B-ALGEBRAS ACTING ON SETS

Joemar C. Endam ${ }^{1}$ and Emelyn C. Banagua ${ }^{2}$

Received September 8, 2017

Abstract

In this paper, we introduce the notion of a B-action of a B-algebra X on a set S. We show that a B-action $*^{\prime}$ of X on S induces an equivalence relation on S defined by $s \sim s^{\prime}$ if and only if $x *^{\prime} s=s^{\prime}$ for some $x \in X$. Moreover, for any $s \in S$, the cardinality of the equivalence class $[s]_{B}$ of s is equal to the index of the corresponding subalgebra X_{s} in X, that is, $\left|[s]_{B}\right|=\left[X: X_{s}\right]_{B}$, where $X_{s}=\left\{x \in X: x *^{\prime} s=s\right\}$. Furthermore, the number of distinct equivalence classes is given by $\frac{1}{|X|} \sum_{x \in X} F(x)$, where $F(x)$ is the number of elements of S fixed by x. We also introduce B-faithfulness and B-transitivity and investigate some related properties.

1 Introduction and Preliminaries In [3], the notion of B-algebras was introduced by J. Neggers and H.S. Kim in 2002. A B-algebra is an algebra ($X ; *, 0$) of type (2,0) (that is, a nonempty set X with a binary operation $*$ and a constant 0) satisfying the following axioms for all $x, y, z \in X$:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$.

A B-algebra $(X ; *, 0)$ is commutative [3] if $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$. In [4], J. Neggers and H.S. Kim introduced the notions of a subalgebra and normality of Balgebras and some of their properties are established. A nonempty subset N of X is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. It is called normal in X if for any $x, y, a, b \in N(x * y, a * b \in N$ implies $(x * a) *(y * b) \in N)$. A normal subset of X is a subalgebra of X. There are several properties of B-algebras as established by some authors. The following properties are used in this paper, for any $x, y, z \in X$, we have
(P1) $0 *(0 * x)=x[3]$,
(P2) $x * y=0 *(y * x)[5]$,
(P3) $x *(y * z)=(x *(0 * z)) * y[3]$,
(P4) $0 * x=0 * y$ implies $x=y[3]$,
(P5) $x * y=0$ implies $x=y[3]$.
In [1], the concept of B-cosets of B-algebras is introduced. Let H be a subalgebra of a Balgebra X and $x \in X$. Let $x H=\{x *(0 * h): h \in H\}$ and $H x=\{h *(0 * x): h \in H\}$, called the left and right B-cosets of H in X, respectively. If X is commutative, then $x H=H x$ for all $x \in X$. Observe that $0 H=H=H 0$ and $x=x *(0 * 0) \in x H$ and $x=0 *(0 * x) \in H x$. Also, $x H=H$ if and only if $x \in H$.

Theorem 1.1. [1] Let H be a subalgebra of a B-algebra X and $a, b \in X$. Then
i. $a H=b H$ if and only if $(0 * b) *(0 * a) \in H$
ii. $H a=H b$ if and only if $a * b \in H$.

If H is a subalgebra of a B-algebra X, then $\{x H: x \in X\}$ forms a partition of X and there is a one-one correspondence of the set of all left B-cosets of H in X onto the set of all right B-cosets of H in X. Thus, we define the number of distinct left (or right) B-cosets, written $[X: H]_{B}$, of H in X as the index of H in X. If X is finite, then clearly $[X: H]_{B}$ is finite.

Theorem 1.2. [1] (Lagrange's Theorem for B-algebras) Let H be a subalgebra of a finite B-algebra X. Then $|X|=[X: H]_{B}|H|$.

