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A GENERALIZATION OF LLL LATTICE BASIS REDUCTION OVER
IMAGINARY QUADRATIC FIELDS

Abstract. In this paper we generalize LLL lattice basis reduction defined by Lenstra,
Lenstra, and Lovász. We consider OF -lattice, where OF is the ring of integers in
algebraic number field F . We can prove that basic properties of reduced basis can hold
over imaginary quadratic fields. We can reveal existence of a least positive element
over other algebraic number fields.

1 Introduction Among all the Z bases of a lattice, some are better than others. The
ones whose elements are the shortest are called reduced. Since the bases all have the same
discriminant, to be reduced implies also that a basis is not too far from being orthogonal.

In 1982 A.K.Lenstra, H.W.Lenstra, Jr., and L.Lovász presented the LLL reduction al-
gorithm. It was originally meant to find ”short” vectors in lattices, i.e. to determine a so
called reduced basis for a given lattice. H.Napias generalized LLL reduction algorithm over
euclidean rings or orders([3]).

In this paper we define LLL reduced basis over imaginary quadratic fields. We consider
a lattice in the n-dimensional linear space V = Fn, so F is an imaginary quadratic field.
F is included by the field of complex numbers. Lenstra, Lenstra, and Lovász showed some
properties about reduced bases over real number fields. We proved these properties hold
over imaginary quadratic fields.

In last section, we consider a general algebraic number field F . Let OF be the ring
of integers in F , we state that OF has a least positive element or not. And we show a
necessary and sufficient condition for algebraic number field F to lead structure of lattice.

2 Basis reduction on Z-modules We consider a lattice in n-dimensional linear space
Rn, where R is the field of real numbers.

A subset Λ of the n-dimensional real vector space Rn is called a lattice if there exists a
basis b1, · · · , bn of Rn such that

Λ =

n∑
i=1

Zbi =
{ n∑

i=1

ribi

∣∣∣∣ ri ∈ Z (1 ≤ i ≤ n)

}
.

In this situation we say that the set {b1, · · · , bn} of vectors forms a basis for Λ, or that it
spans Λ. We call n the rank of Λ.

For a Z-basis b1, · · · , bn of Λ the discriminant d(Λ) of Λ is defined by d(Λ) = | det(bi, bj)|
1
2 >

0, where ( , ) denotes the ordinary inner product on Rn. This does not depend on the choice
of the basis. And by Hadamard’s inequality, we have d(Λ) ≤

∏n
i=1 ∥bi∥.

In the sequel we consider the construction of special bases of lattices Λ. For the appli-
cations and for geometrical reasons we are interested in bases consisting of vectors of small
norm. Minkowski reduced is an example of reduced basis. The computation of a Minkowski
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reduced basis of a lattice can be very time consuming. Hence, in many cases one is satisfied
with constructing bases of lattices which are reduced in a much weaker sense. The most
important reduction procedure now in use is LLL-reduction which was introduced in 1982
by Lenstra, Lenstra, and Lovász in [2].

Let b1, · · · , bn ∈ Rn be linearly independent. We recall the Gram-Schmidt orthogonal-
ization process. The vectors b∗i (1 ≤ i ≤ n) and the real numbers µij(1 ≤ j < i ≤ n) are
inductively defined by

(1) b∗i := bi −
i−1∑
j=1

µijb
∗
j ,

(2) µij :=
(bi, b

∗
j )

(b∗j , b
∗
j )
,

where ( , ) denotes the ordinary inner product on Rn. We call a basis b1, · · · , bn for a
lattice LLL-reduced if

(3) |µij | ≤
1

2
for 1 ≤ j < i ≤ n

and

(4) ∥b∗i + µi,i−1b
∗
i−1∥2 ≥ 3

4
∥b∗i−1∥2 for 1 < i ≤ n

where ∥ · ∥ denotes the ordinary Euclidean length. Notice that the vectors b∗i + µi,i−1b
∗
i−1

and b∗i−1 appearing in (4) are projections of bi and bi−1 on the orthogonal complement of∑i−2
j=1 Rbj . The constant 3

4 in (4) is arbitrarily chosen, and may be replaced by any fixed

real number y with 1
4 < y < 1.

