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ABSTRACT. In this paper, we give a definition of martingale Besov spaces and martin-
gale Triebel-Lizorkin spaces for general filtrations. We investigate several fundamental
properties of these spaces.

1 Introduction The theory of Besov spaces and Triebel-Lizorkin spaces provides us a
unified approach to various important function spaces such as Ly-spaces, Hardy spaces,
BMO spaces, Lipschitz spaces and Sobolev spaces. From such diversity, Besov spaces and
Triebel-Lizorkin spaces are useful in various mathematical branches.

In martingale theory, Chao and Peng [5] gave a definition of Besov spaces and Triebel-
Lizorkin spaces for p-adic martingales and pointed out some fundamental properties of these
spaces. They used martingale Besov spaces for characterization of Schatten-von Neumann
properties of commutators. For general filtrations, Weisz [17] proved duality theorems
among martingale Hardy spaces of g-variations, including the duality between martingale
Hardy spaces and martingale BMO spaces of g-variations. We note that these spaces coin-
cide with martingale Triebel-Lizorkin spaces when the smoothness parameter equals to 0,
and that Weisz’s duality theorem is an early general result on martingale Triebel-Lizorkin
spaces.

In this paper, we give a definition of martingale Besov spaces and martingale Triebel-
Lizorkin spaces for general filtrations. We give proofs for several fundamental properties
of these spaces such as duality, complex interpolation and norm equivalence in a general
framework. We also study some embeddings under additional assumptions on filtrations. It
relates to recent progress of the theory of fractional integral of martingales ([4], [7], [8], [11],
[14]). In fact, we apply our results to the boundedness of fractional integrals of martingales
and obtain some improvement.

The organization of this paper is as follows. In the next section, we give the definition
of martingale Besov-Triebel-Lizorkin spaces for general filtrations and describe our results.
In Section 3, we prove some basic properties of martingale Besov-Triebel-Lizorkin spaces.
In Section 4, we show a duality between martingale Besov-Triebel-Lizorkin spaces. In
Section 5, we study complex interpolation of martingale Besov-Triebel-Lizorkin spaces. In
Section 6, we show a norm equivalence in terms of mean oscillations. In Section 7, we prove
some embedding theorem under additional assumptions on filtrations. Finally in Section 8,
we give an application of our results to the boundedness of fractional integral of martingales.

2 Notations, definitions and results Let (2, F, P) be a probability space. Let {Fy, }n>0
be a filtration, that is, nondecreasing sequence of sub-c-algebras of F such that F =
o(UU,, Frn)- The expectation operator and the conditional expectation operators relative to
Fn are denoted by E and FE,, respectively. For simplicity, we use the convention E_; = 0.
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We say a sequence of measurable functions f = (f,)n>0 is adapted if f,, is F,-measurable
for every n > 0.

We denote by V the set of all adapted sequence of functions v = (v,,),>0 satisfying that
vo = 1 and that there exist constants d2 > §; > 1 such that

(2.1) 0NUp—1 < vy < 090,17 forall n>1.
By vg =1 and (2.1), if (v,)n>0 € V, then
(2.2) 07 <w, <y foral n>0

for some d2 > 61 > 1. For (v, )n>0 € V, we use the convention v_; = vy.

Let (fn)n>0 be a sequence of integrable functions. We say (f,)n>0 is a martingale
relative to {Fp}n>o if it is adapted and satisfies E,[fn] = fn for every n < m. For a
martingale f = (fn)n>o0, let dnf = fr — fn—1 with convention f_; = 0. We denote by M
the set of all martingales.

For p € [1,00), let M,, be the set of all L,-bounded martingales. It is known that,
if p € (1,00), then any L,-bounded martingale converges in L,. Moreover, if f € L,,
p € [1,00), then (fy)n>0 with f,, = E,, f is in M, and converges to f in L,, (see for example
[10]). For this reason a function f € L; and the corresponding martingale (fy,)n>0 with
fn = Eyn f will be denoted by the same symbol f. Note also that || f||z, = sup,>q [|Enfl|L,-

We now introduce martingale Besov spaces and martingale Triebel-Lizorkin spaces. Our
definition is a generalization of Chao and Peng’s one in [5].

Definition 2.1. Let p € (0,00], ¢ € (0,00], s € R and v = (v, )n>0 € V. For f = (fn)n>0 €
M, define | fllms, = fll55, 0y and | £z = /175 o by

oo 1/q oo
(2.3) ||f|B;q:<Z||vzldnf||%p> and | f|ps, = (szmm)
n=0 n=0

1/q

LP
respectively if p < co and ¢ < oo with convention v_; = vg and f_; = 0.
If p < 00 and ¢ = oo, then define
1fllB;,, =sup oy 1dnfllz, and |[fllrs, = |[suplv; adufl||
n>0 n>0 L,
and if p = 0o and ¢ < oo, then define
o 1/q oo 1/q
I, = ( Do lvnadafli, | and |Iflpg, =sup||En | Y |vR 1dif]® :
n=0 n20 k=n I

and if p = ¢ = oo, then define

s =
Foooo

IfllBs.. =supllvp_1dnfllr. and |f] sup [vy,_1d f |
n>0 n>0

L
respectively with the same convention as in (2.3).
Then, the spaces B,, = B;,(v) and F},, = F} (v) are defined by
By, ={feM:|flp;, <oo} and F; ={feM:|flrs, <oo}

respectively.
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[ fllBs, and || f|| s, are quasi-norms on By, and Fy;, respectively. We call By, = B, (v) a
martingale Besov space associated to v and call F},, = F}, (v) a martingale Triebel-Lizorkin
space associated to v.

Remark 2.1. For f = (fn)n>0 € M, the square functions S, (f), where n > 0, and S(f) are

defined by
1/2

n 1/2 e’}
Su(f) = (Zwﬁ) and S(f) = (anfﬁ)
k=0 n=0

with convention f_; = 0. Then, for p € (0,00), the martingale Hardy spaces Hi? is defined
by

Hy = {f € M:||S(f)ll, < oo}
The space ng coincides with H;,g for p € (0,00). Moreover, if p > 1, then FI? = H;? ~ Ly.
Furthermore, martingale space BMOg ~ is defined by

BMO; ™ = {f € M: || fllpyos- < oo},

where
17llpsi0- = Sup [ BalS(F)? = Suar (7)1

with convention S_;(f) = 0. The space F2, coincides with BMOS~. For the theory of
martingale Hardy spaces and martingale BMO spaces, we refer to [6], [10] and [16].

For v = (vy)n>0 € V, define u = (up)n>0 by u, = v, ! for n > 0. For a € R and
f= (fn)nZO € M, define a martingale I f = ((Igf)n)nZO by

(T4 f)n =D uf_ydif
k=0

with convention u_; = ug, f—1 =0 and (I¥f)_1 =0.
Our first result is a lifting property of IY. It is a direct consequence of the definition,
but for its importance, we give a proof.

