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Abstract. Let a0, a1, ..., aN be complex numbers. We consider the
Toeplitz matrix TN , where the (i, j)-th component is ai−j if i ≥ j and
aj−i if i < j. If TN is positive and |a0| = |a1| 6= 0, then a2, a3, ..., aN can
be represented in terms of a0 and a1 and there exists a unique positive
definite sequence f such that f(i) = ai for any i = 0, 1, 2, ..., N. In
particular, it holds |f(n)| = |a0| for any n. We also provides some
applications related to this fact.

1 Introduction

Let N = {0, 1, 2, ...} and f is a complex-valued function on N. An n×n matrix
A = (aij) with complex entries is said to be positive and it is denoted by A ≥ 0
if

n∑
i,j=1

αiαjaij ≥ 0 for all α1, α2, ..., αn ∈ C.

It is well-known that A ≥ 0 if and only if there exists a k × n matrix B in
which A = B∗B for some k ∈ N \ {0}. We call that f is a positive definite
sequence if, for any positive integer N, the following (N+1)×(N+1) Toeplitz
matrix

TN =


f(0) f(1) · · · f(N)

f(1) f(0)
. . .

...
...

. . . . . . f(1)
f(N) · · · f(1) f(0)


is positive, where the (i, j)-th component of TN is f(i−j) if i ≥ j and f(j − i)
if i < j. We remark that the positivity of TN implies |f(i)| ≤ f(0) for any
i = 1, 2, ..., N.
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For any n ∈ N and θ ∈ R, the function f given by f(n) = enθ
√
−1 is a

positive definite sequence. In fact, for any positive integer N, TN is positive
since

TN =


1 e−θ

√
−1 · · · e−Nθ

√
−1

eθ
√
−1 1

. . .
...

...
. . . . . . e−θ

√
−1

eNθ
√
−1 · · · eθ

√
−1 1



=


1

eθ
√
−1

...

eNθ
√
−1

(1 e−θ
√
−1 · · · e−Nθ

√
−1
)
≥ 0.

This function is a typical example of positive definite sequence.
Our result is as follows:

Theorem 1. Let N ≥ 1. If |a0| = |a1| 6= 0 and

T =


a0 a1 · · · aN

a1 a0
. . .

...
...

. . . . . . a1
aN · · · a1 a0

 ≥ 0,

then there exists a unique positive definite sequence f such that

f(i) = ai for any i = 0, 1, ..., N.

Moreover, it holds

f(n) = f(0)

(
f(1)

f(0)

)n
(in particular, |f(n)| = f(0)) for any n ∈ N \ {0}.

2 Proof of Theorem and Application

Let T =

1 α γ

α 1 β
γ β 1

 where α, β, γ are complex numbers and |α| = 1. The

following fact is known and is used in this paper.

(†) T ≥ 0 if and only if |β| ≤ 1 and γ = αβ.

The statement (†) for operators had been considered in [6], and we extend
as follows:
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Lemma 2. Let u, v, w be bounded linear operators on a Hilbert space H and
u isometric (that is, u∗u = 1). Then

T =

1 u∗ w∗

u 1 v∗

w v 1

 ≥ 0 if and only if ‖v‖ ≤ 1 and w = vu.

Proof. Assume ‖v‖ ≤ 1 and w = vu. Since (1− uu∗)2 = 1− uu∗, we have

T =

 1
u
vu

(1 u∗ u∗v∗
)

+

 0
1− uu∗
v(1− uu∗)

(0 1− uu∗ (1− uu∗)v∗
)

+

0 0 0
0 0 0
0 0 1− vv∗

 ≥ 0.

Conversely, Assume T ≥ 0. Since

(
1 v∗

v 1

)
is positive, we have ‖v‖ ≤ 1.

For any vectors x, y ∈ H, we have

0 ≤

〈
T

 x
−ux
y

 ,

 x
−ux
y

〉 =

〈 w∗y
v∗y

wx− vux+ y

 ,

 x
−ux
y

〉
= 〈w∗y, x〉+ 〈v∗y,−ux〉+ 〈wx− vux+ y, y〉
= 〈y, wx− vux〉+ 〈wx− vux+ y, y〉.

Set y = −(wx− vux), then −‖wx− vux‖2 ≥ 0. This implies w = vu.

