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Abstract. Let f be an operator monotone function on [0,∞) with
f(t) ≥ 0 and f(1) = 1. If f(t) is neither the constant function 1 nor
the identity function t, then

h(t) =
(t − a)(t − b)

(f(t) − f(a))(f �(t) − f �(b))
t ≥ 0

is also operator monotone on [0,∞), where a, b ≥ 0 and

f �(t) =
t

f(t)
t ≥ 0.

Moreover, we show some extensions of this statement.

1 Introduction and History We call a real continuous function f(t) on
an interval I operator monotone on I (in short, f ∈ P(I) ), if A ≤ B implies
f(A) ≤ f(B) for any self-adjoint matrices A, B with their spectrum containd
in I. In this paper, we consider only the case I = [0,∞) or I = (0,∞). We
denote f ∈ P+(I) if f ∈ P(I) satisfies f(t) ≥ 0 for any t ∈ I.

Let H+ be the upper-half plain of C, that is,

H+ = {z ∈ C | Imz > 0} = {z ∈ C | |z| > 0, 0 < arg z < π},
where Imz (resp. arg z) means the imaginary part (resp. the argument) of z.
As Loewner’s theorem, it is known that f is operator monotone on I if and
only if f has an analytic continuation to H+ that maps H+ into its closure H+

and also has an analytic continuation to the lower half-plane H−, obtained by
the reflection across I. (see [1],[3],[5] ).

D. Petz [11] proved that an operator monotone function f : [0,∞) −→
[0,∞) satisfying the functional equation

f(t) = tf(t−1) t ≥ 0
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is related to a Morozova-Chentsov function [9] which gives a monotone metric
on the manifold of n × n density matrices. In the work [12], the concrete
functions (Petz-Hasegawa’s functions)

fa(t) = a(1 − a)
(t − 1)2

(ta − 1)(t1−a − 1)
(−1 ≤ a ≤ 2)

appeared and their operator monotonicity was proved (see also [2]). V.E.S.
Szabo introduced an interesting idea for checking their operator monotonicity
in [13], but his idea was something strange. We use a similar idea in our ar-
gument. M. Uchiyama [14] proved the operator monotonicity of the following
extended functions:

(t − a)(t − b)

(tp − ap)(t1−p − b1−t)
∈ P+[0.∞)

for 0 < p < 1 and a, b > 0. The main result of this paper is as follows:

Theorem 1. Let a and b be non-negative real numbers. If f ∈ P+[0,∞) and
both f and f � are not constant, then

h(t) =
(t − a)(t − b)

(f(t) − f(a))(f �(t) − f �(b))
∈ P+[0.∞),

where

f �(t) =
t

f(t)
t ≥ 0.

The proof of this statement was given in [7] by the author and his student,
M. Kawasaki. We also made its revised version as [8]. But these manuscripts
have been unpublished. F. Hansen [4] has inspired by [8] and given the dif-
ferent proof of the above statement in the case a = b = 1. The proof in this
paper was based on the theory of Complex Analysis and we have considered
this method useful. The same method was introduced for the proof of the op-
erator monotonicity of Petz-Hasegawa’s functions in [6]. Also the autor and
S. Wada have extended the method and succeeded to justify Szabo’s result
in a sense [10]. The last section we will prove main theorem and give some
applications.

2 Main result For f ∈ P[0,∞), we have the following integral representa-
tion:

f(z) = f(0) + βz +

∫ ∞

0

λz

z + λ
dw(λ),
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where β ≥ 0 and ∫ ∞

0

λ

1 + λ
dw(λ) < ∞

(see [1]). When f(0) ≥ 0 (i.e., f ∈ P+[0,∞)), it holds that 0 < arg f(z) ≤
arg z whenever 0 < arg z < π.

For any f ∈ P+[0,∞) (f �= 0), we define f � as follows:

f �(t) =
t

f(t)
t ∈ [0,∞).