Theorem 2.1. Let v = (vu)n>0 € V. Define u = (up)n>o0 by u, = v,' for n > 0.
Let a € R. Then, I is an isometric isomorphism from Bg, to B]S);”" and Fpj, to F;;ra
respectively for p € (0,00], ¢ € (0,00] and s € R.

Proof. Since d,,(I*f) = u®_1d, f for n > 0, it is clear that I is a bijection from M to M
with the inverse map I“ . Moreover, we have

(2.4) VT Yd (1Y f) = vi_yd,f forall n>0.
By (2.4), we have
V2 fllggie = fllms, and 2 FlL e = 1fllms,
This is the desired conclusion. O

Our next result is a duality between martingale Besov-Triebel-Lizorkin spaces. For
p € [1,00], we denote by p’ the conjugate exponent of p, that is,

p/(p—1) if 1<p<oo,
1 if p=oo,
00 if p=1.

p =

We use the notation A;q to denote either B;q or szq for short.
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Theorem 2.2. Let v = (Upy)n>0 € V, s €R, p € [1,00) and g € [1,00). Denote by p' and ¢’
the conjugate exponents of p and q respectively. Let (A;q)’ denote the topological dual space
of Apy- Then, (A,,)" is isomorphic to A%, under the pairing (g, f) — >0 o Eldngdn, f]
with convention g_1 = f_1 = 0. More precisely, there exists a positive constant C' depending
only on p and q such that the following (1) and (2) hold:

(1) If g € A%, then the infinite sum > neo Eldngd, f] converges for every f € A5
Moreover,

1]

> Eld,gd, f]

n=0

<Cllgla Iflla;, (F €43

(2) Conversely, for each ® € (A,,)", there exists h € A7, such that

o(f) =Y Eld.hdnf] (f € A3,)

n=0

and that [[A] o-: < C||®]cag, -

The proof of Theorem 2.2 is given in Section 4.

Remark 2.2. The duality of the case s =0 and A = F was proved in [17, Theorem 14 and
17].

Further, we investigate the complex interpolation between martingale Besov-Triebel-
Lizorkin spaces. We recall the definition of the first Calderén’s complex interpolation func-
tor.

Let S={z€C:0<Rez <1} and So = {2 € C:0 < Rez < 1}. Let (Ap, A1) be
a compatible couple of Banach spaces. We denote by F(Ag, A1) the set of all (Ag + Ay)-
valued bounded continuous functions F' on S which is holomorphic in Sy and moreover,
t — F(j+it) (j = 0,1) is a function from R into A; satisfying ||F(j + it)[|a, — O as
|t| — co. As is shown in [2, Lemma 4.1.1], the space F (Ao, A1) equipped with the norm

[Ell 7(40,4,) = max (Sup (i) ]| a0, sup [[F(1 + it)llm)
teR teR

is a Banach space.
Definition 2.2. Let (Ap, A1) be a compatible couple of Banach spaces. For 6 € [0, 1],
define [Ag, A1]p by
[Ao, A1lo ={f € Ao+ A1 : f =F(0) forsome F € F(Ap, A1)}
equipped with the norm

1 lliao, e = L inf IF 70, 40)-

We now state our result on complex interpolation of martingale Besov-Triebel-Lizorkin
spaces.

Theorem 2.3. Letv €V, 6 € (0,1), so,s1 € R and po, p1, 40, q1 € [1,00] with min(qo, q1) <
0. Define s, p and q by

1 1-6 6 1 1-6 6
(2.5) s=(1-68)sp+0s1, —= +—, -= +
b Po h1 q do a1

with convention 1/oo = 0. Then, the following (i) and (i) hold.
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(i) [B3y0s Batg,lo = By, with equivalence of norms.

(i1) Assume that 1 < pg,p1 < co. Then, [F;0, , F3i, 1o = Fj, with equivalence of norms.

The proof of Theorem 2.3 is given in Section 5.

Remark 2.3. In the theory of Besov-Triebel-Lizorkin spaces on Euclidean spaces, the com-
plex interpolation is investigated for pg, p1, qo, ¢1 € (0, 00] by using the framework of distri-
bution valued analytic functions ([15, Section 2.4.4]) and by using isomorphisms to sequence
spaces ([9, Theorem 9.1]). Since these methods are not known for martingales of general
filtrations, we restrict ourselves to the case where pg, p1, g0, q1 € [1, 00].

In the next section, we will show that if s € (0,00), p € [1,00] and ¢ € (0, 0], then
B,, C Ly and F;, C L;,. Further, in Section 6, we prove the following norm equivalence in
terms of mean oscillations.

Theorem 2.4. Letv € V,s € (0,00), p € [1,00] and g € (0,00]. Let f € L, and iden-
tify f with the corresponding martingale (fn)n>0 = (Enf)n>0. Then, the following norm
equivalence holds:

(2.6) ||f||Bf,q ~ H(||U:}1En|f - fn—1|||Lp)n20H€q .
Moreover, if 1 < p < oo and g > 1, then
(2.7) £ 1z, ~ (051 Balf = fa1Dazolle, |, -

Note that we do not need any assumption on {F,}n>0 in Theorems 2.1, 2.2, 2.3 and
2.4.

To study embeddings, we need some assumptions on {F,}n>0. B € F, is called an
atom (more precisely a (F,, P)-atom), if any A C B with A € F,, satisfies P(A) = P(B)
or P(A) = 0. Below, we assume that

(2.8) every o-algebra F,, is generated by countable atoms.

We denote by A(F,,) the set of all atoms in F,,. We define F,,-measurable functions b,, and
v, by
(2.9) bo= >  P(B)xp, v.=b,"

BEA(F,)

We also assume that {F,, },>0 is regular, that is, there exists R > 2 such that

(2.10) E.f <RE,_1f for all n > 1 and non-negative integrable function f.
Further, for the sake of simplicity, we assume that
(2.11) If Be A(F,_1), B € A(F,) and B’ C B,
then P(B’) < P(B) for every n > 1.
(2.12) Fo={0,0}.

If (2.8), (2.10), (2.11) and (2.12) hold, then, by [11, Lemma 3.3],
1
14+ — )by, <b,—1 < Rb,
( + R) < 1

for every n > 1. Hence, we obtain that the sequence v = (vy,),>0 defined in (2.9) belongs
to V.

