B-ALGEBRAS ACTING ON SETS

JOEMAR C. ENDAM¹ AND EMELYN C. BANAGUA²

Received September 8, 2017

ABSTRACT. In this paper, we introduce the notion of a B-action of a B-algebra X on a set S. We show that a B-action *' of X on S induces an equivalence relation on S defined by $s \sim s'$ if and only if x *' s = s' for some $x \in X$. Moreover, for any $s \in S$, the cardinality of the equivalence class $[s]_B$ of s is equal to the index of the corresponding subalgebra X_s in X, that is, $|[s]_B| = [X : X_s]_B$, where $X_s = \{x \in X : x *' s = s\}$. Furthermore, the number of distinct equivalence classes is given by $\frac{1}{|X|} \sum_{x \in X} F(x)$, where F(x) is the number of elements of S fixed by x. We also introduce B-faithfulness and B-transitivity and investigate some related properties.

1 Introduction and Preliminaries In [3], the notion of B-algebras was introduced by J. Neggers and H.S. Kim in 2002. A *B-algebra* is an algebra (X; *, 0) of type (2, 0) (that is, a nonempty set X with a binary operation * and a constant 0) satisfying the following axioms for all $x, y, z \in X$:

 $(\mathbf{I}) \ x * x = 0,$

(II) x * 0 = x,

(III) (x * y) * z = x * (z * (0 * y)).

A B-algebra (X; *, 0) is commutative [3] if x * (0 * y) = y * (0 * x) for all $x, y \in X$. In [4], J. Neggers and H.S. Kim introduced the notions of a subalgebra and normality of Balgebras and some of their properties are established. A nonempty subset N of X is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. It is called normal in X if for any $x, y, a, b \in N$ ($x * y, a * b \in N$ implies (x * a) $* (y * b) \in N$). A normal subset of X is a subalgebra of X. There are several properties of B-algebras as established by some authors. The following properties are used in this paper, for any $x, y, z \in X$, we have

(P1) 0 * (0 * x) = x [3], (P2) x * y = 0 * (y * x) [5], (P3) x * (y * z) = (x * (0 * z)) * y [3], (P4) 0 * x = 0 * y implies x = y [3], (P5) x * y = 0 implies x = y [3].

In [1], the concept of B-cosets of B-algebras is introduced. Let H be a subalgebra of a B-algebra X and $x \in X$. Let $xH = \{x * (0 * h) : h \in H\}$ and $Hx = \{h * (0 * x) : h \in H\}$, called the *left* and *right B-cosets* of H in X, respectively. If X is commutative, then xH = Hx for all $x \in X$. Observe that 0H = H = H0 and $x = x * (0 * 0) \in xH$ and $x = 0 * (0 * x) \in Hx$. Also, xH = H if and only if $x \in H$.

Theorem 1.1. [1] Let H be a subalgebra of a B-algebra X and $a, b \in X$. Then i. aH = bH if and only if $(0 * b) * (0 * a) \in H$ ii. Ha = Hb if and only if $a * b \in H$.

2010 Mathematics Subject Classification. 08A05, 06F35.

 $Key\ words\ and\ phrases.$ B-algebras, B-action, B-orbits, B-faithful, B-transitive.

If H is a subalgebra of a B-algebra X, then $\{xH : x \in X\}$ forms a partition of X and there is a one-one correspondence of the set of all left B-cosets of H in X onto the set of all right B-cosets of H in X. Thus, we define the number of distinct left (or right) B-cosets, written $[X : H]_B$, of H in X as the *index* of H in X. If X is finite, then clearly $[X : H]_B$ is finite.

Theorem 1.2. [1] (Lagrange's Theorem for B-algebras) Let H be a subalgebra of a finite B-algebra X. Then $|X| = [X : H]_B |H|$.

In [2], the concepts of centralizer and normalizer of a B-algebra X are introduced. The centralizer C(x) of x in X is defined by $C(x) = \{y \in X : y * (0 * x) = x * (0 * y)\}$. Then C(x) is a subalgebra of X for all $x \in X$. If H is a nonempty subset of X, then the centralizer C(H) of H in X is defined by $C(H) = \{y \in X : y * (0 * x) = x * (0 * y)\}$ for all $x \in H\}$. Since $C(H) = \bigcap_{x \in H} C(x)$, C(H) is a subalgebra of X. In particular, the center C(X) = Z(X) of X is a subalgebra of X. Now, let H and K be nonempty subsets of X. For every $x \in X$, we define H_x as the set $H_x = \{x * (x * h) : h \in H\}$. The normalizer of H in K, denoted by $N_K(H)$, is defined by $N(H) = \{x \in K : H_x = H\}$. If K = X, then $N_X(H)$ is called the normalizer of H, denoted by N(H). If K is a subalgebra of X, then $N_K(H)$ is a subalgebra of X. In particular, N(H) is a subalgebra of X.

