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Abstract. In this paper, we establish the Cauchy’s Theorem for B-algebras. We
also present some implications of Lagrange’s Theorem and Cauchy’s Theorem for B-
algebras. In particular, the concept of Bp-algebras is introduced.

1 Introduction In [9], the notion of B-algebras was introduced by J. Neggers and H.S.
Kim. A B-algebra is an algebra (X; ∗, 0) of type (2, 0) (that is, a nonempty set X with a
binary operation ∗ and a constant 0) satisfying the following axioms for all x, y, z ∈ X: (I)
x∗x = 0, (II) x∗0 = x, (III) (x∗y)∗z = x∗(z∗(0∗y)). A B-algebra (X; ∗, 0) is commutative
[9] if x ∗ (0 ∗ y) = y ∗ (0 ∗ x) for all x, y ∈ X. In [10], J. Neggers and H.S. Kim introduced
the notions of a subalgebra and normality of B-algebras and some of their properties are
established. A nonempty subset N of X is called a subalgebra of X if x ∗ y ∈ N for any
x, y ∈ N . It is called normal in X if for any x ∗ y, a ∗ b ∈ N implies (x ∗ a) ∗ (y ∗ b) ∈ N .
A normal subset of X is a subalgebra of X. There are several properties of B-algebras
as established by some authors [1−12]. The following properties are used in this paper,
for any x, y, z ∈ X, we have (P1) 0 ∗ (0 ∗ x) = x [9], (P2) x ∗ y = 0 ∗ (y ∗ x) [11], (P3)
x∗ (y ∗z) = (x∗ (0∗z))∗y [9], (P4) x∗y = x∗z implies y = z [3], (P5) (0∗x)∗ (y ∗x) = 0∗y
[9]. In [2], J.S. Bantug and J.C. Endam established the Lagrange’s Theorem for B-algebras.
In this paper, we provide some partial results on the converse of this theorem. In particular,
we establish the Cauchy’s Theorem for B-algebras. As a consequence, we also introduce the
concept of Bp-algebras. Throughout this paper, X means a B-algebra (X; ∗, 0).

2 Preliminaries This section presents some concepts and results needed in this paper.
We start with some examples of B-algebras.

Example 2.1. [9] Let X = {0, 1, 2} be a set with the following table of operation:

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Example 2.2. [9] Let X = {0, 1, 2, 3, 4, 5} be a set with the following table of operation:

∗ 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0
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In [7], if S is a subset of X, then 〈S〉B is the intersection of all subalgebra H of X
such that S ⊆ H, and the subalgebra 〈S〉B of X is called the subalgebra generated by S.
If X = 〈S〉B , then S is called a set of generators for X. Moreover, 〈S〉B is the smallest
subalgebra of X containing S. If either S = ∅ or S = {0}, then 〈S〉B = {0}. If S is a
subalgebra of X, then 〈S〉B = S. In particular, 〈X〉B = X.

Let x ∈ X. In [9], J. Neggers and H.S. Kim defined xn = xn−1 ∗ (0 ∗ x) for n ≥ 1 and
x0 = 0. Then xm ∗ xn = xm−n if m ≥ n and xm ∗ xn = 0 ∗ xn−m otherwise. In [7], for
each x ∈ X, N.C. Gonzaga and J.P. Vilela defined −x = 0 ∗ x and x−n = (−x)n for each
n ≥ 1. In [5], J.C. Endam and R.C. Teves defined xm = 0 ∗ x−m for m ≤ −1. If m ≥ 1,
then xm = 0 ∗ (0 ∗ xm) = 0 ∗ x−m. In effect, xm = 0 ∗ x−m for any m ∈ Z. Furthermore,
in [7], we have xm ∗ xn = xm−n, (xm)n = xmn for all m, n ∈ Z, and 〈x〉B = {xn : n ∈ Z}.
If there exists a positive integer n such that xn = 0, then the smallest such positive integer
is denoted by |x|B . If no such positive integer n exists, then we say that |x|B is infinite. If
A ⊆ X, then we denote |A|B as the cardinality of A.