Proof of Theorem 1. By the assumption, we have a0 > 0. We want to
show that ai = a0(ai/a0)

i for any i = 1, 2, ..., N.
For each i = 2, 3, ..., N, the matrix 1 (a1/a0) (ai/a0)

a1/a0 1 (ai−1/a0)
ai/a0 ai−1/a0 1

 =
1

a0
E3,iTE

∗
3,i ≥ 0,

where E3,i is a 3× (N + 1) matrix and its (a, b)-th component is

ea,b =

{
1 ; if (a, b) = (1, 1), (2, 2), (3, i+ 1)

0 ; otherwise
.

Since |a1/a0| = 1, we have ai/a0 = (a1/a0)(ai−1a0) for any i = 2, 3, ..., N
by (†). This implies ai = a0(a1/a0)

i for all i = 1, 2, ..., N. By setting f(n) =
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a0(a1/a0)
n for any n ∈ N and continuing the above argument to the larger

number than N, then f is a positive definite sequence with f(i) = ai for any
i = 0, 1, ..., N and

f(n) = f(0)

(
f(1)

f(0)

)n
for any n ∈ N \ {0}.

We assume that there exists another positive definite sequence g with
g(i) = ai for any i = 0, 1, ..., N. For M > N, we then have

g(0) g(1) · · · g(M)

g(1) g(0)
. . .

...
...

. . . . . . g(1)
g(M) · · · g(1) g(0)

 ≥ 0.

Since f(0) = g(0), f(1) = g(1) and |g(0)| = |g(1)|, we have

g(M) = g(0)

(
g(1)

g(0)

)M
= f(0)

(
f(1)

f(0)

)M
= f(M)

by the above argument. So, f = g.

Corollary 3. Let f be a positive definite sequence. If there exists a positive
integer K in which f(0) = |f(K)|, then

f(nK) = f(0)

(
f(K)

f(0)

)n
for any n = 1, 2, ... .

Proof. We may assume that f(0) > 0. Define the (n + 1) × (nK + 1) matrix
Fn,K whose (a, b)-th component is

fa,b =

{
1 ; if (a, b) = (i+ 1, iK + 1) for i = 0, 1, ..., n

0 ; otherwise
.

Then we have

Fn,K


f(0) f(1) · · · f(nK)

f(1) f(0)
. . .

...
...

. . . . . . f(1)
f(nK) · · · f(1) f(0)

F ∗n,K ≥ 0



5

and this matrix is equal to
f(0) f(K) · · · f(nK)

f(K) f(0)
. . .

...
...

. . . . . . f(K)
f(nK) · · · f(K) f(0)

 .

Hence, by Theorem 1 we have

f(nK) = f(0)

(
f(K)

f(0)

)n
.

In the setting of Corollary 3 we have f(0) = |f(nK)| for all n ∈ N.
In general, the sequence {|f(n)|} is not necessarily constant. For instance,

consider the function f(n) = e
2
3
πn
√
−1. It is clear that f and f are positive

definite sequences. Then, so is

g(n) =
f(n) + f(n)

2
= cos

(
2nπ

3

)
,

here we have

g(n) =

{
1 ; if n = 0, 3, 6, 9, ...

−1
2

; if n = 1, 2, 4, 5, 7, 8, ...
.

Let G be a group and e the unit of G. We say a complex-valued function ϕ
on G is positive definite if for any positive integer N and for any g1, g2, ..., gN ∈
G, the following N ×N matrix

ϕ(g−11 g1) ϕ(g−12 g1) · · · ϕ(g−1N g1)
ϕ(g−11 g2) ϕ(g−12 g2) · · · ϕ(g−1N g2)

...
...

. . .
...

ϕ(g−11 gN) ϕ(g−12 gN) · · · ϕ(g−1N gN)

 ≥ 0.

By definition, ϕ(e) ≥ 0, ϕ(g−1) = ϕ(g), and |ϕ(g)| ≤ ϕ(e) and for any g ∈ G.

Corollary 4. Let ϕ be a positive definite function on G with ϕ(e) 6= 0 and K
a subgroup of T = {z ∈ C | |z| = 1}. Then

H =

{
g ∈ G

∣∣∣∣∣ϕ(g)

ϕ(e)
∈ K

}

is a subgroup of G and the function 1
ϕ(e)

ϕ is multiplicative on H.
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Proof. It is obvious that e ∈ H and if g ∈ H, then g−1 ∈ H. Given g, h ∈ H,
then by the assumption we have that the following matrix ϕ(e) ϕ(g−1) ϕ((gh)−1)

ϕ(g) ϕ(g−1g) ϕ((gh)−1g)
ϕ(gh) ϕ(g−1(gh)) ϕ((gh)−1(gh))

 =

 ϕ(e) ϕ(g) ϕ(gh)

ϕ(g) ϕ(e) ϕ(h)
ϕ(gh) ϕ(h) ϕ(e)

 ≥ 0.