2 B-algebras acting on sets This section introduces the notion of a B-action on a set. It also provides some related properties.

Definition 2.1. A *B*-action of a B-algebra X on a set S is a map $*' : X \times S \to S$, written x *' s for all $(x, s) \in X \times S$, satisfying the following properties: (B1) 0 *' s = s(B2) $x_1 *' (x_2 *' s) = (x_1 * (0 * x_2)) *' s$.

When such a B-action is given, we say that X acts on the set S.

Example 2.2. Let X be a B-algebra and S be a nonempty set. Define $*': X \times S \to S$ by $(x, s) \to s$ for all $(x, s) \in X \times S$. Clearly, 0 *' s = s. Let $x_1, x_2 \in X$ and $s \in S$. Then $x_1 *' (x_2 *' s) = x_1 *' s = s = (x_1 * (0 * x_2)) *' s$. Thus, *' is a B-action and is called the *trivial B-action* of X on S.

Example 2.3. Let X be a B-algebra and H be a subalgebra of X. Define $*': H \times X \to X$ by $(h, x) \to h * (0 * x)$ for all $(h, x) \in H \times X$. Let $h_1, h_2 \in H$ and $x \in X$. Then by (P2), (P1), and (III), we have

$$h_{1} *' (h_{2} *' x) = h_{1} *' (h_{2} * (0 * x))$$

= $h_{1} * [0 * (h_{2} * (0 * x))]$
= $h_{1} * [(0 * x) * h_{2}]$
= $h_{1} * [(0 * x) * (0 * (0 * h_{2}))]$
= $(h_{1} * (0 * h_{2})) * (0 * x)$
= $(h_{1} * (0 * h_{2})) *' x.$

By (P1), 0 *' x = 0 * (0 * x) = x. Thus, *' is a B-action and is called *left B-translation* of H on X.

Example 2.4. Let X be a B-algebra and H, K be subalgebras of X. Let \mathcal{L} be the set of all left B-cosets of K in X. Define $*': H \times \mathcal{L} \to \mathcal{L}$ by $(h, xK) \to (h * (0 * x))K$. Then H acts on \mathcal{L} by left B-translation.

Example 2.5. Let X be a B-algebra and H be a subalgebra of X. Define $*': H \times X \to X$ by $(h, x) \to h * (h * x)$ for all $(h, x) \in H \times X$. Let $h_1, h_2 \in H$ and $x \in X$. Then by (P3) and (P2), we have

$$\begin{aligned} h_1 *' (h_2 *' x) &= h_1 *' (h_2 * (h_2 * x)) \\ &= h_1 * (h_1 * (h_2 * (h_2 * x))) \\ &= h_1 * (h_1 * [(h_2 * (0 * x)) * h_2]) \\ &= h_1 * [(h_1 * (0 * h_2)) * (h_2 * (0 * x))] \\ &= [h_1 * (0 * (h_2 * (0 * x)))] * (h_1 * (0 * h_2)) \\ &= [h_1 * ((0 * x) * h_2)] * (h_1 * (0 * h_2)) \\ &= [(h_1 * (0 * h_2)) * (0 * x)] * (h_1 * (0 * h_2)) \\ &= (h_1 * (0 * h_2)) * [(h_1 * (0 * h_2)) * x] \\ &= (h_1 * (0 * h_2)) * [(h_1 * (0 * h_2)) * x] \\ &= (h_1 * (0 * h_2)) * ' x. \end{aligned}$$

By (P1), 0 *' x = 0 * (0 * x) = x. Thus, *' is a B-action and is called *B-conjugation*.

Lemma 2.6. Let X be a B-algebra and *' be a B-action of X on a set S. Let $s_1, s_2 \in S$ and $x \in X$. If $x *' s_1 = x *' s_2$, then $s_1 = s_2$.