In [2], the concepts of centralizer and normalizer of a B-algebra X are introduced. The centralizer $C(x)$ of x in X is defined by $C(x)=\{y \in X: y *(0 * x)=x *(0 * y)\}$. Then $C(x)$ is a subalgebra of X for all $x \in X$. If H is a nonempty subset of X, then the centralizer $C(H)$ of H in X is defined by $C(H)=\{y \in X: y *(0 * x)=x *(0 * y)$ for all $x \in H\}$. Since $C(H)=\bigcap_{x \in H} C(x), C(H)$ is a subalgebra of X. In particular, the center $C(X)=Z(X)$ of X is a subalgebra of X. Now, let H and K be nonempty subsets of X. For every $x \in X$, we define H_{x} as the set $H_{x}=\{x *(x * h): h \in H\}$. The normalizer of H in K, denoted by $N_{K}(H)$, is defined by $N_{K}(H)=\left\{x \in K: H_{x}=H\right\}$. If $K=X$, then $N_{X}(H)$ is called the normalizer of H, denoted by $N(H)$. If K is a subalgebra of X, then $N_{K}(H)$ is a subalgebra of X. In particular, $N(H)$ is a subalgebra of X.

2 B-algebras acting on sets This section introduces the notion of a B-action on a set. It also provides some related properties.
Definition 2.1. A B-action of a B-algebra X on a set S is a map $*^{\prime}: X \times S \rightarrow S$, written $x *^{\prime} s$ for all $(x, s) \in X \times S$, satisfying the following properties:
(B1) $0 *^{\prime} s=s$
(B2) $x_{1} *^{\prime}\left(x_{2} *^{\prime} s\right)=\left(x_{1} *\left(0 * x_{2}\right)\right) *^{\prime} s$.
When such a B-action is given, we say that X acts on the set S.
Example 2.2. Let X be a B-algebra and S be a nonempty set. Define $*^{\prime}: X \times S \rightarrow S$ by $(x, s) \rightarrow s$ for all $(x, s) \in X \times S$. Clearly, $0 *^{\prime} s=s$. Let $x_{1}, x_{2} \in X$ and $s \in S$. Then $x_{1} *^{\prime}\left(x_{2} *^{\prime} s\right)=x_{1} *^{\prime} s=s=\left(x_{1} *\left(0 * x_{2}\right)\right) *^{\prime} s$. Thus, $*^{\prime}$ is a B-action and is called the trivial B-action of X on S.

Example 2.3. Let X be a B-algebra and H be a subalgebra of X. Define $*^{\prime}: H \times X \rightarrow X$ by $(h, x) \rightarrow h *(0 * x)$ for all $(h, x) \in H \times X$. Let $h_{1}, h_{2} \in H$ and $x \in X$. Then by (P2), (P1), and (III), we have

$$
\begin{aligned}
h_{1} *^{\prime}\left(h_{2} *^{\prime} x\right) & =h_{1} *^{\prime}\left(h_{2} *(0 * x)\right) \\
& =h_{1} *\left[0 *\left(h_{2} *(0 * x)\right)\right] \\
& =h_{1} *\left[(0 * x) * h_{2}\right] \\
& =h_{1} *\left[(0 * x) *\left(0 *\left(0 * h_{2}\right)\right)\right] \\
& =\left(h_{1} *\left(0 * h_{2}\right)\right) *(0 * x) \\
& =\left(h_{1} *\left(0 * h_{2}\right)\right) *^{\prime} x
\end{aligned}
$$

By (P1), $0 *^{\prime} x=0 *(0 * x)=x$. Thus, $*^{\prime}$ is a B-action and is called left B-translation of H on X.

Example 2.4. Let X be a B-algebra and H, K be subalgebras of X. Let \mathcal{L} be the set of all left B-cosets of K in X. Define $*^{\prime}: H \times \mathcal{L} \rightarrow \mathcal{L}$ by $(h, x K) \rightarrow(h *(0 * x)) K$. Then H acts on \mathcal{L} by left B-translation.

Example 2.5. Let X be a B-algebra and H be a subalgebra of X. Define $*^{\prime}: H \times X \rightarrow X$ by $(h, x) \rightarrow h *(h * x)$ for all $(h, x) \in H \times X$. Let $h_{1}, h_{2} \in H$ and $x \in X$. Then by (P3) and (P2), we have

