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Abstract. In this paper, we introduce the notion of a B-action of a B-algebra X on
a set S. We show that a B-action ∗′ of X on S induces an equivalence relation on S
defined by s ∼ s′ if and only if x∗′ s = s′ for some x ∈ X. Moreover, for any s ∈ S, the
cardinality of the equivalence class [s]B of s is equal to the index of the corresponding
subalgebra Xs in X, that is, |[s]B | = [X : Xs]B , where Xs = {x ∈ X : x ∗′ s = s}.
Furthermore, the number of distinct equivalence classes is given by 1

|X|
P

x∈X F (x),

where F (x) is the number of elements of S fixed by x. We also introduce B-faithfulness
and B-transitivity and investigate some related properties.

1 Introduction and Preliminaries In [3], the notion of B-algebras was introduced by
J. Neggers and H.S. Kim in 2002. A B-algebra is an algebra (X; ∗, 0) of type (2, 0) (that
is, a nonempty set X with a binary operation ∗ and a constant 0) satisfying the following
axioms for all x, y, z ∈ X:
(I) x ∗ x = 0,
(II) x ∗ 0 = x,
(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)).
A B-algebra (X; ∗, 0) is commutative [3] if x ∗ (0 ∗ y) = y ∗ (0 ∗ x) for all x, y ∈ X. In
[4], J. Neggers and H.S. Kim introduced the notions of a subalgebra and normality of B-
algebras and some of their properties are established. A nonempty subset N of X is called
a subalgebra of X if x ∗ y ∈ N for any x, y ∈ N . It is called normal in X if for any
x, y, a, b ∈ N (x ∗ y, a ∗ b ∈ N implies (x ∗ a) ∗ (y ∗ b) ∈ N). A normal subset of X is a
subalgebra of X. There are several properties of B-algebras as established by some authors.
The following properties are used in this paper, for any x, y, z ∈ X, we have
(P1) 0 ∗ (0 ∗ x) = x [3],
(P2) x ∗ y = 0 ∗ (y ∗ x) [5],
(P3) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y [3],
(P4) 0 ∗ x = 0 ∗ y implies x = y [3],
(P5) x ∗ y = 0 implies x = y [3].

In [1], the concept of B-cosets of B-algebras is introduced. Let H be a subalgebra of a B-
algebra X and x ∈ X. Let xH = {x∗ (0∗h) : h ∈ H} and Hx = {h∗ (0∗x) : h ∈ H}, called
the left and right B-cosets of H in X, respectively. If X is commutative, then xH = Hx for
all x ∈ X. Observe that 0H = H = H0 and x = x ∗ (0 ∗ 0) ∈ xH and x = 0 ∗ (0 ∗ x) ∈ Hx.
Also, xH = H if and only if x ∈ H.

Theorem 1.1. [1] Let H be a subalgebra of a B-algebra X and a, b ∈ X. Then
i. aH = bH if and only if (0 ∗ b) ∗ (0 ∗ a) ∈ H
ii. Ha = Hb if and only if a ∗ b ∈ H.
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If H is a subalgebra of a B-algebra X, then {xH : x ∈ X} forms a partition of X and
there is a one-one correspondence of the set of all left B-cosets of H in X onto the set of all
right B-cosets of H in X. Thus, we define the number of distinct left (or right) B-cosets,
written [X : H]B , of H in X as the index of H in X. If X is finite, then clearly [X : H]B
is finite.

Theorem 1.2. [1] (Lagrange’s Theorem for B-algebras) Let H be a subalgebra of a finite
B-algebra X. Then |X| = [X : H]B |H|.