Proof. Let $s_1, s_2 \in S$ and $x \in X$. Suppose that $x *' s_1 = x *' s_2$. Then by (B2), (I), and (B1), we have

$$\begin{aligned} x *' s_1 &= x *' s_2 \\ (0 * x) *' (x *' s_1) &= (0 * x) *' (x *' s_2) \\ ((0 * x) * (0 * x)) *' s_1 &= ((0 * x) * (0 * x)) *' s_2 \\ 0 *' s_1 &= 0 *' s_2 \\ s_1 &= s_2 \end{aligned}$$

This proves the lemma.

Lemma 2.7. Let X be a B-algebra and *' be a B-action of X on a set S. Let $x \in X$, $s, r \in S$. Then x *' s = r if and only if s = (0 * x) *' r.

Proof. If x *' s = r, then by (B2), (I), and (B1), we obtain

$$(0 * x) *' (x *' s) = (0 * x) *' r$$
$$((0 * x) * (0 * x)) *' s = (0 * x) *' r$$
$$0 *' s = (0 * x) *' r$$
$$s = (0 * x) *' r$$

Conversely, if s = (0 * x) *' r, then by (B2), (P1), (I), and (B1), we obtain

$$s = (0 * x) *' r$$

$$x *' s = x *' ((0 * x) *' r)$$

$$x *' s = (x * (0 * (0 * x))) *' r$$

$$x *' s = (x * x) *' r$$

$$x *' s = 0 *' r$$

$$x *' s = r$$

This completes the proof.

Theorem 2.8. Let X be a B-algebra and *' be a B-action of X on a set S. Define \sim on S by $s \sim s'$ if and only if x *' s = s' for some $x \in X$. Then \sim is an equivalence relation on S.

Proof. Let $s \in S$. By (B1), 0*'s = s and so $s \sim s$. Hence, \sim is reflexive. Now, let $s, s' \in S$. Suppose that $s \sim s'$, then there exists $x \in X$ such that x*'s = s'. Note that $0*x \in X$ and by (B2), (I), and (B1), we have (0*x)*'s' = (0*x)*'(x*'s) = ((0*x)*(0*x))*'s = 0*'s = s. Hence, $s' \sim s$ and so \sim is symmetric. Let $s_1, s_2, s_3 \in S$. Suppose that $s_1 \sim s_2$ and $s_2 \sim s_3$. Then there exist $x_1, x_2 \in X$ such that $x_1*'s_1 = s_2$ and $x_2*'s_2 = s_3$. Note that $x_2*(0*x_1) \in X$ and by (B2), we have $(x_2*(0*x_1))*'s_1 = x_2*'(x_1*s_1) = x_2*'s_2 = s_3$. Thus, $s_1 \sim s_3$ and so \sim is transitive. Therefore, \sim is an equivalence relation on S.

Theorem 2.9. Let X be a B-algebra and *' be a B-action of X on a set S. Then for each $s \in S$, $X_s = \{x \in X : x *' s = s\}$ is a subalgebra of X.

Proof. Let $s \in S$. By (B1), $0 \in X_s$ and so $X_s \neq \emptyset$. Let $a, b \in X_s$. Then $a, b \in X$ such that a *'s = s and b *'s = s. Now, by (B2), (I), and (B1), we have (0 * b) *'s = (0 * b) *'(b *'s) = ((0 * b) * (0 * b)) *'s = 0 *'s = s. Thus, by (B2) and (P1), we have s = a *'s = a *'((0 * b) *'s) = (a * (0 * (0 * b))) *'s = (a * b) *'s. Hence, $a * b \in X_s$ and so X_s is a subalgebra of X. □

The equivalence classes of the equivalence relation of Theorem 2.8 are called *B*-orbits of X on S and the B-orbit of $s \in S$ is denoted by $[s]_B$. The subalgebra X_s in Theorem 2.9 is called *B*-stabilizer of s.

Example 2.10. Let X be a B-algebra and *' be a left B-translation of X on itself. Then there is only one B-orbit of X. To see this, $[0]_B = \{y \in X : x *' \mid 0 = y \text{ for some } x \in X\} = \{y \in X : x * (0 * 0) = y \text{ for some } x \in X\} = \{y \in X : x = y \text{ for some } x \in X\} = X$. For any $x \in X$, the B-stabilizer of x is trivial. To see this, $X_x = \{y \in X : y *' x = x\} = \{y \in X : y * (0 * x) = x\} = \{y \in X : y = 0\} = \{0\}.$

Example 2.11. Let X be a B-algebra and *' be a B-conjugation of X on itself. For any $x \in X$, the B-orbit of x is the conjugacy class of x and the B-stabilizer of x is the centralizer of x.