$$
\begin{aligned}
h_{1} *^{\prime}\left(h_{2} *^{\prime} x\right) & =h_{1} *^{\prime}\left(h_{2} *\left(h_{2} * x\right)\right) \\
& =h_{1} *\left(h_{1} *\left(h_{2} *\left(h_{2} * x\right)\right)\right) \\
& =h_{1} *\left(h_{1} *\left[\left(h_{2} *(0 * x)\right) * h_{2}\right]\right) \\
& =h_{1} *\left[\left(h_{1} *\left(0 * h_{2}\right)\right) *\left(h_{2} *(0 * x)\right)\right] \\
& =\left[h_{1} *\left(0 *\left(h_{2} *(0 * x)\right)\right)\right] *\left(h_{1} *\left(0 * h_{2}\right)\right) \\
& =\left[h_{1} *\left((0 * x) * h_{2}\right)\right] *\left(h_{1} *\left(0 * h_{2}\right)\right) \\
& =\left[\left(h_{1} *\left(0 * h_{2}\right)\right) *(0 * x)\right] *\left(h_{1} *\left(0 * h_{2}\right)\right) \\
& =\left(h_{1} *\left(0 * h_{2}\right)\right) *\left[\left(h_{1} *\left(0 * h_{2}\right)\right) * x\right] \\
& =\left(h_{1} *\left(0 * h_{2}\right)\right) *^{\prime} x .
\end{aligned}
$$

By (P1), $0 *^{\prime} x=0 *(0 * x)=x$. Thus, $*^{\prime}$ is a B-action and is called B-conjugation.
Lemma 2.6. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Let $s_{1}, s_{2} \in S$ and $x \in X$. If $x *^{\prime} s_{1}=x *^{\prime} s_{2}$, then $s_{1}=s_{2}$.

Proof. Let $s_{1}, s_{2} \in S$ and $x \in X$. Suppose that $x *^{\prime} s_{1}=x *^{\prime} s_{2}$. Then by (B2), (I), and (B1), we have

$$
\begin{aligned}
x *^{\prime} s_{1} & =x *^{\prime} s_{2} \\
(0 * x) *^{\prime}\left(x *^{\prime} s_{1}\right) & =(0 * x) *^{\prime}\left(x *^{\prime} s_{2}\right) \\
((0 * x) *(0 * x)) *^{\prime} s_{1} & =((0 * x) *(0 * x)) *^{\prime} s_{2} \\
0 *^{\prime} s_{1} & =0 *^{\prime} s_{2} \\
s_{1} & =s_{2}
\end{aligned}
$$

This proves the lemma.
Lemma 2.7. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Let $x \in X$, $s, r \in S$. Then $x *^{\prime} s=r$ if and only if $s=(0 * x) *^{\prime} r$.
Proof. If $x *^{\prime} s=r$, then by (B2), (I), and (B1), we obtain

$$
\begin{aligned}
(0 * x) *^{\prime}\left(x *^{\prime} s\right) & =(0 * x) *^{\prime} r \\
((0 * x) *(0 * x)) *^{\prime} s & =(0 * x) *^{\prime} r \\
0 *^{\prime} s & =(0 * x) *^{\prime} r \\
s & =(0 * x) *^{\prime} r
\end{aligned}
$$

Conversely, if $s=(0 * x) *^{\prime} r$, then by (B2), (P1), (I), and (B1), we obtain

$$
\begin{aligned}
s & =(0 * x) *^{\prime} r \\
x *^{\prime} s & =x *^{\prime}\left((0 * x) *^{\prime} r\right) \\
x *^{\prime} s & =(x *(0 *(0 * x))) *^{\prime} r \\
x *^{\prime} s & =(x * x) *^{\prime} r \\
x *^{\prime} s & =0 *^{\prime} r \\
x *^{\prime} s & =r
\end{aligned}
$$

This completes the proof.

Theorem 2.8. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Define \sim on S by $s \sim s^{\prime}$ if and only if $x *^{\prime} s=s^{\prime}$ for some $x \in X$. Then \sim is an equivalence relation on S.