Then it is well-known f � ∈ P+[0,∞).

Proposition 2. Let f be an operator monotone function on (0,∞) and a be
a positive real number.

(1) When f(t) is not constant, we have

g1(t) =
t − a

f(t) − f(a)
∈ P+[0,∞).

(2) When f(t) ≥ 0 for t ≥ 0, we have

g2(t) =
f(t)(t − a)

tf(t) − af(a)
∈ P+[0,∞).

Proof. (1) It has proved in [14]. We state the outline of the proof. For f ∈
P+(0,∞), we have

f(z) = α + βz +

∫ ∞

0

(− 1

x + z
+

x

x2 + 1
)dν(x) (α ∈ R, β ≥ 0)

for z ∈ H+ ∪ (0,∞) by Loewner’s theorem ([1], [3], [6]). Since

g1(z) =
z − a

f(z) − f(a)
=

1

β +
∫ ∞

0
1

(x+z)(x+a)
dν(x)

,

we have

Img1(z) =
−1

|g1(z)|2 Im(β +

∫ ∞

0

1

(x + z)(x + a)
dν(x))

=
−1

|g1(z)|2
∫ ∞

0

1

x + a
Im

1

x + z
dν(x) > 0



4 Masaru Nagisa

for z ∈ H+. This implies g1 ∈ P+[0,∞).
(2) Since g2([0,∞)) ⊂ [0,∞), it suffices to show that g2(H+) ⊂ H+. By

the calculation

g2(z) =
zf(z) − af(a) + af(a) − f(z)a

zf(z) − af(a)
= 1 − a(f(z) − f(a))

zf(z) − af(a)

= 1 − a

zf(z) − af(a)

f(z) − f(a)

= 1 − a

z + f(a)g1(z)
,

we have

Img2(z) = −Im
a

z + f(a)g1(z)
= Im

a(z + f(a)g1(z))

|z + f(a)g1(a)|2 .

When z ∈ H+, Img1(z) > 0 by (1) and Img2(z) > 0. So g2(t) belongs to
P+[0,∞).

Lemma 3. Let a ≥ 0 and 0 < p < 1. If f is a non-constant operator
monotone function on (0,∞), then we have

f(tp) − f(ap) �= 0 and tf(tp) − af(ap) �= 0

for any t ∈ (−∞, 0).

Proof. When f is operator monotone and not constant, we have Imf(z) > 0
for any z ∈ H+ by the maximum principle for the harmonic function Imf on
H+. For any t = |t|eiπ ∈ (−∞, 0), we have tp ∈ H+ and Imf(tp) > 0. This
implies

Imf(tp) �= Imf(ap) = 0 and Imf(tp) �= Im
af(ap)

t
= 0,

that is, f(tp) − f(ap) �= 0 and tf(tp) − af(ap) �= 0.

Lemma 4. For any z ∈ H+ and a positive integer n (n ≥ 2), we have

arg z < arg(z − l) <
π + (n − 1) arg z

n
if 0 < l ≤ |z|

n − 1
.

Proof. It is clear that arg z < arg(z − l) for z ∈ H+ and l > 0.
It suffices to show that, for z = eiθ (0 < θ < π),

arg(z − l) <
π + (n − 1)θ

n
if 0 < l ≤ 1

n − 1
.
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We set

w =
sin θ

sin π+(n−1)θ
n

ei(π+(n−1)θ)/n.

Then we have Imz = Imw and

0 < z − w = cos θ − sin θ

sin π+(n−1)θ
n

cos
π + (n − 1)θ

n
=

sin π−θ
n

sin π+(n−1)θ
n

.

By the estimation

inf{z − w | 0 < θ < π} = inf{ sin π−θ
n

sin π+(n−1)θ
n

| 0 < θ < π}

= inf{ sin t

sin(π − (n − 1)t)
| 0 < t <

π

n
} = inf{ sin t

sin(n − 1)t
| 0 < t <

π

n
} =

1

n − 1
,

we can get the desired result.