Let H and K be subalgebras of X. In [4], we define the subset HK of X to be the
set HK = {x ∈ X : x = h ∗ (0 ∗ k) for some h ∈ H, k ∈ K}. Clearly, we have H ⊆ HK,
H ⊆ KH, K ⊆ HK, and K ⊆ KH. Moreover, if H ⊆ K, then HK = KH = K. Also, HK
is a subalgebra of X if and only if HK = KH if and only if HK = 〈H ∪ K〉B . A B-algebra
X is called a cyclic B-algebra [7] if there exists x ∈ X such that X = 〈x〉B . Every cyclic
B-algebra is commutative, but the converse need not be true. In [5], if X = 〈x〉B is a cyclic
B-algebra with |X|B = m > 1 and if H is a nontrivial subalgebra of X, then H =

〈
xk

〉
B

for some integer k > 1 such that k divides m and |H|B divides m. Furthermore, for every
positive divisor d of m, there exists a unique subalgebra H of X with |H|B = d.

Let H be a subalgebra of X and x ∈ X. Let xH = {x ∗ (0 ∗ h) : h ∈ H} and
Hx = {h ∗ (0 ∗ x) : h ∈ H}, called the left and right B-cosets of H in X, respectively.
If X is commutative, then xH = Hx for all x ∈ X. Observe that 0H = H = H0 and
x = x ∗ (0 ∗ 0) ∈ xH and x = 0 ∗ (0 ∗ x) ∈ Hx. It is easy to see that xH = H if and only if
x ∈ H.

Theorem 2.3. [2] Let H be a subalgebra of X and a, b ∈ X. Then
i. aH = bH if and only if (0 ∗ b) ∗ (0 ∗ a) ∈ H
ii. Ha = Hb if and only if a ∗ b ∈ H.

In [2], if H is a subalgebra of X, then {xH : x ∈ X} forms a partition of X and there is
a one-one correspondence of the set of all left B-cosets of H in X onto the set of all right
B-cosets of H in X. Thus, we define the number of distinct left (or right) B-cosets, written
[X : H]B , of H in X as the index of H in X. If X is finite, then clearly [X : H]B is finite.

Theorem 2.4. [2] (Lagrange’s Theorem for B-algebras) Let H be a subalgebra of a finite
B-algebra X. Then |X|B = [X : H]B |H|B.

Corollary 2.5. [2] Let |X|B = p, where p is prime. Then X is cyclic.

Theorem 2.6. [2] If H, K are finite subalgebras of X, then |HK|B =
|H|B |K|B
|H ∩ K|B

.

3 Some Implications of Lagrange’s Theorem for B-algebras We now prove some
results where Lagrange’s Theorem plays a role.

Proposition 3.1. Let X be a noncyclic B-algebra with |X|B = p2, where p is prime. Then
|x|B = p for every nonzero x ∈ X.



CAUCHY’S THEOREM FOR B-ALGEBRAS 3

Proof. Let x ∈ X and x 6= 0. By Lagrange’s Theorem, |x|B divides |X|B = p2. Hence, |x|B
is equal to 1, p, or p2. If |x|B = p2, then 〈x〉B = X and so X is cyclic, a contradiction.
Since x 6= 0, |x|B 6= 1. Thus, |x|B = p.

Proposition 3.2. If X is a B-algebra with prime order, then X has only the trivial subal-
gebras.

Proof. Suppose that |X|B = p, where p is prime. Let H be a subalgebra of X. By Lagrange’s
Theorem, |H|B is 1 or p. Thus, H = {0} or H = X.

Proposition 3.3. Let |X|B = pn, where p is prime and n ≥ 1. Then X contains an
element of order p.

Proof. Let x ∈ X and x 6= 0. Then H = 〈x〉B is a cyclic subalgebra of X. By Lagrange’s
Theorem, |H|B divides |X|B = pn. Hence, |H|B = pm for some m ∈ Z, 0 < m ≤ n. It
follows that for every divisor d of pm, there exists a subalgebra of order d. In particular,
for p, there exists a subalgebra K of H such that |K|B = p. By Corollary 2.5, K is cyclic
and so there exists y ∈ K such that K = 〈y〉B and y is of order p. Hence, X contains an
element of order p.

Proposition 3.4. Let X be a finite commutative B-algebra such that X contains two dis-
tinct elements of order 2. Then |X|B is a multiple of 4.

Proof. Let x and y be two distinct elements of order 2. Let H = {0, x} and K = {0, y}.
Now, H and K are subalgebras of X. Since X is commutative, HK = {0, x, y, x ∗ (0 ∗ y)}
is a subalgebra of X of order 4. By Lagrange’s Theorem, |HK|B = 4 divides |X|B . Thus,
|X|B is a multiple of 4.

The above result need not be true if X is not commutative. For instance, consider the
B-algebra X = {0, 1, 2, 3, 4, 5} in Example 2.2. Note that X is not commutative. Now, 3
and 4 are elements of X with |3|B = 2 and |4|B = 2. However, 4 does not divide |X|B = 6.