As for embeddings, we show the following two theorems. For quasi-normed space X and
Y, we denote by X — Y if the identity map from X is a continuous map into Y.
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Theorem 2.5. Suppose that every o-algebra F, is generated by countable atoms. Fur-
thermore, assume that {Fp}n>o0 is regular with (2.11) and (2.12). Let v = (vy)n>0 be the
sequence of functions defined in (2.9). Let s € R, ¢ € (0,00) and po,p1 € (0,00) with
po <p1. Let o =1/py —1/p1. Then,

(2.13) By B and Fiie < F3

Poq Pooo P19’

Theorem 2.6. Suppose that every o-algebra F, is generated by countable atoms. Fur-
thermore, assume that {Fp}n>o0 is regular with (2.11) and (2.12). Let v = (vy)n>0 be the
sequence of functions defined in (2.9). Let s € R, p € (0,00) and q € (0,00]. Let A3, denote
either By, or Fy.. If s > 1/p, then

s s—1
(2.14) As, — Bi P

The proofs of Theorems 2.5 and 2.6 are given in Section 7.
We apply our results to the boundedness of fractional integral for martingales. To
explain this application, we recall the definition of fractional integrals for martingales.

Definition 2.3. Let a € R. Suppose that every o-algebra F,, is generated by countable
atoms. Let b,, be the function defined in (2.9). For a martingale (f,,),>0, define a martingale

Iaf = ((Iaf)n)nzo by .
(Taf)n =Y bi_ydif
k=0

with convention b_1 = by and f_; = 0. If @ > 0, then we call I, f the fractional integral of
f of order a.

Further, we recall the definition of martingale Lipschitz spaces ([16, page 7]). For s > 0
and f € Ly, let

1
s = s i [ 110 = Eap@ldre)

with convention E_; f = 0. We do not assume Eyf = 0, different from [16]. Then define
(2.15) AT(s) = 1 € Lus Ifly ) < o0}

We regard Aj (s) as martingale spaces by the identification f € Ly with the corresponding
martingale (E, f)n>0-

We now state the application of our results. For two quasi-normed spaces X and Y, we
denote by B(X,Y) the set of all bounded linear maps from X to Y.

Theorem 2.7. Suppose that every o-algebra F, is generated by countable atoms. Fur-
thermore, assume that {Fp}tn>o is regular with (2.11) and (2.12). Let v = (vn)n>0 be the
sequence of functions defined in (2.9). Let s € R, p € (0,00), g € (0,00) and o € (0,00). If
a < 1/p, then define py by 1/p1 = 1/p — a. Then, the following boundedness holds for the
fractional integral I,,:

(2.16) I, € B(F;DO,F;M) if a<l1/p,
(2.17) I, € B(F;,, Fy,) if a=1/p and q¢>1,

(2.18) I, € B(F5,,B3271P) if a>1/p.
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Theorem 2.7 is an extension of the following known fact shown in [4], [11] and [14].
Indeed, we can obtain it as a corollary of Theorem 2.7.

Corollary 2.8. Under the assumptions in Theorem 2.7, the following boundedness holds
for the fractional integral I, :

(2.19) I, € B(Hy HY) if a<1/p,
(2.20) I, € B(H; ,BMO3") if a=1/p,
(2.21) I, € B(HY AT (= 1/p)) if a>1/p.

In Section 8, we give proofs of Theorem 2.7 and Corollary 2.8.

3 Some basic properties In this section, we show several basic properties of martingale
Besov spaces and martingale Triebel-Lizorkin spaces.

Proposition 3.1. Letv € V,s € R, p € [1,00] and g € (0,00]. Then B,, and Fy;, are
quasi-Banach spaces.

Proof. Let A}, denote either By or Fj . Let (f(N))Nzl be a Cauchy sequence in A7 . By
(2.2), the sequence (dnf(N))Nzl is a Cauchy sequence in L, for every n > 0. Let g, € L,
be the limit function of the sequence (dnf(N))Nzl. Noting that p > 1, we have F,_1g, =0
for all n > 1. Therefore, the sequence f = (f,)n>0 defined by f, = > p_ gk for n > 0 is
a martingale. Hence, by a standard argument, we have that (f (v )) N>1 converges to f in
Aj,- We obtain the desired conclusion. O

Proposition 3.2. Letv eV, s € R, p € (0,00] and ¢,q1,q2 € (0,0].
(1) If p < oo and q1 < qo, then

(3.1) By, — By, and Fp, — Fj

Pq1 Pq2 pqz2°
(2) For each s € R, p € (0,00] and q € (0, 0],

(3:2) ;min(pﬂ) = Fpy — B;maX(p,q)'
Proof. (3.1) is a consequence of the known fact [[(an)n>0lle,, < [[(@n)n>0lle, for any se-

quence (Gp)n>0-

To show (3.2), we first note that
(3.3) BS, = F,
which is derived from the definition. Furthermore, we recall the following fact for any
sequence of measurable functions (g, )n>0, which is proved by the use of Minkowski’s in-
equality:

(34) [(lgaliz,)nzoll,, < [gn)nolle,ll, i »<aq,
(3:5) (lgallz,)nzoll,, = [l(ga)nzolie [l it »>q.

We now show (3.2) in case p < oo. If p < ¢, then, using (3.3), (3.1) and (3.4), we have (3.2)
as follows:
BS

S S S S S
. = — > > —
pmin(p,q) Bpp Fpp qu qu B

pmax(p,q)"
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Similarly, if p > ¢, then we have (3.2) as follows:
BS

S S S S S
. = > < = =
pmin(p,q) qu qu FPP BPP B

pmax(p,q)

Thus, we obtain (3.2) in case p < co.
If p = 00 and ¢ < oo, then we have || f|

Fs, < £l Bz, Py the following inequality:

o loioadef1O <D s oadaf g = IS
n=0

k=n

q 3
B3,
We also have || f|ps, . < [[fllFs, for ¢ < oo by the following inequality:

‘Uvsz—ldnﬂq = EnHUS dnf|q] <E,

n—1

q
F;cq'

> |Uii—1dkf|q] < |1/l

k=n

The proof is completed.

Concerning Theorem 2.4, we show the following proposition.
Proposition 3.3. Letv eV, s >0, p € [1,00], and q € (0,00|. Then,
(3.6) By, — L, and Fj, — L,
under the identification of (fn)n>0 € A3, with its limit function, where A3 denote either
B, or Fp,.
Proof. By Proposition 3.2, we only have to show that
By = Ly.

Let f = (fn)n>0 € By By (2.2), we have

S lldnflle, <36 Vs ydafllz, <36Vl < .

n=1 n=1 n=1

Thus, (fn)n>0 = (X j—odkf)n>0 converges in L,. Denote the limit function by the same
symbol f. Then we have E,f = f, and | f|l, < 2(1 - 6;5)_1||f||350c. The proof is
completed. O

4 Proof of Theorem 2.2. In this section, we prove Theorem 2.2. To do this, we need
two lemmas.

Lemma 4.1. Let p € [1,00] and ¢ € [1,00]. Let (fn)n>0 be a sequence of integrable
functions. If1 < g < p < oo orl < p < q < oo, then, there exists a constant Cp 4
depending only on p and q such that

(Enfudnzolle,]l,, < Coa [I1Fndnzolle ],

For the proof of Lemma 4.1, we refer to [1, Theorem 3.1].