Now we can prove the following theorem and remark that Theorem 1 fol-
lows from this statement because f(t)f �(t)/t = 1 ∈ P+[0,∞):

Theorem 5. Let n be a positive integer, a, b, b1, . . . , bn ≥ 0 and f, g, g1, . . . , gn

be non-constant, non-negative operator monotone functions on [0,∞).

(1) If
f(t)g(t)

t
is operator monotone on [0,∞), then the function

h(t) =
(t − a)(t − b)

(f(t) − f(a))(g(t) − g(b))

is operator monotone on [0,∞) for any a, b ≥ 0.

(2) If
f(t)∏n

i=1 gi(t)
is operator monotone on [0,∞), then the function

h(t) =
(t − a)

(f(t) − f(a))

n∏
i=1

gi(t)(t − bi)

tgi(t) − bigi(bi)

is operator monotone on [0,∞) for any a, b ≥ 0.

Proof. (1) By f, g ∈ P+[0,∞) and Proposition 2 (1),

t − a

f(t) − f(a)
and

t − b

g(t) − g(b)



6 Masaru Nagisa

are operator monotone on [0,∞). Therefore

h(z) =
(z − a)(z − b)

(f(z) − f(a))(g(z) − g(b))

is holomorphic on H+, continuous on H+ ∪ [0,∞) and satisfies h([0,∞)) ⊂
[0,∞) and

arg h(z) = arg
z − a

f(z) − f(a)
+ arg

z − b

g(z) − g(b)
> 0 for z ∈ H+.

We assume that f(z) and g(z) are continuous on the closure H+ of H+ and

f(t) − f(a) �= 0 and g(t) − g(b) �= 0 for any t ∈ (−∞, 0).

Then h(z) is continuous on H+.
In the case z ∈ (−∞, 0), i.e., |z| > 0 and arg z = π, we have

arg h(z)

= arg(z − a) − arg(f(z) − f(a)) + arg(z − b) − arg(g(z) − g(b))

≤π − arg f(z) + π − arg g(z)

≤2π − arg z = π (since arg f(z) + arg g(z) − arg z ≥ 0).

So it holds 0 ≤ arg h(z) ≤ π.
In the case that z ∈ H+ satisifying |z| > max{a, b}, it holds that

arg(z − a), arg(z − b) <
π + arg z

2

by Lemma 4 (as l = max{a, b} and n = 2). Since

arg h(z) = arg(z − a) − arg(f(z) − f(a)) + arg(z − b) − arg(g(z) − g(b))

<
π + arg z

2
− arg f(z) +

π + arg z

2
− arg g(z)

= π + arg z − arg f(z) − arg g(z) ≤ π,

we have 0 < arg h(z) < π.
For r > 0, we define H(r) = {z ∈ C | |z| ≤ r, Imz ≥ 0}. Whenever

r > l = max{a, b}, we can get

0 ≤ arg h(z) ≤ π

on the boundary of H(r). Since h(z) is holomorphic on the interior H(r)◦ of
H(r) and continuous on H(r), Imh(z) is harmonic on H(r)◦ and continuous on
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H(r). Because Imh(z) ≥ 0 on the boundary of H(r), we have h(H(r)) ⊂ H+

by the minimum principle of harmonic functions. This implies

h(H+) = h(
⋃
r>l

H(r)) ⊂
⋃
r>l

h(H(r)) ⊂ H+,

and h ∈ P+[0,∞).
In general case, we define fp and gp as follows (0 < p < 1):

fp(t) = f(tp) and gp(t) = t1−pg(tp).

It is clear fp ∈ P+[0,∞). When 0 < arg z < π, we have

arg gp(z) ≥ (1 − p) arg z > 0 and

arg gp(z) = (1 − p) arg z + arg g(zp) ≤ (1 − p) arg z + p arg z < π.

