\left(\begin{array}{cccc}
f(0) & \overline{f(K)} & \cdots & \overline{f(n K)} \\
f(K) & f(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \overline{f(K)} \\
f(n K) & \cdots & f(K) & f(0)
\end{array}\right)
$$

Hence, by Theorem 1 we have

$$
f(n K)=f(0)\left(\frac{f(K)}{f(0)}\right)^{n}
$$

In the setting of Corollary 3 we have $f(0)=|f(n K)|$ for all $n \in \mathbb{N}$. In general, the sequence $\{|f(n)|\}$ is not necessarily constant. For instance, consider the function $f(n)=e^{\frac{2}{3} \pi n \sqrt{-1}}$. It is clear that f and \bar{f} are positive definite sequences. Then, so is

$$
g(n)=\frac{f(n)+\overline{f(n)}}{2}=\cos \left(\frac{2 n \pi}{3}\right),
$$

here we have

$$
g(n)= \begin{cases}1 & ; \text { if } n=0,3,6,9, \ldots \\ -\frac{1}{2} & ; \text { if } n=1,2,4,5,7,8, \ldots\end{cases}
$$

Let G be a group and e the unit of G. We say a complex-valued function φ on G is positive definite if for any positive integer N and for any $g_{1}, g_{2}, \ldots, g_{N} \in$ G, the following $N \times N$ matrix

$$
\left(\begin{array}{cccc}
\varphi\left(g_{1}^{-1} g_{1}\right) & \varphi\left(g_{2}^{-1} g_{1}\right) & \cdots & \varphi\left(g_{N}^{-1} g_{1}\right) \\
\varphi\left(g_{1}^{-1} g_{2}\right) & \varphi\left(g_{2}^{-1} g_{2}\right) & \cdots & \varphi\left(g_{N}^{-1} g_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi\left(g_{1}^{-1} g_{N}\right) & \varphi\left(g_{2}^{-1} g_{N}\right) & \cdots & \varphi\left(g_{N}^{-1} g_{N}\right)
\end{array}\right) \geq 0
$$

By definition, $\varphi(e) \geq 0, \varphi\left(g^{-1}\right)=\varphi(g)$, and $|\varphi(g)| \leq \varphi(e)$ and for any $g \in G$.
Corollary 4. Let φ be a positive definite function on G with $\varphi(e) \neq 0$ and K a subgroup of $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$. Then

$$
H=\left\{g \in G \left\lvert\, \frac{\varphi(g)}{\varphi(e)} \in K\right.\right\}
$$

is a subgroup of G and the function $\frac{1}{\varphi(e)} \varphi$ is multiplicative on H.

Proof. It is obvious that $e \in H$ and if $g \in H$, then $g^{-1} \in H$. Given $g, h \in H$, then by the assumption we have that the following matrix

$$
\left(\begin{array}{ccc}
\varphi(e) & \varphi\left(g^{-1}\right) & \varphi\left((g h)^{-1}\right) \\
\varphi(g) & \varphi\left(g^{-1} g\right) & \varphi\left((g h)^{-1} g\right) \\
\varphi(g h) & \varphi\left(g^{-1}(g h)\right) & \varphi\left((g h)^{-1}(g h)\right)
\end{array}\right)=\left(\begin{array}{ccc}
\varphi(e) & \overline{\varphi(g)} & \overline{\varphi(g h)} \\
\varphi(g) & \varphi(e) & \overline{\varphi(h)} \\
\varphi(g h) & \varphi(h) & \varphi(e)
\end{array}\right) \geq 0 .
$$

By (\dagger), we have

$$
\frac{\varphi(g h)}{\varphi(e)}=\frac{\varphi(g)}{\varphi(e)} \frac{\varphi(h)}{\varphi(e)}
$$

It follows that $\varphi(g h) / \varphi(e) \in K$. That is, $g h \in H$.
Let φ be a positive definite sequence, that is, a positive definite function on \mathbb{Z}. By Bochner's theorem (or Herglotz's theorem [5]), there exists a positive finite measure μ on $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ which is identified by $[0,1)(\cong \mathbb{R} / \mathbb{Z})$ such that

$$
\varphi(n)=\int_{0}^{1} e^{2 \pi \sqrt{-1} n x} d \mu(x) \text { for all } n \in \mathbb{Z}
$$