We state without proof several key properties of LLL-reduced bases. The proof is given
in [2].

Proposition 2.1 [2, Proposition(1.6), (1.11), (1.12)] If b1, · · · , bn is some reduced basis
for a lattice Λ in Rn, then
(i) ∥bj∥2 ≤ 2i−1∥b∗i ∥2 for 1 ≤ j ≤ i ≤ n,
(ii) d(Λ) ≤

∏n
i=1 ∥bi∥ ≤ 2n(n−1)/4d(Λ),

(iii) ∥b1∥ ≤ 2(n−1)/4d(Λ)1/n,
(iv) ∥b1∥2 ≤ 2n−1∥x∥2 for every x ∈ Λ,x ̸= 0,
(v) For any linearly independent set of vectors x1,x2, · · · ,xt ∈ Λ we have

∥bj∥2 ≤ 2n−1 max{∥x1∥2, · · · , ∥xt∥2} for 1 ≤ j ≤ t ≤ n,
where ∥ · ∥ denotes the ordinary Euclidean length.

3 Basis reduction on OF -modules Let F be an imaginary quadratic field and OF

be the ring of integers in F , now we consider a lattice in the n-dimensional linear space
V = Fn.

Let n be a positive integer. A subset Λ of the n-dimensional vector space V is called a
OF -lattice if there exists an OF -basis b1, · · · , bn of V such that

Λ =
n∑

i=1

OF bi =

{ n∑
i=1

ribi

∣∣∣∣ ri ∈ OF (1 ≤ i ≤ n)

}
.
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Suppose that a = (a1, · · · , an)t, b = (b1, · · · , bn)t are vectors in Cn. The Hermitian
inner product of a and b is defined by

(5) (a, b) = a1b1 + · · ·+ anbn.

Suppose that x = (x1, · · · , xn)
t is vector in Cn. The norm of x is defined by

(6) ∥x∥ =
√
(x,x) =

√
|x1|2 + · · ·+ |xn|2,

where, xi(∈ C) is the i-th coordinate of x, and ∥x∥ ∈ R.
Let b1, · · · , bn ∈ Fn be linearly independent. Similarly the vectors b∗i (1 ≤ i ≤ n) and

the complex numbers µij(1 ≤ j < i ≤ n) are inductively defined by b∗i := bi −
∑i−1

j=1 µijb
∗
j

, µij := (bi, b
∗
j )/(b

∗
j , b

∗
j ), where ( , ) denotes the Hermitian inner product on Cn. And

LLL-reduced basis is similarly defined by (3), (4).

From now on, we consider the imaginary quadratic field F = Q(
√
m), where m is a

square free negative integer, R = OF , the ring of integers in F .

Given imaginary quadratic field Q(
√
m) := {a+b

√
m | a, b ∈ Q}, the ring OF of integers

in Q(
√
m) is the following:

(i) If m ̸≡ 1 (mod 4), then OF := {a+ b
√
m | a, b ∈ Z}.

(ii) If m ≡ 1 (mod 4), then OF :=
{

a+b
√
m

2 | a, b ∈ Z, a ≡ b (mod2)
}
.

For above two cases about m, we can prove its non-zero absolute values are greater than
1. So, we show below it as a lemma.

Lemma 3.1 If F = Q(
√
m), where m < 0, we get for any non-zero r ∈ OF , |r|2 ≥ 1.

Proof. (i) In case m ̸≡ 1 (mod 4). Let r =: a+ b
√
m, where a, b ∈ Z. Then we can rewrite

r as r = a+ b
√
−mi, therefore |r|2 = a2 −mb2.

We assume a ̸= 0. Then |r|2 ≥ 1. If b ̸= 0, then |r|2 ≥ −m ≥ 1. Hence if either a ̸= 0 or
b ̸= 0, then |r|2 ≥ 1.