Proposition 3.5. Let X be a B-algebra with |X|B = pq, where p and q are prime numbers.
Then every proper subalgebra of X is cyclic.

Proof. Let H be a proper subalgebra of X. By Lagrange’s Theorem, |H|B is 1, p, q, or pq.
Since H is proper, |H|B is p or q. By Corollary 2.5, H is cyclic.

Proposition 3.6. Let H and K be subalgebras of a finite B-algebra X such that |H|B >
√
|X|B

and |K|B >
√
|X|B. Then |H ∩ K|B > 1.

Proof. Suppose that H and K are subalgebras of a finite B-algebra X such that |H|B >
√

|X|B
and |K|B >

√
|X|B . By Theorem 2.6, |H ∩ K|B =

|H|B |K|B
|HK|B

. Since |H|B >
√
|X|B and

|K|B >
√
|X|B , it follows that |H|B |K|B > |X|B . Since |HK|B ≤ |X|B , it follows that

|X|B
|HK|B

≥ 1. Therefore, |H ∩ K|B =
|H|B |K|B
|HK|B

>
|X|B
|HK|B

≥ 1.

Proposition 3.7. Let |X|B = pq, where p and q are distinct primes with p > q. Then X
has at most one subalgebra of order p.

Proof. Suppose that H and K are subalgebras with |H|B = p = |K|B . Then |H|B >
√
|X|B

and |K|B >
√
|X|B . By Proposition 3.6, |H ∩ K|B > 1. Thus, |H ∩ K|B = p and so

H = K.
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4 Cauchy’s Theorem for B-algebras This section establishes the Cauchy’s Theorem
for B-algebras and it also provides some implications of this theorem. We start with a
simple observation given in the following lemma.

Lemma 4.1. Let a ∈ X. Then a ∈ Z(X) if and only if [X : C(a)]B = 1 if and only if
C(a) = X.

Let a ∈ X. An element b ∈ X is said to be a conjugate of a in X if there exists c ∈ X
such that b = c ∗ (c ∗ a). Let R = {(a, b) ∈ X × X: b is a conjugate of a}.

Theorem 4.2. Let a ∈ X. Then the relation R on X is an equivalence relation.

Proof. Since a = 0 ∗ (0 ∗ a), a is conjugate to a. Thus, R is reflexive. Let (a, b) ∈ R. Then
there exists c ∈ X such that b = c ∗ (c ∗ a). Multiplying both sides by 0 ∗ c twice, we have
(0 ∗ c) ∗ ((0 ∗ c) ∗ b) = (0 ∗ c) ∗ [(0 ∗ c) ∗ (c ∗ (c ∗ a))]. By (P2), (P3), (I), and (P1), we obtain

(0 ∗ c) ∗ ((0 ∗ c) ∗ b) = (0 ∗ c) ∗ [(0 ∗ c) ∗ (c ∗ (c ∗ a))]
= (0 ∗ c) ∗ [((0 ∗ c) ∗ (0 ∗ (c ∗ a))) ∗ c]
= (0 ∗ c) ∗ [((0 ∗ c) ∗ (a ∗ c)) ∗ c]
= (0 ∗ c) ∗ [(0 ∗ a) ∗ c)]
= ((0 ∗ c) ∗ (0 ∗ c)) ∗ (0 ∗ a)
= 0 ∗ (0 ∗ a)
= a.

Hence, a is conjugate to b. Thus, R is symmetric. Let (a, b), (b, c) ∈ R. Then there exist
u, v ∈ X such that b = u ∗ (u ∗ a) and c = v ∗ (v ∗ b). Now, by (P2) and (P3), we obtain

c = v ∗ (v ∗ b)
= v ∗ [v ∗ (u ∗ (u ∗ a))]
= v ∗ [(v ∗ (0 ∗ (u ∗ a))) ∗ u]
= v ∗ [(v ∗ (a ∗ u)) ∗ u]
= (v ∗ (0 ∗ u)) ∗ (v ∗ (a ∗ u))
= (v ∗ (0 ∗ u) ∗ [(v ∗ (0 ∗ u)) ∗ a]

Hence, (a, c) ∈ R and so R is transitive. Therefore, R is an equivalence relation on X.

The equivalence relation R in Theorem 4.2 is called conjugacy on X. The equivalence
class of a ∈ X, denoted by [a]c, of the relation R is called the conjugacy class of a in X.

