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ABSTRACT. In this paper, we introduce the notion of a B-action of a B-algebra X on
a set S. We show that a B-action " of X on S induces an equivalence relation on S
defined by s ~ s’ if and only if x ' s = s’ for some € X. Moreover, for any s € S, the
cardinality of the equivalence class [s]p of s is equal to the index of the corresponding
subalgebra X, in X, that is, |[s]g| = [X : Xi]B, where X, = {zx € X : " s = s}.
Furthermore, the number of distinct equivalence classes is given by ﬁ Y wex Flx),
where F'(z) is the number of elements of S fixed by z. We also introduce B-faithfulness
and B-transitivity and investigate some related properties.

1 Introduction and Preliminaries In [3], the notion of B-algebras was introduced by
J. Neggers and H.S. Kim in 2002. A B-algebra is an algebra (X;x,0) of type (2, 0) (that
is, a nonempty set X with a binary operation * and a constant 0) satisfying the following
axioms for all z,y,z € X:

I zxz=0,
(II) 0 =z,
(IIT) (z*y)xz=a* (2% (0xy)).

A B-algebra (X;#,0) is commutative [3] if zx (0xy) = y* (0% z) for all z,y € X. In
[4], J. Neggers and H.S. Kim introduced the notions of a subalgebra and normality of B-
algebras and some of their properties are established. A nonempty subset N of X is called
a subalgebra of X if x xy € N for any z, y € N. It is called normal in X if for any
x,y,a,b € N (x xy,axb € N implies (z * a) * (y xb) € N). A normal subset of X is a
subalgebra of X. There are several properties of B-algebras as established by some authors.
The following properties are used in this paper, for any x,y, 2z € X, we have

(P1) 0% (0% z) == [3],

(P2) zxy=0x*(y=*x) [5],
(P3) @ x (y+ 2) = (wx (0x2)) *y [3],
(P4) 0%z = 0*y implies x = y [3],
(P5) %y = 0 implies x = y [3].

In [1], the concept of B-cosets of B-algebras is introduced. Let H be a subalgebra of a B-
algebra X and x € X. Let ¢H = {x*(0xh) : h € H} and Hx = {h*(0*x) : h € H}, called
the left and right B-cosets of H in X, respectively. If X is commutative, then tH = Hx for
all x € X. Observe that 0H = H=HO and x =2 % (0%0) € xH and t =0 (0 z) € Hzx.
Also, xH = H if and only if x € H.

Theorem 1.1. [1] Let H be a subalgebra of a B-algebra X and a,b € X. Then
i. aH = bH if and only if (0*b) * (0%xa) € H
ii. Ha = Hb if and only if axb € H.
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If H is a subalgebra of a B-algebra X, then {xH : x € X} forms a partition of X and
there is a one-one correspondence of the set of all left B-cosets of H in X onto the set of all
right B-cosets of H in X. Thus, we define the number of distinct left (or right) B-cosets,
written [X : H|p, of H in X as the index of H in X. If X is finite, then clearly [X : H|p
is finite.

Theorem 1.2. [1] (Lagrange’s Theorem for B-algebras) Let H be a subalgebra of a finite
B-algebra X. Then | X|=[X : H|p|H]|.

In [2], the concepts of centralizer and normalizer of a B-algebra X are introduced. The
centralizer C(z) of zin X is defined by C(z) = {y € X : y*(0xz) = % (0*y)}. Then C(x)
is a subalgebra of X for all x € X. If H is a nonempty subset of X, then the centralizer
C(H) of Hin X is defined by C(H) ={y € X : y* (0xz) =z x(0*y) for all zx € H}. Since
C(H) = N,ey C(x), C(H) is a subalgebra of X. In particular, the center C(X) = Z(X)
of X is a subalgebra of X. Now, let H and K be nonempty subsets of X. For every x € X,
we define H,, as the set H, = {z* (r*h) : h € H}. The normalizer of H in K, denoted by
Nk (H), is defined by Ng(H) ={x € K : H, = H}. If K = X, then Nx(H) is called the
normalizer of H, denoted by N(H). If K is a subalgebra of X, then Ni (H) is a subalgebra
of X. In particular, N(H) is a subalgebra of X.

2 B-algebras acting on sets This section introduces the notion of a B-action on a set.
It also provides some related properties.

Definition 2.1. A B-action of a B-algebra X on a set S is a map *' : X x S — S, written
x +" s for all (x,s) € X x S, satisfying the following properties:

(Bl) 0« s=s

(B2) @1 #' (x2 + 5) = (21 % (0% 22)) +' 5.

When such a B-action is given, we say that X acts on the set S.

Example 2.2. Let X be a B-algebra and S be a nonempty set. Define *’ : X x § — §
by (z,s) — s for all (z,s) € X x S. Clearly, 0 %' s = s. Let 21,29 € X and s € S. Then
x1 % (xo %' s) = x1 % s = s = (w1 * (0% x2)) * 5. Thus, ¥ is a B-action and is called the
trivial B-action of X on S.