In [2], the concepts of centralizer and normalizer of a B-algebra X are introduced. The
centralizer C(x) of x in X is defined by C(x) = {y ∈ X : y ∗ (0∗x) = x∗ (0∗y)}. Then C(x)
is a subalgebra of X for all x ∈ X. If H is a nonempty subset of X, then the centralizer
C(H) of H in X is defined by C(H) = {y ∈ X : y ∗ (0 ∗x) = x ∗ (0 ∗ y) for all x ∈ H}. Since
C(H) =

∩
x∈H C(x), C(H) is a subalgebra of X. In particular, the center C(X) = Z(X)

of X is a subalgebra of X. Now, let H and K be nonempty subsets of X. For every x ∈ X,
we define Hx as the set Hx = {x ∗ (x ∗ h) : h ∈ H}. The normalizer of H in K, denoted by
NK(H), is defined by NK(H) = {x ∈ K : Hx = H}. If K = X, then NX(H) is called the
normalizer of H, denoted by N(H). If K is a subalgebra of X, then NK(H) is a subalgebra
of X. In particular, N(H) is a subalgebra of X.

2 B-algebras acting on sets This section introduces the notion of a B-action on a set.
It also provides some related properties.

Definition 2.1. A B-action of a B-algebra X on a set S is a map ∗′ : X × S → S, written
x ∗′ s for all (x, s) ∈ X × S, satisfying the following properties:
(B1) 0 ∗′ s = s
(B2) x1 ∗′ (x2 ∗′ s) = (x1 ∗ (0 ∗ x2)) ∗′ s.
When such a B-action is given, we say that X acts on the set S.

Example 2.2. Let X be a B-algebra and S be a nonempty set. Define ∗′ : X × S → S
by (x, s) → s for all (x, s) ∈ X × S. Clearly, 0 ∗′ s = s. Let x1, x2 ∈ X and s ∈ S. Then
x1 ∗′ (x2 ∗′ s) = x1 ∗′ s = s = (x1 ∗ (0 ∗ x2)) ∗′ s. Thus, ∗′ is a B-action and is called the
trivial B-action of X on S.

Example 2.3. Let X be a B-algebra and H be a subalgebra of X. Define ∗′ : H ×X → X
by (h, x) → h ∗ (0 ∗ x) for all (h, x) ∈ H × X. Let h1, h2 ∈ H and x ∈ X. Then by (P2),
(P1), and (III), we have

h1 ∗′ (h2 ∗′ x) = h1 ∗′ (h2 ∗ (0 ∗ x))
= h1 ∗ [0 ∗ (h2 ∗ (0 ∗ x))]
= h1 ∗ [(0 ∗ x) ∗ h2]
= h1 ∗ [(0 ∗ x) ∗ (0 ∗ (0 ∗ h2))]
= (h1 ∗ (0 ∗ h2)) ∗ (0 ∗ x)
= (h1 ∗ (0 ∗ h2)) ∗′ x.

By (P1), 0 ∗′ x = 0 ∗ (0 ∗ x) = x. Thus, ∗′ is a B-action and is called left B-translation of
H on X.

Example 2.4. Let X be a B-algebra and H,K be subalgebras of X. Let L be the set of
all left B-cosets of K in X. Define ∗′ : H × L → L by (h, xK) → (h ∗ (0 ∗ x))K. Then H
acts on L by left B-translation.
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Example 2.5. Let X be a B-algebra and H be a subalgebra of X. Define ∗′ : H ×X → X
by (h, x) → h ∗ (h ∗ x) for all (h, x) ∈ H × X. Let h1, h2 ∈ H and x ∈ X. Then by (P3)
and (P2), we have

h1 ∗′ (h2 ∗′ x) = h1 ∗′ (h2 ∗ (h2 ∗ x))
= h1 ∗ (h1 ∗ (h2 ∗ (h2 ∗ x)))
= h1 ∗ (h1 ∗ [(h2 ∗ (0 ∗ x)) ∗ h2])
= h1 ∗ [(h1 ∗ (0 ∗ h2)) ∗ (h2 ∗ (0 ∗ x))]
= [h1 ∗ (0 ∗ (h2 ∗ (0 ∗ x)))] ∗ (h1 ∗ (0 ∗ h2))
= [h1 ∗ ((0 ∗ x) ∗ h2)] ∗ (h1 ∗ (0 ∗ h2))
= [(h1 ∗ (0 ∗ h2)) ∗ (0 ∗ x)] ∗ (h1 ∗ (0 ∗ h2))
= (h1 ∗ (0 ∗ h2)) ∗ [(h1 ∗ (0 ∗ h2)) ∗ x]
= (h1 ∗ (0 ∗ h2)) ∗′ x.