Remark 4.1. Since || Ey, fullL, < ||fnllz, by Jensen’s inequality for E,, it is clear that
H(HEnanLp)nZOHZQ < H(anHLp)nZOHZq

for p € [1,00] and ¢ € (0, c0].
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Lemma 4.2. Let q € [1,00). Denote by ¢' the conjugate exponent of q. Then, there exists
a positive constant C' depending only on q such that the following (1) and (2) hold:

(1) If g € Fgoq/, then the infinite sum Y > Eld,gd, f] converges for every f € Floq.
Moreover,

[dngdy, f]

< Cligllee M fllre, (f€ Fiy).

(2) Conversely, for each ® € (FY,)', there exists g € Fgoq, such that

oo

O(f) = Eld,gd.f] (f € F,)

n=0
and that [|gllpo < Cl®lrg,)-

For the proof of Lemma 4.2, we refer to [17, Theorem 17 and Corollary 10].

Remark 4.2. We remark on the difference between our convention and the one in [17]. In
[17, Corollary 10], it was shown the duality between Hlsq = {(fa)nz0 € FT, : fo = 0} and
BMO, = {(fn)n>0 € Fgoq, : fo = 0}. For this difference, we note that

feF) ifandonlyif f—foeHy" and fo€ Ly,
fe Fgoq, if and only if f— fo € BMO,, and fo€ L

with
1 llre, ~I1f = follrg, + W folless W fllre , ~1F = follre , + Il follze,

where f = (fn)n>0 and f — fo = (fn — fo)n>0-

Proof of Theorem 2.2. The proof below is a modification of the one given in [17, Theo-
rems 14-17], but, to include the Besov space case, we give a proof.

We first prove the case where p € (1,00). Let g € A;;;, and f € Ay,. If A}, = F7,, then
using Holder’s inequality, we have

(4.1) ZE |dngd, f|] =

n=0

Z |’U ngvi—ldnf|]

<E [n( vt 1dug)azolle, 1051 f)uzolle,
fHF;q'

< HQHF;,;,

If A, = B,,, then similarly we have

Z E Hdngdnf| Z E ngv 1dnf”

n=0

= Z o2 1dngllL,, lvn—1dnflL,

< ||9||Bp—,j1,

fllBs,-

Therefore, we have obtained (1) in case p € (1,00).
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We next show (2) in case p € (1,00). Define A4,, by

A (L) i A =B
7=\ Ly(ty) i A =5

Let ® € (A3,) and let u,, = v, ! for n > 0. By Theorem 2.1, the functional f — & o I¥(f)
on qu is bounded. We denote by i : qu — Ap, the isometric embedding defined by
i(f) = (dnf)nz0 (f € AY,). Using Hahn-Banach’s theorem, we take ¥ € (A,,)" such that
[¥ll(a,q) = [®[l(as,) and that ¥ oi = & o I} on A . Furthermore, using the fact that
(Apg) is isometric to Ay g, we take g = (gn)n>0 € Aprg such that

o0
lglla,, = 1®llas, ) and that @(f) = Elgav)_idnf] for fe A3,
n=0

Then define h = (hy,)n>0 by

hn =Y vi_1(Exgk — Ex-19x)
k=0

with convention v_; = vy and E_1g9 = 0. It is clear that h = (hy)n>0 is a martingale. If
Ap, = By, then by Remark 4.1,

pq’

o2 sl nzo|, = [|(1Bagn = Bu-1galls, Jnzo
qu qu

< ||(IBgalz, duzo, +[[(1Bu-19alz, )uxo |,
ql

q’

<2 [z, dnzo], = 2%l

that is, we have h € B 7, with ”hHB;'Z/ < 2(|®[/(Bs,) -

Similarly, if A;, = F,,,, then by Lemma 4.1,

1072 dn)nzolle,

N o],

< |1Enga)nzolle, ||, + [1En-19n)nzolle, |,
]-7/

<20y g

(Gn)uzolle, ||, = 2Cy.q 1@l
P

that is, we have h € F, 7 with ||h||F s <20y ¢ [|®l(r
Let f € A;,. Then, by the formal self—ad301ntness of En7 we have

> Elduhdyf] =Y (E[En(v;_180)dn f] = E[By1(v5_19n)dn f])
n=0 n=0

—Z 0051 En(dn f)] = Elgnvy,—1 En1(dn f)])

— Z E[Gnvs_1dnf] = O(f).
n=0
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Hence, we have the desired conclusion for the case where p € (1, 00).

For the case where A7 = B, with p = 1, we can obtain the desired conclusion by the
same way as in the case where p € (1, 00).

We now give a proof for the case where A; = F; with p=1. Let g € Fo_o‘;, and let
u = (v;)n>0. Then, by (1) of Lemma 4.2 and Theorem 2.1, we obtain that the infinite

sum oo
> Eldngd, f] = ZE (1))
n=0

converges and that

oo

Z dnGdy )

< Clglro, 172 g, = Cllglp,

for f € Fy,.
We next show (2). Let ® € (F},)’. By Theorem 2.1, ® o I** belongs to (FY,)’. Using (2)
of Lemma 4.2, we take g € F2, o such that

o0

(4.2) Ool(f) = Eld,gd.fl (f€F},)

n=0
and that ||g[|g0 < C[|® OI;L”(FPQ)/ = C’H<I>||(F1sq)/. Let f € Fy,. We put h = I" g and
f=1".fin (4.2). Then, we have Pl - < C”(I’H(qu)' and

coq’

O(f) = Eldn(I¢D)dn (1" f)] = Y Eldyhd, f].
n=0 n=0

Therefore, we have the desired conclusion for the case where A} = FJ with p = 1. The
proof is completed.
O

5 Proof of Theorem 2.3. In this section, we give a proof of Theorem 2.3. For the proof,
we need some lemmas.
For 0 <z <1andtéeR,let up(zt), u1(z,t) be the Poisson kernel on S = {0 < Rez <
1}, that is,
e~ ™Y sin 1

py(x + iy, t) = —5 j=0,1.

- 3
sin® 7z + (cos x — elim—T(t-y))2

Lemma 5.1. Let (Ao, A1) be a compatible couple of Banach spaces. Let f € F(Ap, A1).
Then, for 0 < 6 <1,

1 (0)[l140, 4116
oo 1-0 0o 6
< (25 [ wtlaona) (5 [~ 10+ ilam.d) -

o0 (oo}
For the proof of Lemma 5.1, see [2, Lemma 4.3.2].