Example 2.3. Let X be a B-algebra and H be a subalgebra of X. Define ' : H x X — X
by (h,z) — h* (0 z) for all (h,z) € H x X. Let hy,hs € H and x € X. Then by (P2),
(P1), and (III), we have

hy * (he " ) = hy *" (hg * (0 % x))
= Ry # [0 % (hg * (0% z))]
= hy x [(0 % x) * hg]
=hy* [(0xx)* (0% (0% hy))]
= (hy * (0% hg)) % (0 * x)
= (hy * (0% hg)) " .

By (P1), 0« 2 = 0% (0% z) = 2. Thus, *' is a B-action and is called left B-translation of
H on X.

Example 2.4. Let X be a B-algebra and H, K be subalgebras of X. Let £ be the set of
all left B-cosets of K in X. Define ' : H x £ — L by (h,2K) — (h* (0 xx))K. Then H
acts on L by left B-translation.
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Example 2.5. Let X be a B-algebra and H be a subalgebra of X. Define ' : H x X — X
by (h,z) — hx (h*x) for all (h,x) € H x X. Let hy,hs € H and € X. Then by (P3)
and (P2), we have
hy ' (he " ) = hy *" (hg * (ha * x))
= hy * (hy * (ha * (he * 2)))
= hy * (h1 * [(ha * (0% x)) * ha])
= hy x [(h1 % (0% ha)) * (he % (0% x))]
= [h1 % (0 % (hg x (0% x)))] * (hy * (0% hy))
= [hy * ((0 % x) * ho)] * (hy * (0 * ha))
= [(hy # (0% h2)) * (0 )] 5 (hy (0 h2))
= (h1 * (0% h2)) x [(hy * (0 % ha)) * z]
= (hy * (0% hg)) " x
By (P1), 0+ 2 = 0% (0% x) = z. Thus, %’ is a B-action and is called B-conjugation.
Lemma 2.6. Let X be a B-algebra and %' be a B-action of X on a set S. Let s1,s5 € S
and v € X. If v ' s1 = x +' s9, then s; = s3.
Proof. Let s1,s2 € S and x € X. Suppose that z ' s; = x ' s5. Then by (B2), (I), and
(B1), we have
¥ 51 =x+ 59
(0xxz)«" (z+"51) = (0% z) « (x+ s9)
((0xz) % (0% z))* s1=((0xx)* (0xx)) «" 59
0% 57 =0%s9
51 = S2
This proves the lemma. O
Lemma 2.7. Let X be a B-algebra and %' be a B-action of X on a set S. Let x € X,
s,r€S. Then x «" s =r if and only if s = (0= x) " r.
Proof. If x ' s = r, then by (B2), (I), and (B1), we obtain
(Oxx)+" (z+'s)=(0*z)* r
((0xz)x (0% )" s = (0*=
0+ s=(0x*x
= (
)

)
s
)*'
)

0xz) %

Conversely, if s = (0 % ) ' r, then by (B2), (P1), (I), and (B1), we obtain
=(0x*z)r
¥ s=x+ ((0xz)*"7)
' s=(xx(0x(0x*x)))*"r
' s=(vxxz)xr
' s=0«"r
' s=r

This completes the proof. O
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Theorem 2.8. Let X be a B-algebra and %' be a B-action of X on a set S. Define ~ on S
by s ~ s if and only if v+ s = ' for some x € X. Then ~ is an equivalence relation on S.

Proof. Let s € S. By (B1), 0+’ s = s and so s ~ s. Hence, ~ is reflexive. Now, let s,s’ € S.
Suppose that s ~ s’, then there exists x € X such that zx’s = s’. Note that Oxz € X and by
(B2), (I), and (B1), we have (0xxz)+'s’ = (0xx) ' (x+'s) = ((0xx)x (0xz)) ¥ s =0+ s = s.
Hence, s’ ~ s and so ~ is symmetric. Let sq,s9,53 € S. Suppose that s; ~ sy and
s ~ s3. Then there exist x1,x2 € X such that xy *' s; = so and z *’ s = s3. Note that
x2* (0% 21) € X and by (B2), we have (z3 % (0% x1)) ' 51 = 29 ' (11 % 51) = X2+’ $9 = s3.
Thus, s; ~ s3 and so ~ is transitive. Therefore, ~ is an equivalence relation on S. O

Theorem 2.9. Let X be a B-algebra and ¥’ be a B-action of X on a set S. Then for each
s€S, Xs={zx e Xz« s=s} is a subalgebra of X.