By (P1), 0 ∗′ x = 0 ∗ (0 ∗ x) = x. Thus, ∗′ is a B-action and is called B-conjugation.

Lemma 2.6. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Let s1, s2 ∈ S
and x ∈ X. If x ∗′ s1 = x ∗′ s2, then s1 = s2.

Proof. Let s1, s2 ∈ S and x ∈ X. Suppose that x ∗′ s1 = x ∗′ s2. Then by (B2), (I), and
(B1), we have

x ∗′ s1 = x ∗′ s2

(0 ∗ x) ∗′ (x ∗′ s1) = (0 ∗ x) ∗′ (x ∗′ s2)
((0 ∗ x) ∗ (0 ∗ x)) ∗′ s1 = ((0 ∗ x) ∗ (0 ∗ x)) ∗′ s2

0 ∗′ s1 = 0 ∗′ s2

s1 = s2

This proves the lemma.

Lemma 2.7. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Let x ∈ X,
s, r ∈ S. Then x ∗′ s = r if and only if s = (0 ∗ x) ∗′ r.

Proof. If x ∗′ s = r, then by (B2), (I), and (B1), we obtain

(0 ∗ x) ∗′ (x ∗′ s) = (0 ∗ x) ∗′ r
((0 ∗ x) ∗ (0 ∗ x)) ∗′ s = (0 ∗ x) ∗′ r

0 ∗′ s = (0 ∗ x) ∗′ r
s = (0 ∗ x) ∗′ r

Conversely, if s = (0 ∗ x) ∗′ r, then by (B2), (P1), (I), and (B1), we obtain

s = (0 ∗ x) ∗′ r
x ∗′ s = x ∗′ ((0 ∗ x) ∗′ r)
x ∗′ s = (x ∗ (0 ∗ (0 ∗ x))) ∗′ r
x ∗′ s = (x ∗ x) ∗′ r
x ∗′ s = 0 ∗′ r
x ∗′ s = r

This completes the proof.
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Theorem 2.8. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Define ∼ on S
by s ∼ s′ if and only if x ∗′ s = s′ for some x ∈ X. Then ∼ is an equivalence relation on S.

Proof. Let s ∈ S. By (B1), 0∗′ s = s and so s ∼ s. Hence, ∼ is reflexive. Now, let s, s′ ∈ S.
Suppose that s ∼ s′, then there exists x ∈ X such that x∗′s = s′. Note that 0∗x ∈ X and by
(B2), (I), and (B1), we have (0∗x)∗′ s′ = (0∗x)∗′ (x∗′ s) = ((0∗x)∗ (0∗x))∗′ s = 0∗′ s = s.
Hence, s′ ∼ s and so ∼ is symmetric. Let s1, s2, s3 ∈ S. Suppose that s1 ∼ s2 and
s2 ∼ s3. Then there exist x1, x2 ∈ X such that x1 ∗′ s1 = s2 and x2 ∗′ s2 = s3. Note that
x2 ∗ (0 ∗ x1) ∈ X and by (B2), we have (x2 ∗ (0 ∗ x1)) ∗′ s1 = x2 ∗′ (x1 ∗ s1) = x2 ∗′ s2 = s3.
Thus, s1 ∼ s3 and so ∼ is transitive. Therefore, ∼ is an equivalence relation on S.

Theorem 2.9. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Then for each
s ∈ S, Xs = {x ∈ X : x ∗′ s = s} is a subalgebra of X.