Example 4.3. Consider the B-algebra X = {0, 1, 2, 3, 4, 5} in Example 2.2. Then there are
three distinct conjugacy classes in X, namely, [0]c = {0}, [1]c = [2]c = {1, 2}, [3]c = [4]c =
[5]c = {3, 4, 5}.

Remark 4.4. Let a ∈ X. Then a ∈ Z(X) if and only if [a]c = {a}.

The following theorem shows that the number of conjugates of a is equal to the index
of C(a) in X.

Theorem 4.5. Let a ∈ X. Then |[a]c|B = [X : C(a)]B.
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Proof. Let a ∈ X. Let L denote the set of all distinct left B-cosets of C(a) in X. Then
|L|B = [X : C(a)]B . By definition, b ∗ (b ∗ a) ∈ [a]c for all b ∈ X. Define f : L → [a]c by
f(bC(a)) = b ∗ (b ∗ a). Suppose that f(bC(a)) = f(cC(a)). Then by (P2), (P3), (P5), (I),
(III), and Theorem 2.3(i), we have

f(bC(a)) = f(cC(a)) ⇒ b ∗ (b ∗ a) = c ∗ (c ∗ a)
⇒ 0 ∗ (b ∗ (b ∗ a)) = 0 ∗ (c ∗ (c ∗ a))
⇒ (b ∗ a) ∗ b = (c ∗ a) ∗ c

⇒ (0 ∗ c) ∗ ((b ∗ a) ∗ b) = (0 ∗ c) ∗ ((c ∗ a) ∗ c)
⇒ (0 ∗ c) ∗ ((b ∗ a) ∗ b) = ((0 ∗ c) ∗ (0 ∗ c)) ∗ (c ∗ a)
⇒ (0 ∗ c) ∗ ((b ∗ a) ∗ b) = 0 ∗ (c ∗ a)
⇒ (0 ∗ c) ∗ ((b ∗ a) ∗ b) = a ∗ c

⇒ [(0 ∗ c) ∗ ((b ∗ a) ∗ b)] ∗ (0 ∗ b) = (a ∗ c) ∗ (0 ∗ b)
⇒ [((0 ∗ c) ∗ (0 ∗ b)) ∗ (b ∗ a)] ∗ (0 ∗ b) = a ∗ ((0 ∗ b) ∗ (0 ∗ c))
⇒ ((0 ∗ c) ∗ (0 ∗ b)) ∗ [(0 ∗ b) ∗ (0 ∗ (b ∗ a))] = a ∗ [0 ∗ ((0 ∗ c) ∗ (0 ∗ b))]
⇒ ((0 ∗ c) ∗ (0 ∗ b)) ∗ ((0 ∗ b) ∗ (a ∗ b)) = a ∗ [0 ∗ ((0 ∗ c) ∗ (0 ∗ b))]
⇒ ((0 ∗ c) ∗ (0 ∗ b)) ∗ (0 ∗ a) = a ∗ [0 ∗ ((0 ∗ c) ∗ (0 ∗ b))]
⇒ (0 ∗ c) ∗ (0 ∗ b) ∈ C(a)
⇒ bC(a) = cC(a).

Therefore, f is a one-one function. Let y ∈ [a]c. Then there exists x ∈ X such that
y = x ∗ (x ∗a) = f(xC(a)). Hence, f is onto. Therefore,f is a one-one function from L onto
[a]c. Consequently, |[a]c|B = |L|B = [X : C(a)]B .

Corollary 4.6. Let X be a finite B-algebra. Then |X|B =
∑

a

[X : C(a)]B, where the

summation is over a complete set of distinct conjugacy class representatives.

Proof. By Theorem 4.2, X =
⋃
a

[a]c , where the union runs over a complete set of dis-

tinct conjugacy class representatives. Since the distinct conjugacy classes are mutually

disjoint, we have |X|B =

∣∣∣∣∣ ⋃
a

[a]c

∣∣∣∣∣
B

=
∑

a

|[a]c|B . By Theorem 4.5, it follows that

|X|B =
∑

a

[X : C(a)]B , where the summation is over a complete set of distinct conju-

gacy class representatives.

Consider the B-algebra X = {0, 1, 2, 3, 4, 5} in Example 2.2. Then |X|B = 6 = 1+2+3 =
|[0]c|B + |[1]c|B + |[3]c|B =

∑
a

|[a]c|B =
∑

a

[X : C(a)]B .