Proof. Let s € S. By (B1) ,0 € X, and so X, # &. Let a,b € Xs;. Then a,b € X
such that a ¥’ s = s and b+’ s = s. Now, by (B2), (I), and (B1), we have (0 *b) «' s =
(0xb)«" (bx"s) = ((0xb)* (0xb))«s =0« s =s. Thus, by (B2) and (P1), we have
s=a* s=ax ((0xb)+" s)=(a*x(0%(0xb)))+" s=(axb)«"s. Hence, a*xb € X, and so
X, is a subalgebra of X. O

The equivalence classes of the equivalence relation of Theorem 2.8 are called B-orbits of
X on S and the B-orbit of s € S is denoted by [s]s. The subalgebra X, in Theorem 2.9 is
called B-stabilizer of s.

Example 2.10. Let X be a B-algebra and ' be a left B-translation of X on itself. Then
there is only one B-orbit of X. To see this, [0]p = {y € X : x +' 0 = y for some z € X} =
{ye X :2%x(0%0) =y for some z € X} ={y € X : 2 =y for some z € X} = X. For any
x € X, the B-stabilizer of x is trivial. To see this, X, = {ye X :y«z =2} ={ye X :
yx(0xz)=z}={ye X :y=0}={0}.

Example 2.11. Let X be a B-algebra and *” be a B-conjugation of X on itself. For any
x € X, the B-orbit of z is the conjugacy class of x and the B-stabilizer of x is the centralizer
of x.

The following theorem tells us that the cardinality of the B-orbit [s]p of s is equal to
the index of the B-stabilizer X, in X.

Theorem 2.12. Let X be a B-algebra and " be a B-action of X on S. For s € S, we have
sl = [X : Xi]5.

Proof. Let s € S. Let L be the collection of all left B-cosets of X in X. Let r € [s]g. Then
there exists x,, € X such that x, ' s = r. Define ¢ : [s]p — L by ¢(r) = 2, X.

Claim 1: ¢ is well-defined.

Clearly, ¢(r) = 2, X € L for all r € [s]g. Let p,q € [s]p such that p = ¢. Then there exist
Tp, Tq € X such that z, ' s = p and z, +' s = ¢q. Hence, z, ¥’ s = x4 %' s. Now, by (B2), (I),
and (B1), we have

zp* s=xy% s = (0kzy)* (zp* s) = (0xzy) +" (x4 % s)
= ((0kzg) % (0xxp)) ' s = ((0%2y) * (0% z4)) *" s
= (05 zg) # (05 zp)) ' s = ((0+' )
= ((0xzy) x (0xzp)) ' s=3s
Thus, ((0*z4) * (0x2p)) € X5. By Theorem 1.1(i), ¢(p) = zpXs = 24X = ¢(¢) and so ¢

is well-defined.
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Claim 2: ¢ is one-to-one.

Suppose that p, ¢ € [s]p and ¢(p) = ¢(q). Then there exist x4, z, € X such that p = z,*s,
qg=xz4* s and z,X; = ,X;. By Theorem 1.1(i), (0 * z4) * (0 % x,) € X,;. Then by (B1),
(I), and (B2), we have

(0% zq) * (0% xp)) % s

(0+2,) 5 (0+2,)) 3 049

((O*xq)*(()*mp)) s=((0xzg)* (0% 2q)) #' s
(0% aq) ¥ (2 ¥ 5) = (0% 24) ¥ (24 % 5)

By Lemma 2.6, 2, ' s = 2, ' s and so p = ¢. Thus, ¢ is one-to-one.

Claim 8: ¢ is onto.

If . X, € £, then p(r) = p(x, * s) = x,.Xs. Hence, @ is onto.

Therefore, ¢ is bijective. Consequently, |[s]p]| = [X : Xs]B. O

Corollary 2.13. Let X be a finite B-algebra that acts on a set S and s € S. Then
| X[ = [[s]Bl1Xs].

Proof. This follows from Theorems 1.2 and 2.12. O

Corollary 2.14. Let X be a finite B-algebra that acts on a set S. If S is finite, then

|S| = Z[X : XalB, where A is a subset of S containing exactly one element from each

acA
B-orbit [a]p

Proof. This follows from Theorems 2.8 and 2.12. O

Definition 2.15. Let X be a B-algebra and #’ be a B-action of X on a set S. Let s € S
and z € X. Then s is called fired by z if z+' s =s. If z+' s = s for all z € X, then s is
called fixed by X. We also define F'(x) as the number of elements of S fixed by .