The following theorem tells us that the cardinality of the B-orbit $[s]_B$ of s is equal to the index of the B-stabilizer X_s in X.

Theorem 2.12. Let X be a B-algebra and *' be a B-action of X on S. For $s \in S$, we have $|[s]_B| = [X : X_s]_B$.

Proof. Let $s \in S$. Let \mathcal{L} be the collection of all left B-cosets of X_s in X. Let $r \in [s]_B$. Then there exists $x_r \in X$ such that $x_r *' s = r$. Define $\varphi : [s]_B \to \mathcal{L}$ by $\varphi(r) = x_r X_s$. Claim 1: φ is well-defined.

Clearly, $\varphi(r) = x_r X_s \in \mathcal{L}$ for all $r \in [s]_B$. Let $p, q \in [s]_B$ such that p = q. Then there exist $x_p, x_q \in X$ such that $x_p *'s = p$ and $x_q *'s = q$. Hence, $x_p *'s = x_q *'s$. Now, by (B2), (I), and (B1), we have

$$\begin{aligned} x_p *'s &= x_q *'s \Rightarrow (0 * x_q) *' (x_p *'s) = (0 * x_q) *' (x_q *'s) \\ &\Rightarrow ((0 * x_q) * (0 * x_p)) *'s = ((0 * x_q) * (0 * x_q)) *'s \\ &\Rightarrow ((0 * x_q) * (0 * x_p)) *'s = ((0 *'s) \\ &\Rightarrow ((0 * x_q) * (0 * x_p)) *'s = s \end{aligned}$$

Thus, $((0 * x_q) * (0 * x_p)) \in X_s$. By Theorem 1.1(i), $\varphi(p) = x_p X_s = x_q X_s = \varphi(q)$ and so φ is well-defined.

Claim 2: φ is one-to-one.

Suppose that $p, q \in [s]_B$ and $\varphi(p) = \varphi(q)$. Then there exist $x_q, x_p \in X$ such that $p = x_p *'s$, $q = x_q *'s$ and $x_pX_s = x_qX_s$. By Theorem 1.1(i), $(0 * x_q) * (0 * x_p) \in X_s$. Then by (B1), (I), and (B2), we have

$$\begin{aligned} & ((0 * x_q) * (0 * x_p)) *' s = s \\ & ((0 * x_q) * (0 * x_p)) *' s = (0 *' s) \\ & ((0 * x_q) * (0 * x_p)) *' s = ((0 * x_q) * (0 * x_q)) *' s \\ & (0 * x_q) *' (x_p *' s) = (0 * x_q) *' (x_q *' s) \end{aligned}$$

By Lemma 2.6, $x_p *' s = x_q *' s$ and so p = q. Thus, φ is one-to-one. Claim 3: φ is onto.

If $x_r X_s \in \mathcal{L}$, then $\varphi(r) = \varphi(x_r *' s) = x_r X_s$. Hence, φ is onto. Therefore, φ is bijective. Consequently, $|[s]_B| = [X : X_s]_B$.

Corollary 2.13. Let X be a finite B-algebra that acts on a set S and $s \in S$. Then $|X| = |[s]_B||X_s|$.

Proof. This follows from Theorems 1.2 and 2.12.

Corollary 2.14. Let X be a finite B-algebra that acts on a set S. If S is finite, then $|S| = \sum_{a \in A} [X : X_a]_B$, where A is a subset of S containing exactly one element from each B-orbit $[a]_B$.

Proof. This follows from Theorems 2.8 and 2.12.

Definition 2.15. Let X be a B-algebra and *' be a B-action of X on a set S. Let $s \in S$ and $x \in X$. Then s is called *fixed* by x if x *' s = s. If x *' s = s for all $x \in X$, then s is called fixed by X. We also define F(x) as the number of elements of S fixed by x.

Theorem 2.16. Let X be a B-algebra and *' be a B-action of X on a nonempty finite set S. Then the number of B-orbits of X is given by $\frac{1}{|X|} \sum_{x \in X} F(x)$.