Corollary 4.7. If X is a finite B-algebra, then |X|B = |Z(X)|B +
∑

a/∈Z(X)

[X : C(a)]B,

where the summation runs over a complete set of distinct conjugacy class representatives,
which do not belong to Z(X).

Proof. By Corollary 4.6, |X|B =
∑

a

[X : C(a)]B , where the summation is over a complete

set of distinct conjugacy class representatives. Thus, we have |X|B =
∑

a∈Z(X)

[X : C(a)]B +
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∑
a/∈Z(X)

[X : C(a)]B . By Lemma 4.1, we have
∑

a∈Z(X)

[X : C(a)]B = |Z(X)|B . Hence,

|X|B = |Z(X)|B +
∑

a/∈Z(X)

[X : C(a)]B , where the summation runs over a complete set of

distinct conjugacy class representatives which do not belong to Z(X).

Example 4.8. Consider the B-algebra X = {0, 1, 2, 3, 4, 5} in Example 2.2. Then Z(X) =
{0}. Hence, |Z(X)|B +

∑
a/∈Z(X)

[X : C(a)]B = 1 + |[1]c|B + |[3]c|B = 1 + 2 + 3 = 6 = |X|B .

We now prove a partial converse of Lagrange’s Theorem.

Lemma 4.9. If X is a finite commutative B-algebra with |X|B = n such that n is divisible
by a prime p, then X contains an element of order p and hence a subalgebra of order p.

Proof. We proceed by induction on the order of X. If |X|B = p where p is prime, then every
element of X (except 0) has order p. Thus, in particular, the lemma is true when |X|B = 2.
Suppose that the lemma is true for all B-algebras of order r, where 2 ≤ r < n. Suppose that
X is a B-algebra of order n. Let a ∈ X with a 6= 0 and let |a|B = m. Then either p|m or
p - m. If p|m, then m = pk for some k ∈ Z+. In this case, (ak)p = am = 0. Hence, ak 6= 0
and |ak|B = p. Suppose p - m. Since X is commutative, the cyclic subalgebra H = 〈a〉B of
X is a normal subalgebra of X. By Lagrange’s Theorem, |X|B = m[X : H]B . Since p - m,
we have p|[X : H]B = |X/H|B . Since |X/H|B < n, there exists bH ∈ X/H s.t. |bH|B = p.
Now, bpH = (bH)p = H. Hence, bp ∈ H. Thus, (bm)p = (bp)m = 0 and so either bm = 0
or |bm|B = p. If bm = 0, then (bH)m = H which implies p|m , a contradiction. Therefore,
|bm|B = p and so bm is the desired element of X.

Theorem 4.10. (Cauchy’s Theorem for B-algebras) Let X be a finite B-algebra with
|X|B = n such that n is divisible by a prime p. Then X contains an element of order
p and hence a subalgebra of order p.

Proof. We proceed by induction on the order of X. If n = 2, then X is commutative and
the result follows from Lemma 4.9. Suppose that the theorem is true for all B-algebras
of order m s.t. 2 ≤ m < n. By Corollary 4.7, |X|B = |Z(X)|B +

∑
a/∈Z(x)

[X : C(a)]. If

X = Z(X), then X is commutative and the result follows from Lemma 4.9. If X 6= Z(X),
then there exists a ∈ X s.t. a /∈ Z(X). Then X 6= C(a) and so [X : C(a)]B > 1. By
Lagrange’s Theorem, |X|B = [X : C(a)]B |C(a)|B > |C(a)|B . If p||C(a)|B , then C(a) has
an element of order p and so X has an element of order p. If p - |C(a)|B for all a /∈ Z(X)
, then p|[X : C(a)]B for all a /∈ Z(X). Since p divides each term of the summation and
also divides |X|B , we have p||Z(X)|. By Lemma 4.9, X contains an element of order p and
hence a subalgebra of order p

The following theorem proves that the converse of Lagrange’s Theorem for B-algebras
hold for finite commutative B-algebras.

Theorem 4.11. Let X be a finite commutative B-algebra with |X|B = n. If m ∈ Z+ such
that m|n, then X has a subalgebra of order m.