So gp ∈ P+[0,∞). For any t ∈ (−∞, 0), we have fp(t) − fp(a) �= 0 by Lemma
3 and gp(t)− gp(a) �= 0 because t = |t|eπi and (1− p)π < arg gp(t) ≤ π. So we
have

hp(z) =
(z − a)(z − b)

(fp(z) − fp(a))(gp(z) − gp(b))

is holomorphic on H+ and continuous on H+. Since f(t)g(t)
t

∈ P+[0,∞),

fp(t)gp(t)

t
=

f(tp)t1−pg(tp)

t
=

f(tp)g(tp)

tp

also belongs to P+[0,∞). By the above argument, we have hp ∈ P+[0,∞).
Since

hp(t) =
(t − a)(t − b)

(fp(t) − fp(a))(gp(t) − gp(b))

=
(t − a)(t − b)

(f(tp) − f(ap))(t1−pg(tp) − b1−pg(bp))
for t ≥ 0,

we have

lim
p→1−0

hp(t) = h(t).

So we can get the operator monotonicity of h(t).
(2) We show this by the similar way as (1). By Proposition 2,

t − a

f(t) − f(a)
and

gi(t)(t − bi)

tgi(t) − bigi(bi)
(i = 1, 2, . . . , n)
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are operator monotone on [0,∞). So we have that

h(z) =
z − a

f(z) − f(a)

n∏
i=1

gi(z)(z − bi)

zgi(z) − bigi(bi)

is holomorphic on H+, continuous on H+ ∪ [0,∞) and satisfies h([0,∞)) ⊂
[0,∞) and

arg h(z) = arg
z − a

f(z) − f(a)
+

n∑
i=1

arg
gi(z)(z − bi)

zgi(z) − bigi(bi)
> 0

for z ∈ H+.

We assume that f(z) and gi(z) (i = 1, 2, . . . , n) are continuous on H+ and

f(t) − f(a) �= 0 and tgi(t) − bigi(bi) �= 0 for any t ∈ (−∞, 0).

Then h(z) is continuous on H+.

In the case z ∈ (−∞, 0), i.e., |z| > 0 and arg z = π, we have

arg h(z)

= arg(z − a) +
n∑

i=1

arg gi(z)(z − bi) − arg(f(z) − f(a)) −
n∑

i=1

arg(zgi(z) − bigi(bi))

≤π +
n∑

i=1

arg gi(z) + nπ − arg f(z) − nπ (since arg(zgi(z) − bigi(bi)) ≥ π)

≤π (since arg f(z) −
n∑

i=1

arg gi(z) ≥ 0).

So it holds 0 ≤ arg h(z) ≤ π.

In the case z ∈ H+ satisifying |z| > n max{a, b1, b2, . . . , bn}, it holds that

arg(z − a), arg(z − bi) <
π + n arg z

n + 1
(i = 1, 2, . . . , n)

by Lemma 4. We may assume that there exists a number k (1 ≤ k ≤ n) such
that

arg(zgi(z)) ≤ π (i ≤ k), arg(zgi(z)) > π (i > k).
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Since

arg h(z)

= arg(z − a) +
n∑

i=1

arg(z − bi) +
n∑

i=1

arg gi(z)

− arg(f(z) − f(a)) −
n∑

i=1

arg(zgi(z) − bigi(bi))

≤π + n arg z

n + 1
× (n + 1) +

n∑
i=1

arg gi(z)

− arg f(z) −
k∑

i=1

arg zgi(z) − (n − k)π

=π + n arg z +
n∑

i=k+1

arg gi(z) − arg f(z) − k arg z − (n − k)π

≤π + (n − k) arg z − (n − k)π ≤ π,

we have 0 ≤ arg h(z) ≤ π.
This means that it holds

0 ≤ arg h(z) ≤ π

if z belongs to the boundary of H(r) = {z ∈ C | |z| ≤ r, Imz ≥ 0} for
a sufficiently large r. Using the same argument in (1), we can prove the
operator monotonicity of h.