(ii) In case m ≡ 1 (mod 4). Let r =: a+b
√
m

2 , where a, b ∈ Z, with a ≡ b (mod 2). Then

|r|2 = a2−mb2

4 . We show that if either a ̸= 0 or b ̸= 0 then |r|2 ≥ 1. Since m < 0, m ≡
1 (mod 4), the minimum value of −m(> 0) is 3. Hence |r|2 ≥ a2+3b2

4 .
(a) In case a ≡ b ≡ 0 (mod 2). The minimum value of a2 + 3b2 is 4 (a = ±2, b = 0).
(b) In case a ≡ b ≡ 1 (mod 2). The minimum value of a2 + 3b2 is 4 (a = ±1, b = ±1).

In any case, we have |r|2 ≥ a2+3b2

4 ≥ 1.

This lemma implies the following proposition.

Proposition 3.2 Let F denote the imaginally quadratic field Q(
√
m) and R = OF be the

ring of integers in F . Let b1, · · · , bn be a basis of Λ, and b∗i (i = 1, 2, · · · , n) be as above.
Then we have

(7) ∥x∥2 ≥ ∥b∗i ∥2 for some i ≤ n.

for any non-zero x ∈ Λ.

Proof. For every x ∈ Λ, we can write x =:
∑n

j=1 rjbj =
∑n

j=1 sjb
∗
j , where rj ∈ OF and

sj ∈ Q(
√
m). Let i be the largest index with ri ̸= 0. We claim that x =

∑i
j=1 sjb

∗
j and
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ri = si. By bi = b∗i +
∑i−1

j=1 µijb
∗
j , we have

(8) x =

i∑
j=1

rjbj =

i∑
j=1

rj +

i∑
k=j+1

rkµkj

 b∗j .

We suppose j = i, we have ri = si.
Next,

(9) ∥x∥2 = ∥s1b∗1∥2 + ∥s2b∗2∥2 + · · ·+ ∥sib∗i ∥2 ≥ |si|2∥b∗i ∥2

Now since si = ri, |ri|2 ≥ 1(by Lemma 3.1). Therefore we have

(10) ∥x∥2 ≥ |ri|2∥b∗i ∥2 ≥ ∥b∗i ∥2,

for some i ≤ n.

These arguments imply the following main theorem. The idea of following proof is due to
[2].

Theorem 3.3 Let F = Q(
√
m), where m is a square free negative integer, If b1, · · · , bn

is some reduced basis for a lattice Λ in V , then
(i) ∥bj∥2 ≤ 2i−1∥b∗i ∥2 for 1 ≤ j ≤ i ≤ n,
(ii) d(Λ) ≤

∏n
i=1 ∥bi∥ ≤ 2n(n−1)/4d(Λ),

(iii) ∥b1∥ ≤ 2(n−1)/4d(Λ)1/n,
(iv) ∥b1∥2 ≤ 2n−1∥x∥2 for every x ∈ Λ,x ̸= 0,
(v) For any linearly independent set of vectors x1, · · · ,xt ∈ Λ we have

∥bj∥2 ≤ 2n−1max{∥x1∥2, · · · , ∥xt∥2} for 1 ≤ j ≤ t ≤ n,
where ∥ · ∥ denotes the norm defined by (6).

Proof. (i) From (4) and (3) we see that

∥b∗i ∥2 ≥
(
3

4
− |µi,i−1|2

)
∥b∗i−1∥2 ≥ 1

2
∥b∗i−1∥2

for 1 < i ≤ n, so by induction

∥b∗j∥2 ≤ 2i−j∥b∗i ∥2 for 1 ≤ j ≤ i ≤ n.

From (1) and (3) we now obtain

∥bi∥2 = ∥b∗i ∥2 +
i−1∑
j=1

|µij |2∥b∗j∥2

≤ ∥b∗i ∥2 +
i−1∑
j=1

1

4
· 2i−j∥b∗i ∥2

=

(
1 +

1

4
(2i − 2)

)
∥b∗i ∥2

≤ 2i−1∥b∗i ∥2.