Theorem 2.16. Let X be a B-algebra and *" be a B action ofX on a nonempty finite set
S. Then the number of B-orbits of X is given by |X| Z F(x
zeX

Proof. Let T = {(x,s) € X xS : x«'s = s}. Since F(x) is the number of elements s € S such
that (z,s) € T, it follows that |T'| = Z F(z). Also, | X,| is the number of elements = € X

zeX

such that (z,s) € T. Hence, |T| = Z|XS|' Let S = [s1]p U [s2]g U -+ U [sk] g, where
ses

{[s1]B,[s2]B,---,[sk]B} is the set of all distinct B-orbits of X on S. Then Z F(z) =

reX
Z | Xs| + Z | Xs| + -+ + Z | Xs|- Suppose that a and b are in the same B-

s€[s1]m s€[s2]p s€[sk]B

orbit. Then [a]p = [b]p and so by Theorem 2.12, [X : X,] = |[a]lg| = |[b]5] = [X : Xb].

X X
By Theorem 1.2, |X| = ||X|| and so |X,| = |Xp). Thus,z F(z) = |[s1]B]|Xs, | +
a b
rzeX
5ol el -+ k11X ] = X |+ L, o XL, = k1], where
’ X X IXsk\ '
k is the number of distinct B-orbits. Consequently, k = ‘ X| Z F(x O

zeX
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Let X be a B-algebra and *’ be a B-action of X on a set S. For the succeeding results,
let So={seS:z+s=sforalze X}

Theorem 2.17. Let X be a B-algebra and ' be a B-action of X on a finite set S. If
| X| = p™ for some prime p, then |S| = |So| mod p.

Proof. By Corollary 2.14, |S| = Z[X : Xo]B, where A is a subset of S containing exactly

ac€A
one element from each B-orbit [a]g. Now, s € Sy if and only if z ' s = s for all x € X

X
if and only if [s]p = {s}. Hence, |S| = |So| + Z |X| . Since |X,| # |X] for all
a€ AN Sy | a|
X |X|

| Xal | Xal
Therefore, |S| = |So| mod p. O

a € AN Sy,

is some power of p for all @ € A\ Sy. Thus,

is divisible by p.

Corollary 2.18. Let X be a B-algebra and %' be a B-action of X on a finite set S. If
| X | = p™ for some prime p such that p does not divide |S|, then there exists s € S such that
s is fized by X.

Proof. By Theorem 2.17, |S| = |Sy| mod p. Since p does not divide |S|, p does not divide
|So|. Thus, |So| # 0. Hence, there exists s € Sy. Therefore, s is fixed by X. O

Theorem 2.19. Let H be a subalgebra of a finite B-algebra X, where |H| = p* for some
prime p and nonnegative integer k. Then [X : Hlgp = [N(H) : H|g mod p. Moreover, if p
divides [X : H|p, then N(H) # H.

Proof. Let L ={xH : 2 € X}. Define «' : H x L — L by (h,zH) — (h* (0*z))H. Then
*' is a left B-translation of H on L. Let Lo = {¢H € L : h«' «H = «H for all h € H}.
By Theorem 2.17, |L| = |Lo| mod p. Now, zH € Ly if and only if h ' tH = xH for all
h € H if and only if {xx (x*h): he€ H} = H if and ony if x € N(H). Thus, Ly is the
set of all left B-cosets of H in N(H). Hence, |Lo| = [N(H) : H|p. Also, |L]| = [X : H|p.
Therefore, [X : H|gp = [N(H) : H]p mod p. Moreover, if p divides [X : H|p, then p divides
[N(H) : H]|p. Since [N(H) : H|p > 1, it follows that N(H) # H. O

3 B-faithful and B-transitive This section presents two kinds of B-actions on a set.
These B-actions are B-faithful and B-transitive.

Definition 3.1. A B-action of a B-algebra X on a set S is called B-faithful if z+"s = s for
all s € S implies that z = 0. A B-action of X on S is called B-transitive if for all s,r € S
there exists € X such that x +" s = 7.

Example 3.2. The B-action of a B-algebra X on itself by left B-translation is faithful.

Example 3.3. The B-action of a B-algebra X on itself by B-conjugation is faithful if and
only if Z(X) = {0}.

Theorem 3.4. Let X be a B-algebra and ' be a B-action of X on a set S. Then " is
B-faithful on S if and only if no two distinct elements of X have the same B-action on each
element of S.
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Proof. Suppose that 2,y € X such that z ' s = y «’ s for any s € S. Then by (B2), (I),
and (B1), we have

(05 y) ' (z+" 5) = (05 y) ' (y " 5)
(0 9)  (0)) ¥ 5 = (05) = (05 ) ' 5
(0xy)*(0xx))* s=0%"s

Since *' is B-faithful, (0% y) * (0x2) = 0. By (P5), (0xy) = (0xx). Applying (P4), y = =.
Conversely, let € X such that = +' s = s for any s € S, then x = 0 since x has the same
B-action on S as 0. Thus, the B-action is B-faithful. O

Theorem 3.5. Let X be a B-algebra and %' be a B-transitive of X on a set S containing
at least two elements. Then for any s € S, [s]p =S and |S| = [X : X;]B.
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suggestions which were incorporated into this revised version.
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