 $\begin{array}{l} Proof. \ \mathrm{Let}\ T = \{(x,s) \in X \times S : x*'s = s\}. \ \mathrm{Since}\ F(x) \ \mathrm{is}\ \mathrm{the}\ \mathrm{number}\ \mathrm{of}\ \mathrm{elements}\ s \in S\ \mathrm{such}\ \mathrm{that}\ (x,s) \in T, \ \mathrm{it}\ \mathrm{follows}\ \mathrm{that}\ |T| = \sum_{x \in X} F(x). \ \mathrm{Also}, |X_s|\ \mathrm{is}\ \mathrm{the}\ \mathrm{number}\ \mathrm{of}\ \mathrm{elements}\ x \in X\ \mathrm{such}\ \mathrm{that}\ (x,s) \in T. \ \mathrm{Hence},\ |T| = \sum_{x \in S} |X_s|. \ \mathrm{Let}\ S = [s_1]_B \cup [s_2]_B \cup \cdots \cup [s_k]_B,\ \mathrm{where}\ \{[s_1]_B, [s_2]_B, \ldots, [s_k]_B\}\ \mathrm{is}\ \mathrm{the}\ \mathrm{set}\ \mathrm{of}\ \mathrm{all}\ \mathrm{distinct}\ \mathrm{B-orbits}\ \mathrm{of}\ X\ \mathrm{on}\ S. \ \ \mathrm{Then}\ \sum_{x \in X} F(x) = \sum_{s \in [s_1]_B} |X_s| + \sum_{s \in [s_2]_B} |X_s| + \cdots + \sum_{s \in [s_k]_B} |X_s|. \ \mathrm{Suppose}\ \mathrm{that}\ a\ \mathrm{and}\ b\ \mathrm{are}\ \mathrm{in}\ \mathrm{the}\ \mathrm{same}\ \mathrm{B-orbits}.\ \mathrm{Then}\ [a_B| = [b]_B| = [X:X_b].\ \mathrm{By}\ \mathrm{Theorem}\ 1.2,\ \ \frac{|X|}{|X_a|} = \frac{|X|}{|X_b|}\ \mathrm{and}\ \mathrm{so}\ |X_a| = |X_b|.\ \ \mathrm{Thus}, \sum_{x \in X} F(x) = |[s_1]_B||X_{s_1}| + |[s_2]_B||X_{s_2}| + \cdots + |[s_k]_B||X_{s_k}| = \frac{|X|}{|X_{s_1}|}|X_{s_1}| + \frac{|X|}{|X_{s_2}|}|X_{s_2}| + \cdots + \frac{|X|}{|X_{s_k}|}|X_{s_k}| = k|X|,\ \mathrm{where}\ k\ \mathrm{is}\ \mathrm{the}\ \mathrm{number}\ \mathrm{of}\ \mathrm{distinct}\ \mathrm{B-orbits}.\ \mathrm{Consequently},\ k = \ \frac{1}{|X|}\sum_{x \in X} F(x).\ \Box$

Let X be a B-algebra and *' be a B-action of X on a set S. For the succeeding results, let $S_0 = \{s \in S : x *' s = s \text{ for all } x \in X\}.$

Theorem 2.17. Let X be a B-algebra and *' be a B-action of X on a finite set S. If $|X| = p^n$ for some prime p, then $|S| \equiv |S_0| \mod p$.

Proof. By Corollary 2.14, $|S| = \sum_{a \in A} [X : X_a]_B$, where A is a subset of S containing exactly one element from each B-orbit $[a]_B$. Now, $s \in S_0$ if and only if x *' s = s for all $x \in X$ if and only if $[s]_B = \{s\}$. Hence, $|S| = |S_0| + \sum_{a \in A \smallsetminus S_0} \frac{|X|}{|X_a|}$. Since $|X_a| \neq |X|$ for all $a \in A \smallsetminus S_0$, $\frac{|X|}{|X_a|}$ is some power of p for all $a \in A \smallsetminus S_0$. Thus, $\frac{|X|}{|X_a|}$ is divisible by p. Therefore, $|S| \equiv |S_0| \mod p$.

Corollary 2.18. Let X be a B-algebra and *' be a B-action of X on a finite set S. If $|X| = p^n$ for some prime p such that p does not divide |S|, then there exists $s \in S$ such that s is fixed by X.