Proof. Let s ∈ S. By (B1) , 0 ∈ Xs and so Xs 6= ∅. Let a, b ∈ Xs. Then a, b ∈ X
such that a ∗′ s = s and b ∗′ s = s. Now, by (B2), (I), and (B1), we have (0 ∗ b) ∗′ s =
(0 ∗ b) ∗′ (b ∗′ s) = ((0 ∗ b) ∗ (0 ∗ b)) ∗′ s = 0 ∗′ s = s. Thus, by (B2) and (P1), we have
s = a ∗′ s = a ∗′ ((0 ∗ b) ∗′ s) = (a ∗ (0 ∗ (0 ∗ b))) ∗′ s = (a ∗ b) ∗′ s. Hence, a ∗ b ∈ Xs and so
Xs is a subalgebra of X.

The equivalence classes of the equivalence relation of Theorem 2.8 are called B-orbits of
X on S and the B-orbit of s ∈ S is denoted by [s]B . The subalgebra Xs in Theorem 2.9 is
called B-stabilizer of s.

Example 2.10. Let X be a B-algebra and ∗′ be a left B-translation of X on itself. Then
there is only one B-orbit of X. To see this, [0]B = {y ∈ X : x ∗′ 0 = y for some x ∈ X} =
{y ∈ X : x ∗ (0 ∗ 0) = y for some x ∈ X} = {y ∈ X : x = y for some x ∈ X} = X. For any
x ∈ X, the B-stabilizer of x is trivial. To see this, Xx = {y ∈ X : y ∗′ x = x} = {y ∈ X :
y ∗ (0 ∗ x) = x} = {y ∈ X : y = 0} = {0}.

Example 2.11. Let X be a B-algebra and ∗′ be a B-conjugation of X on itself. For any
x ∈ X, the B-orbit of x is the conjugacy class of x and the B-stabilizer of x is the centralizer
of x.

The following theorem tells us that the cardinality of the B-orbit [s]B of s is equal to
the index of the B-stabilizer Xs in X.

Theorem 2.12. Let X be a B-algebra and ∗′ be a B-action of X on S. For s ∈ S, we have
|[s]B | = [X : Xs]B.

Proof. Let s ∈ S. Let L be the collection of all left B-cosets of Xs in X. Let r ∈ [s]B . Then
there exists xr ∈ X such that xr ∗′ s = r. Define ϕ : [s]B → L by ϕ(r) = xrXs.
Claim 1: ϕ is well-defined.
Clearly, ϕ(r) = xrXs ∈ L for all r ∈ [s]B . Let p, q ∈ [s]B such that p = q. Then there exist
xp, xq ∈ X such that xp ∗′ s = p and xq ∗′ s = q. Hence, xp ∗′ s = xq ∗′ s. Now, by (B2), (I),
and (B1), we have

xp ∗′ s = xq ∗′ s ⇒ (0 ∗ xq) ∗′ (xp ∗′ s) = (0 ∗ xq) ∗′ (xq ∗′ s)
⇒ ((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = ((0 ∗ xq) ∗ (0 ∗ xq)) ∗′ s
⇒ ((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = ((0 ∗′ s)
⇒ ((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = s

Thus, ((0 ∗ xq) ∗ (0 ∗ xp)) ∈ Xs. By Theorem 1.1(i), ϕ(p) = xpXs = xqXs = ϕ(q) and so ϕ
is well-defined.
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Claim 2: ϕ is one-to-one.
Suppose that p, q ∈ [s]B and ϕ(p) = ϕ(q). Then there exist xq, xp ∈ X such that p = xp ∗′ s,
q = xq ∗′ s and xpXs = xqXs. By Theorem 1.1(i), (0 ∗ xq) ∗ (0 ∗ xp) ∈ Xs. Then by (B1),
(I), and (B2), we have