By (†), we have
ϕ(gh)

ϕ(e)
=
ϕ(g)

ϕ(e)

ϕ(h)

ϕ(e)
.

It follows that ϕ(gh)/ϕ(e) ∈ K. That is, gh ∈ H.

Let ϕ be a positive definite sequence, that is, a positive definite function
on Z. By Bochner’s theorem (or Herglotz’s theorem [5]), there exists a positive
finite measure µ on T = {z ∈ C | |z| = 1} which is identified by [0, 1)(∼= R/Z)
such that

ϕ(n) =

∫ 1

0

e2π
√
−1nxdµ(x) for all n ∈ Z.

It is known that

µ({0}) = lim
N→∞

1

2N + 1

N∑
n=−N

ϕ(n).

To see this, it suffices to show that

µ({0}) = 0⇒ lim
N→∞

1

2N + 1

N∑
n=−N

ϕ(n) = 0

by considering µ − µ({0})δ0 instead of µ, where δ0 is a Dirac measure at 0.
Since | sinx| ≤ |x| and 2x

π
≤ sinx for x ∈

[
0, π

2

]
, we have∣∣∣∣∣ 1

2N + 1

N∑
n=−N

ϕ(n)

∣∣∣∣∣ =

∣∣∣∣∣ 1

2N + 1

N∑
n=−N

∫ 1

0

e2π
√
−1nxdµ(x)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

1

2N + 1

sin(2N + 1)πx

sin πx
dµ(x)

∣∣∣∣
≤
∫ δ

−δ

∣∣∣∣ 1

2N + 1

sin(2N + 1)πx

sin πx

∣∣∣∣ dµ(x)

+

∫ 1−δ

δ

∣∣∣∣ 1

2N + 1

sin(2N + 1)πx

sin πx

∣∣∣∣ dµ(x)

≤ π

2
µ((−δ, δ)) +

1

(2N + 1) sinπδ
µ(T).
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for any δ ∈
(
0, 1

2

)
. Hence, lim supN→∞

∣∣∣ 1
2N+1

∑N
n=−N ϕ(n)

∣∣∣ ≤ π
2
µ((−δ, δ)).

Since δ is arbitrary and µ({0}) = 0, then we have limN→∞
1

2N+1

∑N
n=−N ϕ(n) =

0.

Proposition 5. Let ϕ be a positive definite function on Z. If limn→∞ ϕ(n) =
ϕ(0), then ϕ(n) = ϕ(0) for all n ∈ Z.

Proof. Let ϕ(n) =
∫ 1

0
e2π
√
−1nxdµ(x) (n ∈ Z). Then, ϕ(0) = µ(T). Also, we

have µ({0}) = limN→∞
1

2N+1

∑N
n=−N ϕ(n) = ϕ(0). This means that µ is a non-

negative scalar multiple of Dirac measure at 0 and so we have ϕ(n) = ϕ(0)
for all n ∈ Z.

Corollary 6. Let ϕ be a positive definite function on a group G and G is
generated by {gi | i ∈ I}. If

lim
n→∞

ϕ(gni ) = ϕ(e) for all i ∈ I,

then ϕ(g) = ϕ(e) for all g ∈ G.

Proof. We may assume that ϕ(e) 6= 0. By assumption and since limn→∞ ϕ(gni ) =
ϕ(e), we have ϕ(gni ) = ϕ(e) for all n by Proposition 5. In particular ϕ(gi) =
ϕ(e) for all i ∈ I. Set

H =

{
g ∈ G

∣∣∣∣∣ ϕ(g)

ϕ(e)
∈ {1}

}
.

Using Corollary 4, we conclude that H is a subgroup of G. Since G is generated
by {gi | i ∈ I} and gi ∈ H for any i ∈ I, we have ϕ(g) = ϕ(e) for all g ∈ G.

Remark. Let ϕ be a positive definite function on the additive group R.
We assume that the sequence {ϕ(nx)}∞n=1 converges to ϕ(0) for any x ∈ R.
If ϕ is continuous, then there exists a finite positive measure µ on R such
that ϕ(x) =

∫
R e
√
−1txdµ(t) (x ∈ R) by Bochner’s theorem. We can prove

ϕ(x) = ϕ(0) by using the fact

µ({0}) = lim
T→∞

1

2T

∫ T

−T
ϕ(x)dµ(x)

(see [3]:Appendices A.4). Without the assumption of the continuity of ϕ, we
can also have ϕ(x) = ϕ(0) by Corollary 6.
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