Lemma 5.2. Let f be a non-negative bounded measurable function on Q. Let a,b € R and
let p(z) = az +b, z € C. Suppose that either essinf f > 0 or both a and b are positive.
Then, the map F : S — Loy defined by F(z) = f**) is holomorphic on Sy.
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Proof. We first give the proof for the case where essinf f > 0. Since f**) = fo(f%)*, we
only have to prove in case where p(z) = z. Let z € Sy and let h € C\ {0} such that
z 4+ h € Sy. By the fundamental theorem of calculus, we have

1 h t
z 2= s
f?(og f) h/o </0 f ds) dt

where C' = (14 || f[|Z_){log(Il/ "z + I fllz..)}?. Therefore, we have F'(z) = f*log f in
L.

We next give the proof for the case where both a and b are positive. Since fP*) =
fe(=+b/a) "\we only have to show in case where p(z) = z + ¢ with ¢ > 0. Then, as above, we

L

z+h _ £z
| < Cl,

Lo

— [ log f

have
fz+c+h _ fz+c e . fz h t .
Hh—f logf|| = |(f7*og £)* - [rds ) dt
Loo 0 0 L
< sup  (aPlogz)’(1+||f|7 )R-
0<2<||fllLoo
We have the desired conclusion. O

Lemma 5.3. Let (c,)52 be a sequence of positive numbers and oo > 0. Then,
0o n a—1 1 0o «
c Ck < — c .

For the proof of Lemma 5.3, see [15, Section 2.4.6] and [13, Lemma 2.17].

In the next lemma, we give a dense subspace of B,  and Fj,,. Let M, be the set of all
martingales (fy,)n>0 which satisfies sup,,~¢ || fnllz., < o0

Then define -

T = {(fn)n>0 € M, : there exists N > 0 such that f, = fy for alln > N}.

Lemma 5.4. Letv € V. Let p € [1,00], ¢ € [1,00) and s € R. Then, T is dense in B, .
Moreover, if p < oo, then T is also dense in Fy,.

Proof. We first show that 7 is dense in F;, if p < co. Let f = (fn)n>0 € Fp,. For N >0,
let fN = (fuaN)n>0 where n A N = min(n, N). Then,

o 1/q o 1/q
(5.1) (Z Ivi_ldn(f—fN)lq> = ( > Ivi_ldnf|q> :
n=0

n=N+1

By Lebesgue’s convergence theorem, we have
. N o
Jim ([ £V, =0,

Therefore, to obtain the conclusion, we only have to show that each f¥ is approximated by
some sequences in 7.
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For R > 0, let g(N,R) = (En[fNX{|fx|<R}))n>0- It is clear that g(N,R) € 7. Noting
that v, < 6% for some J3 > 1, we have

1/q

o) 1/q N
(5-2) (Z o —1dn(fY —g(N,R))q> = (Z o —1dn(fY —g(N,R))q)
n=0 n=0
N 1/q
<oyt (Z | (FN = g(N, R))Iq)
+ ]\770
< 65\[8 Z ‘dn(fN - g(N’ R))|
n=0

N
§+
<260 ) EulfnXqiinl>ny]
n=0

where sT = max(s,0). By (5.2), we have

N
s+
N = g(N, R)llry, <2857 > | Balfnxqisnismlll,
n=0
. N
<200 vy > ryll, -
n=0

Since fy € Ly, we have
lim ||fY —g(N,R)| s, =0.

R—o00

Therefore, we have that 7 is dense in F;,.
We next show that 7 is dense in B,,. As in (5.1), we have

o 1/q oo 1/q
(5.3) <Z IIU;ildn(f—fN)qup) = ( > ||v31dnf||‘ip> :
n=0

= n=N+1

Note that (5.3) holds even if p = co. Then we have

: __ ¢N
Jim |f £

By, — 0.

Similarly, as in (5.2), we have

oo 1/q N
S S+
(z ot dn(F — gl R»u%p) <9 S ol
n=0 n=0

Hence, we obtain

Jim [N = g(N, B)]|5;, =0.

Therefore, we have the desired conclusion. O
The following is the key lemma for the proof of Theorem 2.3.

Lemma 5.5. Let v € V, 6 € (0,1), so,s1 € R and po,p1,90,q1 € [1,00]. Define s, p and
q by (2.5) with convention 1/0o = 0. Then, there exists a positive constant C1 depending
only on po,p1,qo,q1 and 6 such that the following (i) and (ii) hold.
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(i) For each f € T, there exists H € F(B2°, ,B5!, ) such that

Podo’ Ppias
(5.4) Vg, spty < Callfllss,,  HE) = f
and that
(5.5) H(z)eT forall z€S and supsupl|ld,H(2)||L,, < .
n>0z€8

(ii) Assume that 1 < po,p1 < oo. Then, for each f € T, there exists H € F(F;0, , ;1. )
such that

(5.6) ”H”}'(FSO

Prodo0° 1’1‘11) -

< Cil|f]

rs,, HO)=f
and that (5.5).

Proof. We first show (i). To do this, we introduce functions p1, pa and p3 defined on C by

= (g a)u-e ()

with convention 1/00 = 0 and co/o0 = 1.
Furthermore, define sgn : C — C by

z/|lz| if z#0,
Sgn(z):{o/|| if ziO.

Let f € T such that ||f||p

s, =1 Forn>0,z€S5and w € Q, define g,,(z,w) by

9n (@) = vn-1 ()" O dn () > Osgn(dn f (@) -1n f I,
Then, define H(z) = (Hp(2))n>0 by
(5.7) h(2) = gn(2) = Enaalgn(2)l, Ha(2) =) hu(2)
with convention F_1[go(2)] = 0 H(z) is a martingale for every z € S. Noting that
p1(0) = p3(0) = 0 and p3(f) = 1, we have ¢, (0,w) = d,, f(w) and then have
(5.8) H(O) = f.

By Lemma 5.2, we obtain that g, is an Ly-valued holomorphic function on Sy. More-
over, since f € T and Rep; (j = 1,2,3) is bounded on S, we have

(5.9) H(z)eT forall zeS.

Thus, H is a (B°,, + B,!,, )-valued holomorphic function on Sy with

(5.10) supsup ||dn, H(2)||L.. < 2supsup ||gn(2)|L., < oo.
n>0z€S n>0z€S
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For § > 0, let Hy(z) = ¢*G=9° H(z). Then, Hjy also satisfies Hs(f) = f and (5.5). We
now show that Hgs belongs to F (B0 . B3t ). For j € {0,1}, noting that

Poqo’ T P1q1

Rep1(j + it) = sﬁ_ —sj, Repa(j+it) = pﬁ’ Reps(j + it) = 4 _ 2,

j j 4 Py

we have
071 9n (G + )P = [v5_ydu fIP([vf—ydn f7, ) (OP2/P90 1,
Hence, we have

lon 190 (G + it)llz,, = (1051 dnf L)%

Therefore,

(5.11) |H (5 + it)]

.
J
Brja;

< H(Hviilgn(j + it)”ij)nZOHZ + “(||UZ];1E71—1[gn(j + it)]”ij )"20 ‘
j

a5

<2||(Io5_1dnfllz, Jnzoll, = 2.