Proof. Let $s \in S$. By (B1), $0 *^{\prime} s=s$ and so $s \sim s$. Hence, \sim is reflexive. Now, let $s, s^{\prime} \in S$. Suppose that $s \sim s^{\prime}$, then there exists $x \in X$ such that $x *^{\prime} s=s^{\prime}$. Note that $0 * x \in X$ and by (B2), (I), and (B1), we have $(0 * x) *^{\prime} s^{\prime}=(0 * x) *^{\prime}\left(x *^{\prime} s\right)=((0 * x) *(0 * x)) *^{\prime} s=0 *^{\prime} s=s$. Hence, $s^{\prime} \sim s$ and so \sim is symmetric. Let $s_{1}, s_{2}, s_{3} \in S$. Suppose that $s_{1} \sim s_{2}$ and $s_{2} \sim s_{3}$. Then there exist $x_{1}, x_{2} \in X$ such that $x_{1} *^{\prime} s_{1}=s_{2}$ and $x_{2} *^{\prime} s_{2}=s_{3}$. Note that $x_{2} *\left(0 * x_{1}\right) \in X$ and by (B2), we have $\left(x_{2} *\left(0 * x_{1}\right)\right) *^{\prime} s_{1}=x_{2} *^{\prime}\left(x_{1} * s_{1}\right)=x_{2} *^{\prime} s_{2}=s_{3}$. Thus, $s_{1} \sim s_{3}$ and so \sim is transitive. Therefore, \sim is an equivalence relation on S.
Theorem 2.9. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Then for each $s \in S, X_{s}=\left\{x \in X: x *^{\prime} s=s\right\}$ is a subalgebra of X.
Proof. Let $s \in S$. By (B1), $0 \in X_{s}$ and so $X_{s} \neq \varnothing$. Let $a, b \in X_{s}$. Then $a, b \in X$ such that $a *^{\prime} s=s$ and $b *^{\prime} s=s$. Now, by (B2), (I), and (B1), we have $(0 * b) *^{\prime} s=$ $(0 * b) *^{\prime}\left(b *^{\prime} s\right)=((0 * b) *(0 * b)) *^{\prime} s=0 *^{\prime} s=s$. Thus, by (B2) and (P1), we have $s=a *^{\prime} s=a *^{\prime}\left((0 * b) *^{\prime} s\right)=(a *(0 *(0 * b))) *^{\prime} s=(a * b) *^{\prime} s$. Hence, $a * b \in X_{s}$ and so X_{s} is a subalgebra of X.

The equivalence classes of the equivalence relation of Theorem 2.8 are called B-orbits of X on S and the B-orbit of $s \in S$ is denoted by $[s]_{B}$. The subalgebra X_{s} in Theorem 2.9 is called B-stabilizer of s.
Example 2.10. Let X be a B-algebra and $*^{\prime}$ be a left B-translation of X on itself. Then there is only one B-orbit of X. To see this, $[0]_{B}=\left\{y \in X: x *^{\prime} 0=y\right.$ for some $\left.x \in X\right\}=$ $\{y \in X: x *(0 * 0)=y$ for some $x \in X\}=\{y \in X: x=y$ for some $x \in X\}=X$. For any $x \in X$, the B-stabilizer of x is trivial. To see this, $X_{x}=\left\{y \in X: y *^{\prime} x=x\right\}=\{y \in X:$ $y *(0 * x)=x\}=\{y \in X: y=0\}=\{0\}$.
Example 2.11. Let X be a B-algebra and $*^{\prime}$ be a B-conjugation of X on itself. For any $x \in X$, the B-orbit of x is the conjugacy class of x and the B-stabilizer of x is the centralizer of x.

The following theorem tells us that the cardinality of the B-orbit $[s]_{B}$ of s is equal to the index of the B-stabilizer X_{s} in X.

Theorem 2.12. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on S. For $s \in S$, we have $\left|[s]_{B}\right|=\left[X: X_{s}\right]_{B}$.
Proof. Let $s \in S$. Let \mathcal{L} be the collection of all left B-cosets of X_{s} in X. Let $r \in[s]_{B}$. Then there exists $x_{r} \in X$ such that $x_{r} *^{\prime} s=r$. Define $\varphi:[s]_{B} \rightarrow \mathcal{L}$ by $\varphi(r)=x_{r} X_{s}$. Claim 1: φ is well-defined.
Clearly, $\varphi(r)=x_{r} X_{s} \in \mathcal{L}$ for all $r \in[s]_{B}$. Let $p, q \in[s]_{B}$ such that $p=q$. Then there exist $x_{p}, x_{q} \in X$ such that $x_{p} *^{\prime} s=p$ and $x_{q} *^{\prime} s=q$. Hence, $x_{p} *^{\prime} s=x_{q} *^{\prime} s$. Now, by (B2), (I), and (B1), we have