It is known that

$$
\mu(\{0\})=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n) .
$$

To see this, it suffices to show that

$$
\mu(\{0\})=0 \Rightarrow \lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n)=0
$$

by considering $\mu-\mu(\{0\}) \delta_{0}$ instead of μ, where δ_{0} is a Dirac measure at 0 . Since $|\sin x| \leq|x|$ and $\frac{2 x}{\pi} \leq \sin x$ for $x \in\left[0, \frac{\pi}{2}\right]$, we have

$$
\begin{aligned}
\left|\frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n)\right|= & \left|\frac{1}{2 N+1} \sum_{n=-N}^{N} \int_{0}^{1} e^{2 \pi \sqrt{-1} n x} d \mu(x)\right| \\
= & \left|\int_{0}^{1} \frac{1}{2 N+1} \frac{\sin (2 N+1) \pi x}{\sin \pi x} d \mu(x)\right| \\
\leq & \int_{-\delta}^{\delta}\left|\frac{1}{2 N+1} \frac{\sin (2 N+1) \pi x}{\sin \pi x}\right| d \mu(x) \\
& +\int_{\delta}^{1-\delta}\left|\frac{1}{2 N+1} \frac{\sin (2 N+1) \pi x}{\sin \pi x}\right| d \mu(x) \\
\leq & \frac{\pi}{2} \mu((-\delta, \delta))+\frac{1}{(2 N+1) \sin \pi \delta} \mu(\mathbb{T})
\end{aligned}
$$

for any $\delta \in\left(0, \frac{1}{2}\right)$. Hence, $\lim \sup _{N \rightarrow \infty}\left|\frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n)\right| \leq \frac{\pi}{2} \mu((-\delta, \delta))$. Since δ is arbitrary and $\mu(\{0\})=0$, then we have $\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n)=$ 0.

Proposition 5. Let φ be a positive definite function on \mathbb{Z}. If $\lim _{n \rightarrow \infty} \varphi(n)=$ $\varphi(0)$, then $\varphi(n)=\varphi(0)$ for all $n \in \mathbb{Z}$.

Proof. Let $\varphi(n)=\int_{0}^{1} e^{2 \pi \sqrt{-1} n x} d \mu(x)(n \in \mathbb{Z})$. Then, $\varphi(0)=\mu(\mathbb{T})$. Also, we have $\mu(\{0\})=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \varphi(n)=\varphi(0)$. This means that μ is a nonnegative scalar multiple of Dirac measure at 0 and so we have $\varphi(n)=\varphi(0)$ for all $n \in \mathbb{Z}$.

Corollary 6. Let φ be a positive definite function on a group G and G is generated by $\left\{g_{i} \mid i \in I\right\}$. If

$$
\lim _{n \rightarrow \infty} \varphi\left(g_{i}^{n}\right)=\varphi(e) \text { for all } i \in I
$$

then $\varphi(g)=\varphi(e)$ for all $g \in G$.
Proof. We may assume that $\varphi(e) \neq 0$. By assumption and since $\lim _{n \rightarrow \infty} \varphi\left(g_{i}^{n}\right)=$ $\varphi(e)$, we have $\varphi\left(g_{i}^{n}\right)=\varphi(e)$ for all n by Proposition 5 . In particular $\varphi\left(g_{i}\right)=$ $\varphi(e)$ for all $i \in I$. Set

$$
H=\left\{g \in G \left\lvert\, \frac{\varphi(g)}{\varphi(e)} \in\{1\}\right.\right\}
$$

Using Corollary 4, we conclude that H is a subgroup of G. Since G is generated by $\left\{g_{i} \mid i \in I\right\}$ and $g_{i} \in H$ for any $i \in I$, we have $\varphi(g)=\varphi(e)$ for all $g \in G$.

Remark. Let φ be a positive definite function on the additive group \mathbb{R}. We assume that the sequence $\{\varphi(n x)\}_{n=1}^{\infty}$ converges to $\varphi(0)$ for any $x \in \mathbb{R}$. If φ is continuous, then there exists a finite positive measure μ on \mathbb{R} such that $\varphi(x)=\int_{\mathbb{R}} e^{\sqrt{-1} t x} d \mu(t)(x \in \mathbb{R})$ by Bochner's theorem. We can prove $\varphi(x)=\varphi(0)$ by using the fact

$$
\mu(\{0\})=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \varphi(x) d \mu(x)
$$

(see [3]:Appendices A.4). Without the assumption of the continuity of φ, we can also have $\varphi(x)=\varphi(0)$ by Corollary 6 .

References

[1] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlag, New York, 1984.
[2] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
[3] F. Hiai and H. Kosaki, Means of Hilbert Space Operators, Lecture Notes in Math., vol. 1820, Springer, 2003.
[4] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[5] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, a division of John Wiley \& Sons, Inc., New York, 1962.
[6] M. E. Walter, Algebraic Structures Determined By 3 by 3 Matrix Geometry, Proc. Amer. Math. Soc. 131(2002), 2129-2131.

Communicated by Moto Ouchi

Imam Nugraha Albania
Department of Mathematics Education
Universitas Pendidikan Indonesia (UPI)
Jl. Dr Setia Budhi 229 Bandung 40154
Indonesia
e-mail address: albania@upi.edu, phantasion@gmail.com

Masaru NAGISA
Graduate School of Science
Chiba University
Chiba 263-8522
Japan
e-mail address: nagisa@math.s.chiba-u.ac.jp