In general case, we define functions, for p (0 < p < 1), as follows:

fp(t) = f(tp), gi,p(t) = gi(t
p) (i = 1, 2, . . . , n).

Since f, gi ∈ P+[0,∞),

0 < arg fp(z) < π, 0 < arg zgi,p(z) < 2π

for z ∈ H+. This means that fp(z) and gi,p(z) are continuous on H+ and

fp(t) − fp(a) �= 0 and tgi,p(t) − bigi,p(bi) �= 0 for any t ∈ (−∞, 0)

by Lemma 3. Since

fp(t)∏n
i=1 gi,p(t)

=
f(tp)∏n

i=1 gi(tp)
(0 < p < 1)
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is operator monotone on [0,∞), we can get the operator monotonicity of

hp(t) =
t − a

fp(t) − fp(a)

n∏
i=1

gi,p(t)(t − bi)

tgi,p(t) − bigi,p(bi)

=
t − a

f(tp) − f(ap)

n∏
i=1

gi(t
p)(t − bi)

tgi(tp) − bigi(b
p
i )

.

So we can see that
h(t) = lim

p→1−0
hp(t)

is operator monotone on [0,∞).

Remark 6. Using Proposition 2 and Theorem 5, we can prove the operator
monotonicity of the concrete functions in [12]. Since ta (0 < a < 1) and log t
is operator monotone on (0,∞),

fa(t) = a(1 − a)
(t − 1)2

(ta − 1)(t1−a − 1)
(−1 ≤ a ≤ 2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(a − 1)
t−a(t − 1)2

(t−a − 1)(t · t−a − 1)
−1 ≤ a < 0

t − 1

log t
a = 0, 1

a(1 − a)
(t − 1)2

(ta − 1)(t1−a − 1)
0 < a < 1

a(a − 1)
ta−1(t − 1)2

(ta−1 − 1)(t · ta−1 − 1)
1 < a ≤ 2

becomes operator monotone.

We can also prove this remark and the first part of Example 10 using some
formula stated in [10] as Theorem 1.2.

Corollary 7. Let f ∈ P+(0,∞) and both f and f � be not constant. For any
a > 0, we define

ha(t) =
(t − a)(t − a−1)

(f(t) − f(a))(f �(t) − f �(a−1))
t ∈ (0,∞).

Then we have

(1) ha is operator monotone on (0,∞).
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(2) f(t) = t · f(t−1) implies ha(t) = t · ha(t
−1).

(3) a = 1 and f(t−1) = f(t)−1 imply h1(t) = t · h1(t
−1).

Proof. We can directly prove (1) from Theorem 5. Because

t · ha(t
−1) =

t(t−1 − a)(t−1 − a−1)

(f(t−1) − f(a))(f �(t−1) − f �(a−1))

=
(t − a)(t − a−1)

t(f(t−1) − f(a))(f �(t−1) − f �(a−1))
,

we can compute

t(f(t−1) − f(a))(f �(t−1) − f �(a−1)) − (f(t) − f(a))(f �(t) − f �(a−1))

=(f(t−1) − f(a))(1/f(t−1) − t/af(a−1)) − (f(t) − f(a))(t/f(t) − 1/af(a−1))

=0

if it holds f(t) = t · f(t−1) or a = 1, f(t−1) = f(t)−1. So we have (2) and
(3).

The function h is called symmetric if it satisfies the following condition:

h(t) = th(t−1), t ≥ 0.

We can define a symmetric operator mean using a symmetric operator mono-
tone function in the sense of Kubo-Ando ([5], [6]). Corollary 7 says that
we can repeatedly construct a symmetric operator monotone function from a
symmetric operator monotone function. We can give the following examples.

Example 8. If we choose tp (0 < p < 1) as f(t) in Corollary 7(3),

h(t) =
(t − 1)2

(tp − 1)(t1−p − 1)
.