$$
\begin{aligned}
x_{p} *^{\prime} s=x_{q} *^{\prime} s & \Rightarrow\left(0 * x_{q}\right) *^{\prime}\left(x_{p} *^{\prime} s\right)=\left(0 * x_{q}\right) *^{\prime}\left(x_{q} *^{\prime} s\right) \\
& \Rightarrow\left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=\left(\left(0 * x_{q}\right) *\left(0 * x_{q}\right)\right) *^{\prime} s \\
& \Rightarrow\left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=\left(\left(0 *^{\prime} s\right)\right. \\
& \Rightarrow\left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=s
\end{aligned}
$$

Thus, $\left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) \in X_{s}$. By Theorem 1.1(i), $\varphi(p)=x_{p} X_{s}=x_{q} X_{s}=\varphi(q)$ and so φ is well-defined.

Claim 2: φ is one-to-one.
Suppose that $p, q \in[s]_{B}$ and $\varphi(p)=\varphi(q)$. Then there exist $x_{q}, x_{p} \in X$ such that $p=x_{p} *^{\prime} s$, $q=x_{q} *^{\prime} s$ and $x_{p} X_{s}=x_{q} X_{s}$. By Theorem 1.1(i), $\left(0 * x_{q}\right) *\left(0 * x_{p}\right) \in X_{s}$. Then by (B1), (I), and (B2), we have

$$
\begin{aligned}
& \left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=s \\
& \left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=\left(0 *^{\prime} s\right) \\
& \left(\left(0 * x_{q}\right) *\left(0 * x_{p}\right)\right) *^{\prime} s=\left(\left(0 * x_{q}\right) *\left(0 * x_{q}\right)\right) *^{\prime} s \\
& \left(0 * x_{q}\right) *^{\prime}\left(x_{p} *^{\prime} s\right)=\left(0 * x_{q}\right) *^{\prime}\left(x_{q} *^{\prime} s\right)
\end{aligned}
$$

By Lemma 2.6, $x_{p} *^{\prime} s=x_{q} *^{\prime} s$ and so $p=q$. Thus, φ is one-to-one.
Claim 3: φ is onto.
If $x_{r} X_{s} \in \mathcal{L}$, then $\varphi(r)=\varphi\left(x_{r} *^{\prime} s\right)=x_{r} X_{s}$. Hence, φ is onto.
Therefore, φ is bijective. Consequently, $\left|[s]_{B}\right|=\left[X: X_{s}\right]_{B}$.
Corollary 2.13. Let X be a finite B-algebra that acts on a set S and $s \in S$. Then $|X|=\left|[s]_{B}\right|\left|X_{s}\right|$.

Proof. This follows from Theorems 1.2 and 2.12.
Corollary 2.14. Let X be a finite B-algebra that acts on a set S. If S is finite, then $|S|=\sum_{a \in A}\left[X: X_{a}\right]_{B}$, where A is a subset of S containing exactly one element from each B-orbit $[a]_{B}$.

Proof. This follows from Theorems 2.8 and 2.12.
Definition 2.15. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Let $s \in S$ and $x \in X$. Then s is called fixed by x if $x *^{\prime} s=s$. If $x *^{\prime} s=s$ for all $x \in X$, then s is called fixed by X. We also define $F(x)$ as the number of elements of S fixed by x.