((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = s

((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = (0 ∗′ s)
((0 ∗ xq) ∗ (0 ∗ xp)) ∗′ s = ((0 ∗ xq) ∗ (0 ∗ xq)) ∗′ s

(0 ∗ xq) ∗′ (xp ∗′ s) = (0 ∗ xq) ∗′ (xq ∗′ s)

By Lemma 2.6, xp ∗′ s = xq ∗′ s and so p = q. Thus, ϕ is one-to-one.
Claim 3: ϕ is onto.
If xrXs ∈ L, then ϕ(r) = ϕ(xr ∗′ s) = xrXs. Hence, ϕ is onto.
Therefore, ϕ is bijective. Consequently, |[s]B | = [X : Xs]B .

Corollary 2.13. Let X be a finite B-algebra that acts on a set S and s ∈ S. Then
|X| = |[s]B ||Xs|.

Proof. This follows from Theorems 1.2 and 2.12.

Corollary 2.14. Let X be a finite B-algebra that acts on a set S. If S is finite, then
|S| =

∑
a∈A

[X : Xa]B, where A is a subset of S containing exactly one element from each

B-orbit [a]B.

Proof. This follows from Theorems 2.8 and 2.12.

Definition 2.15. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Let s ∈ S
and x ∈ X. Then s is called fixed by x if x ∗′ s = s. If x ∗′ s = s for all x ∈ X, then s is
called fixed by X. We also define F (x) as the number of elements of S fixed by x.

Theorem 2.16. Let X be a B-algebra and ∗′ be a B-action of X on a nonempty finite set

S. Then the number of B-orbits of X is given by
1
|X|

∑
x∈X

F (x).

Proof. Let T = {(x, s) ∈ X×S : x∗′s = s}. Since F (x) is the number of elements s ∈ S such
that (x, s) ∈ T , it follows that |T | =

∑
x∈X

F (x). Also, |Xs| is the number of elements x ∈ X

such that (x, s) ∈ T . Hence, |T | =
∑
s∈S

|Xs|. Let S = [s1]B ∪ [s2]B ∪ · · · ∪ [sk]B , where

{[s1]B , [s2]B , . . . , [sk]B} is the set of all distinct B-orbits of X on S. Then
∑
x∈X

F (x) =∑
s∈[s1]B

|Xs| +
∑

s∈[s2]B

|Xs| + · · · +
∑

s∈[sk]B

|Xs|. Suppose that a and b are in the same B-

orbit. Then [a]B = [b]B and so by Theorem 2.12, [X : Xa] = |[a]B | = |[b]B | = [X : Xb].

By Theorem 1.2,
|X|
|Xa|

=
|X|
|Xb|

and so |Xa| = |Xb|. Thus,
∑
x∈X

F (x) = |[s1]B ||Xs1 | +

|[s2]B ||Xs2 |+ · · ·+ |[sk]B ||Xsk
| =

|X|
|Xs1 |

|Xs1 |+
|X|
|Xs2 |

|Xs2 |+ · · ·+ |X|
|Xsk

|
|Xsk

| = k|X|, where

k is the number of distinct B-orbits. Consequently, k =
1
|X|

∑
x∈X

F (x).
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Let X be a B-algebra and ∗′ be a B-action of X on a set S. For the succeeding results,
let S0 = {s ∈ S : x ∗′ s = s for all x ∈ X}.

Theorem 2.17. Let X be a B-algebra and ∗′ be a B-action of X on a finite set S. If
|X| = pn for some prime p, then |S| ≡ |S0| mod p.

Proof. By Corollary 2.14, |S| =
∑
a∈A

[X : Xa]B , where A is a subset of S containing exactly

one element from each B-orbit [a]B . Now, s ∈ S0 if and only if x ∗′ s = s for all x ∈ X

if and only if [s]B = {s}. Hence, |S| = |S0| +
∑

a∈ArS0

|X|
|Xa|

. Since |Xa| 6= |X| for all

a ∈ A r S0,
|X|
|Xa|

is some power of p for all a ∈ A r S0. Thus,
|X|
|Xa|

is divisible by p.