If we choose tp + t1−p (0 < p < 1) as f(t) in Corollary 7(2),

h(t) =
t − a

tp + t1−p − ap − a1−p
× t − a−1

1

tp−1 + t−p
− 1

ap + a1−p

(a > 0)

=

√
t(cosh(log t) − cosh(log a))

cosh(log
√

t) − cosh(log
√

t + log(tp + t1−p) − log(ap + a1−p))
.

These functions, h ∈ P+[0,∞), are symmetric.
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3 Extension of Theorem 4 Let m and n be positive integers and f1, f2, . . . , fm,
g1, g2, . . . , gn be non-constant, non-negative operator monotone functions on
[0,∞). We assume that the function

F (t) =

∏m
i=1 fi(t)

tm−1
∏n

j=1 gj(t)

is operator monotone on [0,∞). For non-negative numbers a1, a2, . . . , am, b1, b2, . . . , bn,
we define the function h(t) as follows:

h(t) =
m∏

i=1

t − ai

fi(t) − fi(ai)

n∏
j=1

gj(t)(t − bj)

tgj(t) − bjgj(bj)
(t ≥ 0).

Then it follows from Proposition 2 that h(z) is holomorphic on H+ , h([0,∞)) ⊂
[0,∞) and arg h(z) > 0 for any z ∈ H+.

Theorem 9. In the above setting, we have the following:

(1) When fi and gj (1 ≤ i ≤ m, 1 ≤ j ≤ n) are continuous on H+ and

fi(t) − fi(ai) �= 0, tgj(t) − bjgj(bj) �= 0, t ∈ (−∞, 0),

h(t) is operator monotone on [0,∞).

(2) When there exists a positive number α such that α arg z ≤ arg F (z) for
all z ∈ H+,h(t) is operator monotone on [0,∞).

Proof. (1) Using the same argument of proof of Theorem 5 (1), it suffices to
show that 0 ≤ arg h(z) ≤ π for z ∈ R or z ∈ H+ whose absolutely value is
sufficiently large.

In the case z ∈ (−∞, 0), i.e., |z| > 0 and arg z = π, we have

arg h(z)

=
m∑

i=1

arg(z − ai) +
n∑

j=1

arg(gj(z)(z − bj))

−
n∑

i=1

arg(fi(z) − fi(ai)) −
n∑

j=1

(zgj(z) − bjgj(bj))

≤mπ + nπ +
n∑

j=1

arg gj(z) −
m∑

i=1

arg fi(z) − nπ

=π − arg

∏n
i=1 fi(z)

zm−1
∏n

j=1 gj(z)
≤ π.
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So it holds 0 ≤ arg h(z) ≤ π.
In the case that z ∈ H+ satisifies

|z| > (m + n − 1) max{ai, bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Then it holds that

arg(z − ai), arg(z − bj) <
π + (m + n − 1) arg z

m + n

by Lemma 4. We may assume that there exists k (1 ≤ k ≤ n) such that

arg(zgj(z)) ≤ π (j ≤ k), arg(zgj(z)) > π (j > k).

Since

arg h(z)

≤π + (m + n − 1) arg z

m + n
× m +

π + (m + n − 1) arg z

m + n
× n +

n∑
j=1

arg gj(z)

−
m∑

i=1

arg fi(z) −
k∑

j=1

arg zgj(z) − (n − k)π

=π + (m + n − k − 1) arg z +
n∑

j=k+1

arg gj(z) −
m∑

i=1

arg fi(z) − (n − k)π

≤π + (n − k)(arg z − π) − arg

∏m
i=1 fi(z)

zm−1
∏m

j=1 gj(z)

≤π − arg F (z) ≤ π,

we have 0 ≤ arg h(z) ≤ π. So h(t) is operator monotone on [0,∞).
(2) We choose a positive number p as follows:

m − 1

α + m − 1
< p < 1.