Proof. If m = 1, then {0} is the required subalgebra of order m. If n = 1, then m = n = 1
and the result follows easily. Assume that m > 1 and n > 1. We proceed by induction
on n. If n = 2, then m = 2 and X is the required subalgebra of order m. Suppose that
the theorem is true for all finite commutative B-algebras of order k s.t. 2 ≤ k < n. Let
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p be a prime integer s.t. p|m. Then there exists m1 ∈ Z+ s.t. m = pm1. By Cauchy’s
Theorem, X has a subalgebra H of order p. Since X is commutative, H is normal and
X/H is a B-algebra. Now, 1 ≤ |X/H|B = |X|B

|H|B < |X|B and |X/H|B = n
p . Now, n = mm2

for some m2 ∈ Z+. Thus, |X/H|B = pm1m2
p = m1m2 and so m1 divides |X/H|B . Hence,

X/H has a subalgebra K/H s.t. |K/H|B = m1, where K is a subalgebra of X. Now,
|K|B = |K/H|B |H|B = m1p = m. Hence, K is a subalgebra of order m.

As a consequence of Cauchy’s Theorem, we now introduce the concept of Bp-algebras.

Definition 4.12. Let p be a prime number. A B-algebra X is called a Bp-algebra if the
order of each element of X is a power of p. A subalgebra H of a B-algebra X is called
Bp-subalgebra if H is a Bp-algebra.

The B-algebra in Example 2.1 is B3-algebra. We now prove some results where Cauchy’s
Theorem plays a role. The following theorem provides a necessary and sufficient condition
for a finite B-algebra to be a Bp-algebra.

Theorem 4.13. Let X be a nontrivial B-algebra. Then X is a finite Bp-algebra if and only
if |X|B = pk for some k ∈ Z+.

Proof. Suppose that X is a finite Bp-algebra. If q||X|B for some prime q 6= p, then by
Cauchy’s Theorem, X has an element of order q, a contradiction. Thus, p is the only prime
divisor of |X|B , that is, |X|B = pk for some k ∈ Z+. Conversely, suppose that |X|B = pk

for some k ∈ Z+. Then by Lagrange’s Theorem, the order of each element of X is a power
of p. Therefore, X is a finite Bp-algebra.

The following theorem shows that the center of a Bp-algebra is nontrivial.

Theorem 4.14. If X is a finite Bp-algebra with |X|B > 1, then |Z(G)|B > 1.

Proof. Suppose that X is a finite Bp-algebra with |X|B >1. If X = Z(X), then |Z(X)|B =
|X|B > 1. Suppose that Z(X) ⊂ X and consider a ∈ X such that a /∈ Z(X). Then
C(a) is a proper subalgebra of a Bp-algebra X. By Theorem 4.13, p||X|B . It follows that
p|[X : C(a)]B for all a /∈ Z(X). Thus, p divides

∑
a/∈Z(X)

[X : C(a)]B . By Corollary 4.7,

|X|B = |Z(X)|B +
∑

a/∈Z(X)

[X : C(a)]B . Since p||X|B and p|
∑

a/∈Z(X)

[X : C(a)]B , it follows

that p||Z(X)|B . Therefore, |Z(X)|B > 1.

Corollary 4.15. If |X|B = p2, where p is prime, then X is commutative.

Proof. Suppose that |X|B = p2, where p is prime. By Theorem 4.14, |Z(X)|B > 1. Since
Z(X) is a subalgebra, |Z(X)|B divides p2 by Lagrange’s Theorem. Hence, |Z(X)|B is p
or p2. If |Z(X)|B = p. Then Z(X) 6= X and so there exists a ∈ X such that a /∈ Z(X).
In [6], C(a) is a subalgebra of X with a ∈ C(a). Hence, Z(X) ⊂ C(a). This implies that
|C(a)|B = p2. Thus, X = C(a) and so a ∈ Z(X), a contradiction. Therefore, |Z(X)|B = p2

and so X = Z(X). Consequently, X is commutative.

Proposition 4.16. Let H and K be subalgebras of a commutative B-algebra X. If |H|B =
m and |K|B = n, then X has a subalgebra of order lcm(m,n).
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Proof. Let H and K be subalgebras of a commutative B-algebra X with |H|B = m and
|K|B = n. Since HK = KH, HK is a subalgebra of X. Since H and K are finite, H
and K are subalgebras of a finite B-algebra HK. By Lagrange’s Theorem, m||HK|B and
n||HK|B . Hence, lcm(m,n)||HK|B . By Theorem 4.11, HK has a subalgebra of order
lcm(m,n) and so X has a subalgebra of order lcm(m,n).

The version of Lagrange’s Theorem for B-algebras in [2] is analogue to the Lagrange’s
Theorem for groups, and the version of Cauchy’s Theorem for B-algebras in this paper is
analogue to the Cauchy’s Theorem for groups. It is then natural to seek an analogue results
to the Sylow Theorems for groups.
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