Theorem 2.16. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a nonempty finite set S. Then the number of B-orbits of X is given by $\frac{1}{|X|} \sum_{x \in X} F(x)$.
Proof. Let $T=\left\{(x, s) \in X \times S: x *^{\prime} s=s\right\}$. Since $F(x)$ is the number of elements $s \in S$ such that $(x, s) \in T$, it follows that $|T|=\sum_{x \in X} F(x)$. Also, $\left|X_{s}\right|$ is the number of elements $x \in X$ such that $(x, s) \in T$. Hence, $|T|=\sum_{s \in S}\left|X_{s}\right|$. Let $S=\left[s_{1}\right]_{B} \cup\left[s_{2}\right]_{B} \cup \cdots \cup\left[s_{k}\right]_{B}$, where $\left\{\left[s_{1}\right]_{B},\left[s_{2}\right]_{B}, \ldots,\left[s_{k}\right]_{B}\right\}$ is the set of all distinct B-orbits of X on S. Then $\sum_{x \in X} F(x)=$ $\sum_{s \in\left[s_{1}\right]_{B}}\left|X_{s}\right|+\sum_{s \in\left[s_{2}\right]_{B}}\left|X_{s}\right|+\cdots+\sum_{s \in\left[s_{k}\right]_{B}}\left|X_{s}\right|$. Suppose that a and b are in the same Borbit. Then $[a]_{B}=[b]_{B}$ and so by Theorem 2.12, $\left[X: X_{a}\right]=\left|[a]_{B}\right|=\left|[b]_{B}\right|=\left[X: X_{b}\right]$. By Theorem 1.2, $\frac{|X|}{\left|X_{a}\right|}=\frac{|X|}{\left|X_{b}\right|}$ and so $\left|X_{a}\right|=\left|X_{b}\right|$. Thus, $\sum_{x \in X} F(x)=\left|\left[s_{1}\right]_{B}\right|\left|X_{s_{1}}\right|+$ $\left|\left[s_{2}\right]_{B}\right|\left|X_{s_{2}}\right|+\cdots+\left|\left[s_{k}\right]_{B}\right|\left|X_{s_{k}}\right|=\frac{|X|}{\left|X_{s_{1}}\right|}\left|X_{s_{1}}\right|+\frac{|X|}{\left|X_{s_{2}}\right|}\left|X_{s_{2}}\right|+\cdots+\frac{|X|}{\left|X_{s_{k}}\right|}\left|X_{s_{k}}\right|=k|X|$, where k is the number of distinct B-orbits. Consequently, $k=\frac{1}{|X|} \sum_{x \in X} F(x)$.

Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. For the succeeding results, let $S_{0}=\left\{s \in S: x *^{\prime} s=s\right.$ for all $\left.x \in X\right\}$.

Theorem 2.17. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a finite set S. If $|X|=p^{n}$ for some prime p, then $|S| \equiv\left|S_{0}\right| \bmod p$.

Proof. By Corollary 2.14, $|S|=\sum_{a \in A}\left[X: X_{a}\right]_{B}$, where A is a subset of S containing exactly one element from each B-orbit $[a]_{B}$. Now, $s \in S_{0}$ if and only if $x *^{\prime} s=s$ for all $x \in X$ if and only if $[s]_{B}=\{s\}$. Hence, $|S|=\left|S_{0}\right|+\sum_{a \in A \backslash S_{0}} \frac{|X|}{\left|X_{a}\right|}$. Since $\left|X_{a}\right| \neq|X|$ for all $a \in A \backslash S_{0}, \frac{|X|}{\left|X_{a}\right|}$ is some power of p for all $a \in A \backslash S_{0}$. Thus, $\frac{|X|}{\left|X_{a}\right|}$ is divisible by p. Therefore, $|S| \equiv\left|S_{0}\right| \bmod p$.

Corollary 2.18. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a finite set S. If $|X|=p^{n}$ for some prime p such that p does not divide $|S|$, then there exists $s \in S$ such that s is fixed by X.

Proof. By Theorem 2.17, $|S| \equiv\left|S_{0}\right| \bmod p$. Since p does not divide $|S|, p$ does not divide $\left|S_{0}\right|$. Thus, $\left|S_{0}\right| \neq 0$. Hence, there exists $s \in S_{0}$. Therefore, s is fixed by X.

Theorem 2.19. Let H be a subalgebra of a finite B-algebra X, where $|H|=p^{k}$ for some prime p and nonnegative integer k. Then $[X: H]_{B} \equiv[N(H): H]_{B} \bmod p$. Moreover, if p divides $[X: H]_{B}$, then $N(H) \neq H$.