By (5.8) and (5.11), we obtain Hs € F(B2°, , Bs' ) with

Poqo’ T P1q1

(5.12) |Hsll g0, per. y < 2max(e®, =07 Hy(9) = f.

Po490°—P191

Thus, by (5.12), (5.9) and (5.10), we obtain (i).
We now show (ii). In this case, we define p1, p2 and ps by

pr(z) = (Sqqo - 80> (1—2)+ (sqql - 81> 2,

o= (- )e-ar (2-2):

Let f € T such that || f]

Fs,=1. Forn>0,z¢€ S and w € Q, define g, (z,w) by

In(2,0) = Va1 ()P dy, ()72 Psgn(dy, f(w)) (1 + G ()

where G,,(w) denotes
Gn(w) = [[(ve—1(w)*dr f(w))o<r<nll,, -

Then, by the same way as in (5.7), we obtain martingales H(z) = (H,(2))n>0 such that
H) = f, H(z) € T for all z € S and that z — H(z) is holomorphic from Sj into

?zfgqo + Fjl,, . Furthermore, Hs(z) = e‘s(z’efH(z) satisfies Hs() = f and (5.5) for every
> 0.
We now show that Hs belongs to F(Fy0, , Fyl, ) for every 6 > 0. We first show it in

case where qp,q1 < oo. Since p3(f) = 0, we have p3(0)p3(1) < 0. We may assume that
p3(0) < 0 because the other case is proved by the same way. Note that

Rep1(j +it) = s— —sj, Repa(j + it) = qi Reps(j +it) = & — L

q; j pj q;
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for j =0,1. Then, by the assumption p3(0) < 0, we have

(032 4 1gn ()P = (051 |dn f)I(1 + Gp)?> O
< (03, |dy f|)(1Gﬁs(0)ro

n (rgo/qpo)—1
= (051 |dn f])? (Z(vz_1|dkf|>Q>

k=0

and

(W gn (1 +i0))9 = (05 |dn f)7(1 + )P (7
< O(vyqldn f)1{1 + G0

n (pq1/qp1)—1
=C(vp_ldnf)?{ 1+ <Z(vi_1|dkf)q> ;

k=0

where C is a positive constant depending only on p3(1)g;. Using Lemma 5.3 and the
assumption p3(0) < 0, which is equivalent to pgy < gpo, we have

1/q0

AN

o 1/q0 o n (pqo/qpo)—1
(z@:wgmnqo) < [ty (z (i 1|dkf|)
k=0

n=0 n=0

s 1/q
1 . .
= mln((pqo/qp0)7]_) (g(vn—”dn.ﬂ) >

- 1/q) P/Po
qp s
== <Z<vn1|dnf>q>

Pqo 0

p/Po

Similarly, we have

00 /¢
(5.13) (Z(Uff—ﬂgn(l + it)|)‘h>

n=0
00 1/q1 50 1/q p/p1
<ct/m (Z(Ui—ﬂdnﬂ)q) +cun (Z(U‘Z—ﬂdnﬂ)q)
n=0 n=0
Since || f||rs, = 1, we have
- 1/q) P/Pi o 1/q||P/Pi
(Z(Ui—ﬂdnf)q) = <Z(Ui—1|dnf)q> =1
n=0 n=0
Ly, Ly

for j = 0,1. Furthermore, since the assumption p3(0) < 0 is equivalent to p/p1 > ¢/q1, we
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have

o0 1/q1
(Z(villdnfl)q> =

n=0 (n—O
Ly,

LPI

p/p1 ||9P1/P0L

IN

Ly

I 1/q a/a
= <Z<v2_1|dnf|>Q> =1L

n=0

1

LP
Hence, by Lemma 4.1, we have
(5.14)
IH(j + it)]| e
oo 1/q;
= <Z(U2j1|hn(j+it)|)qj>
n=0 L,.
o) 1/‘1]‘ jo%s) 1/(13
< <Z<viﬂ'1lgn<j+z‘t>|>%> + (Z(vfﬁﬂEn1[gn<j+z't>1|>qﬂ'>
n=0 L. n=0 L,.
[e'e] 1/(13
<(1+Cpygy) (Z(vmgnu - z't>|>qﬂ') <c
n=0
Ly,

where C' is a positive constant depending only on pg, p1, qo, g1 and 6. Therefore, we obtain
Hs € F(Fso, ,F5 ) with

POQO’ P1q1

1Hs | so, gy < C'max(e?®, 2107,

Po40°? qul

Hence, we have the desired conclusion for the case where gy, 1 < co.
For the case where gy < 0o and ¢; = oo, we replace (5.13) by

sup [Uy 1 gn (1 +t)] = sup(1+ G, )P/ < C(1+ ||(v},_ydn f)n>0||p/pl)
n>0 n>0

where C' is a positive constant depending only on p/p;. Furthermore, we replace (5.14) for

Jj=1by

[|H (1 +it)|| =

sup vt |hn (1 4 it)|
n>0

LPI

S (1 + CPI,OO)

sup vyl g |gn (1 + it)|
n>0

Lpl

< 0+ Cpue) (14 102 s ol

)=c
LPl
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The rest of the proof is the same as in the case of g, g1 < co. We have the desired conclusion
for the case where gy < oo and ¢; = oo. Similarly, we can prove the case where ¢y = co and
qp < oQ.

We now prove the case where gy = ¢1 = co. We replace (5.13) by

Sup [v719n(J + it)| = sup(1+ Gn)"™ < C(L+ (@5 1dn ol ")

where C' is a positive constant depending only on p/pg and p/p;.
Then, we replace (5.14) by

[H G+ i) s =

sup v,y |hn(j + it)|
n>0

Ly,

< (14 G 00)

sup v, |gn (7 + it)]
n>0 ij

< O+ Cpp ) (15 082 Pzl

) <c
Ly,

The rest of the proof is the same as in the case of gy, q1 < oo. The proof is completed. [
We now give the proof of Theorem 2.3.