It follows that
∥b∗j∥2 ≤ 2j−1∥b∗j∥2 ≤ 2i−1∥b∗i ∥2
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for 1 ≤ j ≤ i ≤ n. This proves (i).
(ii) From d(Λ) = | det(b1, · · · , bn)| and (1), it follows that

d(Λ) = |det(b∗1, · · · , b
∗
n)|

and therefore, since the b∗i are pairwise orthogonal

d(Λ) =

n∏
i=1

∥b∗i ∥.

From ∥b∗i ∥ ≤ ∥bi∥ and ∥bi∥ ≤ 2(i−1)/2∥b∗i ∥ we now obtain (ii).
(iii) Putting j = 1 in (i) and taking the product over i = 1, · · · , n we find (iii).
(iv) By Proposition 3.2, for every non-zero x ∈ Λ, ∥x∥2 ≥ ∥b∗i ∥2 for some i ≤ n. Putting
j = 1 in (i), we have ∥b1∥2 ≤ 2i−1∥b∗i ∥2 ≤ 2n−1∥b∗i ∥2. This proves (iv).
(v) Write xj =

∑n
i=1 rijbi with rij ∈ OF (1 ≤ i ≤ n) for 1 ≤ j ≤ t. For fixed j, let i(j)

denote the largest i for which rij ̸= 0. Then we have, by the proof of Proposition 3.2,

(11) ∥xj∥2 ≥ ∥b∗i(j)∥2

for 1 ≤ j ≤ t. Renumber the xj such that i(1) ≤ · · · ≤ i(t). We claim that j ≤ i(j) for
1 ≤ j ≤ t. If not, then x1, · · · ,xj would all belong to OF b1+ · · ·+OF bj−1, a contradiction
with the linear independence of x1, · · · ,xt. From j ≤ i(j) and (i) we obtain, using (11):

∥bj∥2 ≤ 2i(j)−1 · ∥b∗i(j)∥2 ≤ 2n−1 · ∥b∗i(j)∥2 ≤ 2n−1 · ∥xj∥2

for j = 1, · · · , t. This proves (iv).

4 Absolute values of elements in some the rings of integers OF In case F is the
rational or an imaginary quadratic field the absolute value of the non-zero elements of OF

is greater than one. The situation is different for general number fields, as we shall show in
the sequel.

Let F be a number field of degree n and OF denote its ring of integers. It is well-known
that OF is a free abelian group of rank n.

Using the Pigeonhole Principle, we can prove the following lemma. It is a special case
of Dirichlet’s simultaneous approximation theorem. The proof is given in [7].

Lemma 4.1 Suppoose that α and β are real numbers and at least one of α, β is in R \Q.
Then there are infinitely many triads (x, y, z) of integers such that |x − zα| < 1/

√
z and

|y − zβ| < 1/
√
z.

Proposition 4.2 Let L be a free abelian group of rank n ≥ 3 in C. Then, for any positive
real number ϵ, there is a non-zero z ∈ L such that |z| < ϵ.

Proof. We may assume that n = 3 and L = Za + Zb + Ze. Since C is a 2-dimensional
vector space over R, there exist real numbers α and β such that e = αa + βb and at
least one of α, β is in R \ Q. By the lemma above, there are integers p, q, r such that
|pα + q| < ϵ/(∥a∥ + ∥b∥) and |pβ + r| < ϵ/(∥a∥ + ∥b∥). Then we have ∥pe + qa + rb∥ =
∥(pα+ q)a+ (pβ + r)b∥ ≤ |(pα+ q)|∥a∥+ |(pβ + r)|∥b∥ < ϵ.

By similar way, we can prove the following.
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Proposition 4.3 Let L be a free abelian group of rank n ≥ 2 in R. Then, for any positive
real number ϵ, there is a non-zero z ∈ L such that |z| < ε.

By these propositions, the ring of integers OF has a least positive element, if and only if
F is the rational number field or an imaginary quadratic field. Therefore we conclude the
following theorem.

Theorem 4.4 Let F be a number field and OF is the ring of integers in F . Then OF has
a least positive element if and only if F is either the rational number field or an imaginary
quadratic field.
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