Proof. By Theorem 2.17, $|S| \equiv |S_0| \mod p$. Since p does not divide |S|, p does not divide $|S_0|$. Thus, $|S_0| \neq 0$. Hence, there exists $s \in S_0$. Therefore, s is fixed by X.

Theorem 2.19. Let H be a subalgebra of a finite B-algebra X, where $|H| = p^k$ for some prime p and nonnegative integer k. Then $[X : H]_B \equiv [N(H) : H]_B \mod p$. Moreover, if p divides $[X : H]_B$, then $N(H) \neq H$.

Proof. Let $\mathcal{L} = \{xH : x \in X\}$. Define $*' : H \times \mathcal{L} \to \mathcal{L}$ by $(h, xH) \to (h * (0 * x))H$. Then *' is a left B-translation of H on \mathcal{L} . Let $\mathcal{L}_0 = \{xH \in \mathcal{L} : h *' xH = xH$ for all $h \in H\}$. By Theorem 2.17, $|\mathcal{L}| \equiv |\mathcal{L}_0| \mod p$. Now, $xH \in \mathcal{L}_0$ if and only if h *' xH = xH for all $h \in H$ if and only if $\{x * (x * h) : h \in H\} = H$ if and ony if $x \in N(H)$. Thus, \mathcal{L}_0 is the set of all left B-cosets of H in N(H). Hence, $|\mathcal{L}_0| = [N(H) : H]_B$. Also, $|\mathcal{L}| = [X : H]_B$. Therefore, $[X : H]_B \equiv [N(H) : H]_B \mod p$. Moreover, if p divides $[X : H]_B$, then p divides $[N(H) : H]_B$. Since $[N(H) : H]_B \ge 1$, it follows that $N(H) \neq H$.

3 B-faithful and B-transitive This section presents two kinds of B-actions on a set. These B-actions are B-faithful and B-transitive.

Definition 3.1. A B-action of a B-algebra X on a set S is called *B*-faithful if x *' s = s for all $s \in S$ implies that x = 0. A B-action of X on S is called *B*-transitive if for all $s, r \in S$ there exists $x \in X$ such that x *' s = r.

Example 3.2. The B-action of a B-algebra X on itself by left B-translation is faithful.

Example 3.3. The B-action of a B-algebra X on itself by B-conjugation is faithful if and only if $Z(X) = \{0\}$.

Theorem 3.4. Let X be a B-algebra and *' be a B-action of X on a set S. Then *' is B-faithful on S if and only if no two distinct elements of X have the same B-action on each element of S.

Proof. Suppose that $x, y \in X$ such that x *' s = y *' s for any $s \in S$. Then by (B2), (I), and (B1), we have

$$\begin{aligned} x*'s &= y*'s\\ (0*y)*'(x*'s) &= (0*y)*'(y*'s)\\ ((0*y)*(0*x))*'s &= ((0*y)*(0*y))*'s\\ ((0*y)*(0*x))*'s &= 0*'s\\ ((0*y)*(0*x))*'s &= s\end{aligned}$$

Since *' is B-faithful, (0 * y) * (0 * x) = 0. By (P5), (0 * y) = (0 * x). Applying (P4), y = x. Conversely, let $x \in X$ such that x *' s = s for any $s \in S$, then x = 0 since x has the same B-action on S as 0. Thus, the B-action is B-faithful.

Theorem 3.5. Let X be a B-algebra and *' be a B-transitive of X on a set S containing at least two elements. Then for any $s \in S$, $[s]_B = S$ and $|S| = [X : X_s]_B$.

Acknowledgement. The authors would like to thank the referee for the remarks and suggestions which were incorporated into this revised version.

References

- J.S. Bantug and J.C. Endam, Lagrange's Theorem for B-algebras, Int. J. of Alg., 11(1)(2017), 15-23.
- [2] J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Japn., (2016).
- [3] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik, 54(2002), 21-29.
- [4] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J., 2(3)(2002), 207-214.
- [5] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca, 56(3)(2006), 301-306.

Communicated by Klause Denecke

¹Department of Mathematics Negros Oriental State University Kagawasan Ave., Dumaguete City, PHILIPPINES jc endam@yahoo.com

²Department of Mathematics Silliman University Hibbard Ave., Dumaguete City, PHILIPPINES emelyncbanagua@su.edu.ph