We define functions fi,p, gj,p as follows:

fi,p(z) = fi(z
p), gj,p(z) = gj(z

p) (z ∈ H+).

Since fi, gj ∈ P+[0,∞), fi,p, gj,p are continuous on H+ and satisfy the condition

fi,p(t) − fi,p(ai) �= 0, tgj,p(t) − bjgj,p(bj) �= 0, t ∈ (−∞, 0)

by Lemma 3. We put

Fp(t) =

∏m
i=1 fi,p(t)

tm−1
∏n

j=1 gj,p(t)
= F (tp)t−(m−1)(1−p).
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Then Fp is holomorphic on H+ and satisfies Fp((0,∞)) ⊂ (0,∞). For any
z ∈ H+, we have

arg Fp(z) = arg F (zp) − (m − 1)(1 − p) arg z ≤ arg F (zp) ≤ π

and

arg Fp(z) ≥ α arg zp − (m − 1)(1 − p) arg z

= (αp − (m − 1)(1 − p)) arg z

= ((α + m − 1)p − (m − 1)) arg z > 0.

So we can see Fp ∈ P+[0,∞). By (1), we can show that

hp(t) =
m∏

i=1

(t − ai)

fi,p(t) − fi,p(ai)

n∏
j=1

gj,p(t)(t − bj)

tgj,p(t) − bjgj,p(bj)

is operator monotone on [0,∞). When p tends to 1, hp(t) also tends to h(t).
Hence h(t) is operator monotone on [0,∞).

Example 10. Let 0 < pi ≤ 1 (i = 1, 2, . . . , m) and 0 ≤ qj ≤ 1 (j =
1, 2, . . . , n). We put

fi(t) = tpi , gj(t) = tqj (t ≥ 0).

By the calculation

F (t) =

∏m
i=1 fi(t)

tm−1
∏n

j=1 gj(t)
= t

Pm
i=1 pi−

Pn
j=1 qj−(m−1),

we have, for real numbers ai, bj ≥ 0,

h(t) = t
Pn

j=1 qj
(t − a1) · · · (t − am)(t − b1) · · · (t − bn)

(tp1 − ap1

1 ) · · · (tpm − apm
m )(t1+q1 − b1+q1

1 ) · · · (t1+qn − b1+qn
n )

is operator monotone on [0,∞) by Theorem 9 if it holds

0 ≤
m∑

i=1

pi −
n∑

j=1

qj − (m − 1) ≤ 1,

i.e., F (t) is operator monotone on [0,∞).
When

∑m
i=1 pi =

∑n
j=1 qj + (m − 1), we can see that

h(t) =
t

Pn
j=1 qj(t − 1)m+n∏m

i=1(t
pi − 1)

∏n
j=1(t

1+qj − 1)
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is operator monotone on [0,∞) and symmetric.
We can easily check that, if h1, h2 ∈ P+[0,∞) are symmetric, then the

functions

f(t) = h1(t)
1/ph2(t)

1−1/p (p > 1)

g(t) =
t

h1(t)

are also operator monotone on [0,∞) and symmetric.
Combining these facts, for ri, si (i = 1, 2, . . . , n) with

0 < r1, . . . , rc ≤ 1, 1 ≤ rc+1, . . . , rn ≤ 2

0 < s1, . . . , sd ≤ 1, 1 ≤ sd+1, . . . , sn ≤ 2

c∑
i=1

ri =
n∑

i=c+1

ri − 1,
d∑

i=1

si =
n∑

i=d+1

sj − 1,

we can see that the function

h(t) =

√√√√tγ
n∏

i=1

ri(tsi − 1)

si(tri − 1)

is operator monotone on [0,∞) and symmetric with h(1) = 1, where γ =
1 − c + d +

∑c
i=1 ri −

∑d
i=1 si.

By such a way, we can also construct from a symmetric operator monotone
function to new one.

Ackowledgemant. The author is grateful to the refree for his careful com-
ments.
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