Proof. Let $\mathcal{L}=\{x H: x \in X\}$. Define $*^{\prime}: H \times \mathcal{L} \rightarrow \mathcal{L}$ by $(h, x H) \rightarrow(h *(0 * x)) H$. Then $*^{\prime}$ is a left B-translation of H on \mathcal{L}. Let $\mathcal{L}_{0}=\left\{x H \in \mathcal{L}: h *^{\prime} x H=x H\right.$ for all $\left.h \in H\right\}$. By Theorem 2.17, $|\mathcal{L}| \equiv\left|\mathcal{L}_{0}\right| \bmod p$. Now, $x H \in \mathcal{L}_{0}$ if and only if $h *^{\prime} x H=x H$ for all $h \in H$ if and only if $\{x *(x * h): h \in H\}=H$ if and ony if $x \in N(H)$. Thus, \mathcal{L}_{0} is the set of all left B-cosets of H in $N(H)$. Hence, $\left|\mathcal{L}_{0}\right|=[N(H): H]_{B}$. Also, $|\mathcal{L}|=[X: H]_{B}$. Therefore, $[X: H]_{B} \equiv[N(H): H]_{B} \bmod p$. Moreover, if p divides $[X: H]_{B}$, then p divides $[N(H): H]_{B}$. Since $[N(H): H]_{B} \geq 1$, it follows that $N(H) \neq H$.

3 B-faithful and B-transitive This section presents two kinds of B-actions on a set. These B-actions are B-faithful and B-transitive.

Definition 3.1. A B-action of a B-algebra X on a set S is called B-faithful if $x *^{\prime} s=s$ for all $s \in S$ implies that $x=0$. A B-action of X on S is called B-transitive if for all $s, r \in S$ there exists $x \in X$ such that $x *^{\prime} s=r$.

Example 3.2. The B-action of a B-algebra X on itself by left B-translation is faithful.
Example 3.3. The B-action of a B-algebra X on itself by B-conjugation is faithful if and only if $Z(X)=\{0\}$.

Theorem 3.4. Let X be a B-algebra and $*^{\prime}$ be a B-action of X on a set S. Then $*^{\prime}$ is B-faithful on S if and only if no two distinct elements of X have the same B-action on each element of S.

Proof. Suppose that $x, y \in X$ such that $x *^{\prime} s=y *^{\prime} s$ for any $s \in S$. Then by (B2), (I), and (B1), we have

$$
\begin{aligned}
x *^{\prime} s & =y *^{\prime} s \\
(0 * y) *^{\prime}\left(x *^{\prime} s\right) & =(0 * y) *^{\prime}\left(y *^{\prime} s\right) \\
((0 * y) *(0 * x)) *^{\prime} s & =((0 * y) *(0 * y)) *^{\prime} s \\
((0 * y) *(0 * x)) *^{\prime} s & =0 *^{\prime} s \\
((0 * y) *(0 * x)) *^{\prime} s & =s
\end{aligned}
$$

Since $*^{\prime}$ is B-faithful, $(0 * y) *(0 * x)=0$. By (P5), $(0 * y)=(0 * x)$. Applying (P4), $y=x$. Conversely, let $x \in X$ such that $x *^{\prime} s=s$ for any $s \in S$, then $x=0$ since x has the same B-action on S as 0 . Thus, the B-action is B-faithful.

Theorem 3.5. Let X be a B-algebra and $*^{\prime}$ be a B-transitive of X on a set S containing at least two elements. Then for any $s \in S,[s]_{B}=S$ and $|S|=\left[X: X_{s}\right]_{B}$.

Acknowledgement. The authors would like to thank the referee for the remarks and suggestions which were incorporated into this revised version.

References

[1] J.S. Bantug and J.C. Endam, Lagrange's Theorem for B-algebras, Int. J. of Alg., 11(1)(2017), 15-23.
[2] J.C. Endam, Centralizer and Normalizer of B-algebras, Sci. Math. Japn., (2016).
[3] J. Neggers and H.S. Kim, On B-algebras, Mat. Vesnik, 54(2002), 21-29.
[4] J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J., 2(3)(2002), 207-214.
[5] A. Walendziak, Some Axiomatizations of B-algebras, Math. Slovaca, 56(3)(2006), 301-306.
Communicated by Klause Denecke
${ }^{1}$ Department of Mathematics
Negros Oriental State University
Kagawasan Ave., Dumaguete City, PHILIPPINES
jc endam@yahoo.com
${ }^{2}$ Department of Mathematics
Silliman University
Hibbard Ave., Dumaguete City, PHILIPPINES
emelyncbanagua@su.edu.ph