Therefore, |S| ≡ |S0| mod p.

Corollary 2.18. Let X be a B-algebra and ∗′ be a B-action of X on a finite set S. If
|X| = pn for some prime p such that p does not divide |S|, then there exists s ∈ S such that
s is fixed by X.

Proof. By Theorem 2.17, |S| ≡ |S0| mod p. Since p does not divide |S|, p does not divide
|S0|. Thus, |S0| 6= 0. Hence, there exists s ∈ S0. Therefore, s is fixed by X.

Theorem 2.19. Let H be a subalgebra of a finite B-algebra X, where |H| = pk for some
prime p and nonnegative integer k. Then [X : H]B ≡ [N(H) : H]B mod p. Moreover, if p
divides [X : H]B, then N(H) 6= H.

Proof. Let L = {xH : x ∈ X}. Define ∗′ : H × L → L by (h, xH) → (h ∗ (0 ∗ x))H. Then
∗′ is a left B-translation of H on L. Let L0 = {xH ∈ L : h ∗′ xH = xH for all h ∈ H}.
By Theorem 2.17, |L| ≡ |L0| mod p. Now, xH ∈ L0 if and only if h ∗′ xH = xH for all
h ∈ H if and only if {x ∗ (x ∗ h) : h ∈ H} = H if and ony if x ∈ N(H). Thus, L0 is the
set of all left B-cosets of H in N(H). Hence, |L0| = [N(H) : H]B . Also, |L| = [X : H]B .
Therefore, [X : H]B ≡ [N(H) : H]B mod p. Moreover, if p divides [X : H]B , then p divides
[N(H) : H]B . Since [N(H) : H]B ≥ 1, it follows that N(H) 6= H.

3 B-faithful and B-transitive This section presents two kinds of B-actions on a set.
These B-actions are B-faithful and B-transitive.

Definition 3.1. A B-action of a B-algebra X on a set S is called B-faithful if x ∗′ s = s for
all s ∈ S implies that x = 0. A B-action of X on S is called B-transitive if for all s, r ∈ S
there exists x ∈ X such that x ∗′ s = r.

Example 3.2. The B-action of a B-algebra X on itself by left B-translation is faithful.

Example 3.3. The B-action of a B-algebra X on itself by B-conjugation is faithful if and
only if Z(X) = {0}.

Theorem 3.4. Let X be a B-algebra and ∗′ be a B-action of X on a set S. Then ∗′ is
B-faithful on S if and only if no two distinct elements of X have the same B-action on each
element of S.
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Proof. Suppose that x, y ∈ X such that x ∗′ s = y ∗′ s for any s ∈ S. Then by (B2), (I),
and (B1), we have

x ∗′ s = y ∗′ s
(0 ∗ y) ∗′ (x ∗′ s) = (0 ∗ y) ∗′ (y ∗′ s)

((0 ∗ y) ∗ (0 ∗ x)) ∗′ s = ((0 ∗ y) ∗ (0 ∗ y)) ∗′ s
((0 ∗ y) ∗ (0 ∗ x)) ∗′ s = 0 ∗′ s
((0 ∗ y) ∗ (0 ∗ x)) ∗′ s = s

Since ∗′ is B-faithful, (0 ∗ y) ∗ (0 ∗ x) = 0. By (P5), (0 ∗ y) = (0 ∗ x). Applying (P4), y = x.
Conversely, let x ∈ X such that x ∗′ s = s for any s ∈ S, then x = 0 since x has the same
B-action on S as 0. Thus, the B-action is B-faithful.

Theorem 3.5. Let X be a B-algebra and ∗′ be a B-transitive of X on a set S containing
at least two elements. Then for any s ∈ S, [s]B = S and |S| = [X : Xs]B.
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