Proof of Theorem 2.3. Combining 6 € (0,1) and min(qgo, ql) < 00, we have ¢ < co. Hence,
combining Lemma 5.4 and Lemma 5.5, we obtain that | f|[jpz0, 521, 1, < CillfllB;, for all
I € B,,, where (1 is the constant in Lemma 5.5. Similarly, 1f 1 < po,p1 < o0, then we have
”f”[F;fqu, Ei e < Cillfllgg, for all f € Fj,. Therefore, we only have to show the converse
inequality.
We first give a proof for the case of martingale Besov spaces. Let f € [B;0, , Byt o Let

F e F(By,,, By, ) such that F(¢) = f. From the fact ||dng||L < C’HgHB i , where C' is

a positive constant 1ndependent of g = (gn)n>0 € M, we have that 1150(1 DFazg F(z)
belongs to F(Ly,, Ly, ) by a standard argument. Hence, by Lemma 5.1 with the fact
[(Lpo, Lp,Jo = Ly (]2, Theorem 5.1.1]), we obtain that

(515) 010 F ()]s, < a8
where

anzl—ﬂ/ O dn F(it)[| L, 10(0,t) dt

by = 0/ L F (L4 i), (61) dt.
Using Minkowski’s inequality and the fact that

1 ° 1 [

we have
(5.17) wmmms——/\wmwommw<wh%wmm

A

1 [ )
1(0r)n>0lle,, < 5/ 1EQ+ i) g1, 11(8:8) dE < [ Fl| 230
—o0

2090 Briar)’
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Therefore, using (5.15), Holder’s inequality and (5.17), we obtain
I f] By, — ||F(9)||B;q
= 01 1@ F )1, )z,

S H (a”ll’biebfl)nzoueq
< [l(@n)nzolly,.” (ba)nolly,

< (IFll 75 )’ (”FH]-"(B )" = 1Flzsz0

Thus, we obtain the desired conclusion for the case of martingale Besov spaces.

We next give the proof for the case of martingale Triebel-Lizorkin spaces.

Let f € [0, Foiglo- Let G € F(Fy0, , Fjl, ) such that G(0) = f. Let h € 7 such that
||h||F : = 1. Noting that 1 < po,p1 < 00, we use Lemma 5.5 to take H € F(F, % F,*)

qu
such that H(9) = h, ||HH}.(F ) < (4 and that H satisfies (5.5). Then define
Dp(z) = >0 o EdnG(2)d, H (% )] Since H satisfies these conditions mentioned above, we
have that Dy, € F(C,C). Moreover, as in (4.1), we have

Bel .
P0‘107 P141 1-70‘107 qul 1-70‘107 qul)

—s0 p

//7

(5.18) 1Dn(G + i) < GG+ i)l s, HG + )] -y
< HGHF(F;qu, Fple) || ||}-(F—fg,p—*1
a1

< Ol #ita

where j =0, 1. Using Lemma 5.1, (5.18) and (5.16), we obtain that

IDu(6)

1 oo 1-0 1 oo 0
< (125 | patiot0ya) (G [~ i0ua+ inlate.0at)
< (UGl rrggy 310 (oGl r(rg 5200 = CUICrrg i,

for all h € 7 such that ||hHF75 =1 and for all G € F(F3°, ,Fsr ) such that G(0) = f.

Pogqo’ ~ P1q1
Therefore, we have

(5.19) sup [Dr(0)] < Cull fll g0, ity 16
RET:| | -5 =1 oo P

For g = (gn)n>0 € M and N > 0, let ¢~ = (gnan)n>0, where n A N = min(n, N). Define
(Fs )N ={g" g Fy}y, TV={¢":9eT}.

Then, it is clear that (F;q)N is a closed subspace of F;,. Moreover, by the same way as in

Lemma 5.4, we have that 7% is dense in (o )N, even 1f ¢’ = oo. Hence, by Theorem 2.2
and (5.19), we have

1z, < C sup 1Dr(0)] < CC1 £l

0
hETN:HhHF,S =1 P0<107 P1<Z1]
p’'q’

where C' and C1 are positive constants in Theorem 2.2 and in Lemma 5.5 respectively. Using
monotone convergence theorem, we obtain

1fllg, = sup 1F ¥ Es, < COUIfllp2o,, . F

o a1l
P0d0> qul
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for all f € [F30, ,Fl,lo- Therefore, we obtain the desired conclusion for the case of

martingale Triebel-Lizorkin spaces. The proof is completed. O

6 Proof of Theorem 2.4. In this section, we give a proof of Theorem 2.4.
Proof of Theorem 2.4. Since |d, f| = |En(f — fru-1)| < En|f — fu-1], we have

11, < |(lvnaEnlf = fa-alllz,)nzoll,, -

£ 117z, < M7 Ealf = Fa-1Dnzolle, |, -

We now show the converse inequalities. Let d; be the constant in (2.1). We first show (2.6)
for ¢ = co. By (2.1) and the assumption s > 0, we have

(6.1) Vil = faal S0d 0 > ldif1 < 30 8P ui i f-

k=n k=n

From Jensen’s inequality for F,, and (6.1), we have

N cs(n— /1l 3.,
HUfL—lEan - fn—1|||Lp S ||Ufz—1|f - f”_1|||Lp S Z 5;(71 k)”’UZ_ldkaLp S 1 _ng—s .
k=n 1

Therefore, we have (2.6) for ¢ = co.
To show (2.7) for ¢ = oo, let G' = sup,,>q v;,_1|dn f|. Then, by (6.1), we have

> E,G
s s(n—k s
Un—1E7L|f - .fn—1| < Z 61( )En|vk_1dkf| < 1 néis.
k=n !
Therefore, using Doob’s inequality, we have
sup vy 1 En|f — fn-1] <(1—67%)""||sup E,.G
n>0 L, n20 Ly
p
S —— =Gl
-1 -677) ’
_ p
= —— = Il

(p—1)(1 =677

Thus, we have (2.7) for ¢ = co.
We next show (2.6) for 0 < ¢ < co. If ¢ < 1, then we have

o0 o0 q o0 o0
s(n—k < sq(n—k
z(zw >|vzldkfan) <SSP duflL

n=0 \k=n n=0k=n

[e%) k
v (z 6?"(”’“)) o d I,
k=0

n=0

IN

(=07 opdf1I%, -
k=0
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If 1 < g < oo, then, denoting by ¢’ the conjugate exponent of ¢, we have
q

'S} [eS) q 00 0o q
s(n— s s(n—k)/q cs(n—k s
62) > <Z 5 k)|vk_1dkf||Lp> =3 (Z §en=k)/a’ 5o )/q”Uk_ldkf”Lp)

n=0 \k=n n=0 \k=n
0o 0o a/d’ 0o
s(n—k s(n—k s
sZ(ZéJ )> S 6 o di 119,
n=0 \k=n k=n
0o k
s(n—k s
= (1—07%)7/7 Z(Zaﬁ >> oy f112,
k=0 \n=0
00
<(1=67)7"> loioadi 1%,
k=0

Therefore, we have
oo oo q oo
s(n—k s s
(6.3) > (Z ;' ’vk_ldkf||Lp> <O |lvi_idif1%
n=0 \k=n k=0

where C is a positive constant depending only on s, ¢ and §;. Combining Remark 4.1, (6.3)
and (6.1), we have

o 1/q o 1/q
(Z [ 51 Eal f - fn1|||ip> < (Z o —a1f — fn1|Hqu> < C|flls;,.
n=0

n=0

Thus, we obtain (2.6).
We now show (2.7) for 1 < ¢ < co. Similarly as in (6.2), we have

00 0o q 00
(6.4) 3 (Z 6i<""“>vz_1|dkf|> (10770 (w5 _yldif1)*?
n=0 \k=n k=0

Combining (6.1) and (6.4), we have
oo 1/‘1 o) 1/‘1
D R N $SCRUTO I
n=0
Therefore, using Lemma 4.1, we have

00 1/q 00 1/q
<Z(Ui_1En|f - fn1|)q> < Cp.,q <Z(vrs1—1|f - fn1|)q>

n=0 L, n=0 Ly,

C [e's) l/q
S (Z(vz_ﬂdkfl)q)
e k=0

Ly

We have the desired conclusion.
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7 Proofs of Theorems 2.5 and 2.6. In this section, we give proofs of Theorems 2.5
and 2.6. As is described in Section 2, we postulate following conditions:

(7.1) Every o-algebra F,, is generated by countable atoms.
(7.2) {Fn}n>o0 is regular.
(7.3) If B € A(F,_1), B' € A(F,) and B’ C B,
then P(B') < P(B) for every n > 1.
(7.4) Fo=1{0,0},

where A(F,,) stands for the set of all atoms in F,,. Define F,,-measurable functions b,, and
v, by

(7.5) bu= Y  P(B)xp, v.=b,"
BeA(Fy,)

By [11, Lemma 3.3], b,, satisfy
1
where R is the constant in (2.10). Hence, v = (v, )n>0 in (7.5) belongs to V.

We start with the following lemma.

Lemma 7.1. Let pg,p1 € (0,00) with pg < p1. Let n be a non-negative integer. Let
a=1/po—1/p1. Let f = (fn)nz0 € M. Ifdnf € Ly,, then

(7.7) ldnfllL,, <R*vg_1dnfllL,,

with convention v_1 = vy and f_1 =0, where R is the constant in (2.10).

Proof. If n =0, then [|d, f|z,, = [[vi_1dnfllL,, because dof is constant and v_; =vg =1
by Fo = {0,Q}. Since R > 2, we have (7.7) for n = 0.
For n > 1, let B € A(F,,). Then, since d,, f is constant on B, we have

(7.8) IxBdnflL, =PB)"xpdnflL. = P(B)/P 1% xpdn L, -

Using (7.8), a = 1/py — 1/p1 and v,, < Rv,_1, we have

(7.9) IxsdnfllL,, =IlIxsvndnfllL,, <R*xsva_1dnfllL,,-

Po —

Using (7.9), we have

ldnfI7 = > lxsdafllf,

BeA(Fy)
<R S xsvi_idafl
BeA(Fn)
P1/Po

<R ST xsvi_ida I = R |os_ydn f|
BeA(Fy)

We have the desired conclusion. O
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We next show the following lemma.

Lemma 7.2. Let p € (0,00) and o € (0,00). Let n be a non-negative integer. Let f € Fy
with || fllpe, = 1. Then,

[o_ydnf] < RYPo0/"
with convention v_1 = vy and f_1 =0, where R is the constant in (2.10).

Proof. Let B € A(F,). Since v%_d, f is constant on B, we have
1 1/p
o dnf| = — o dn Pdp
Wl sduf| =0 (5 [ 1@ @ aP@))

< (f |vﬁ1(w)dnf(w)|pdp(w)>l/p

1/p
< xpollv ( [ sl @l dP<w>)

n>0
< xsRYPu/? | fllrs, = xsRYP0,%,.
The proof is completed. O
We now show Theorems 2.5 and 2.6.

Proof of Theorem 2.5. By Theorem 2.1, we only have to give a proof for the case where
s = 0. We first show that

(7.10) Ifllsg,, < B¥IIfllBg

poa’
Indeed, using Lemma 7.1, we have (7.10) as follows:

oo 1/q oo 1/q
Ifllsg,, = (ZO ||dnf||%p1> <R (ZO ||v$;1dnf||%p0) = R fllsg, -
We next show

(7.11) fllrg,, < B[ fllmg

P14 pooo

Let f € Fy , with Hf||p;(Jac =1. Let

oo 1/q
Flw) = sup [vp—1(W)dn f(W)],  G(w) = (Z Idnf(w)lq> :
n2 n=0

We show
(7.12) G < CFPo/p

where C' is a positive constant depending only on pg, p1, ¢ and R. Indeed, using Lemma 7.2
with p = pg and o = 1/pg — 1/p1, we have

ldn f| = v, 24 |vn_1dn f]
< min(v, % F, vgflRl/povrl/f)f)

= min(v, % F, Rl/pov}l/ff ).
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Therefore, noting the convention v_; = vy and the fact (1 + 1/R)vp,—1 < v, < Ru,—q, we
have (7.12) as follows:

Gl < me X F, Rl/povl/pl)

<2Zm1n FRl/povl/pl)

o dt
<9 —« F Rl/po 1/1)1 bl
= ggglog(l%l/]%)JCn 1n”n( Uni1)*

2 = [ dt

< in(RYt—“F. RY/potl/piya 22

= log(1+ 1/R) nz_:l/n ) min( ’ "3
2R4/Po

dt
in(t— O F t/p1)e
- 10g(1+1/R)/1 min(t t) t

2R/Po 1
e + quO/pl.
= qlog(1+ 1/R) ( P 1)

By (7.12), we have

po/P1 __
F(! -

1/l

P14

= |Gllz,, < CIFIE = C|f]

We have the desired conclusion.

Proof of Theorem 2.6. By Theorem 2.1 and Proposition 3.2, we only have to show Bgoo —

BooP. As in (7.8), we have

[0, 24 dp fll 1 < RYP 07 Pdn flln. < RYP sup  |Ixpdaflln, < RV fllsg..
BeA(Fyn)

We obtain the desired conclusion. O

8 Proof of Theorem 2.7 and Corollary 2.8. In this section, we prove Theorem 2.7
and Corollary 2.8. To do this, we need the following John-Nirenberg type lemma.

Lemma 8.1. Let p € (0,00) and q € [1,00). Then, the following equivalence holds:

1/p

00 r/q
1fllrg,, ~ sup || B, (Z dkf|q) (f € F%,).
nz k=n
Lo

For the proof of Lemma 8.1, we refer to [17, Theorem 2.

Lemma 8.2. Suppose that every o-algebra F,, is generated by countable atoms. Further-
more, assume that {Fp}tn>o is reqular with (2.11) and (2.12). Let v = (v, )n>0 be the
sequence of functions defined in (2.9). Let s > 0. Then, BS . = Aj (s) with equivalent
norms.
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Proof. By Theorem 2.4 and the regularity of {F,,},>0, we have
e, ~sup [usEalf — faslll,
n>0

~ sup HU?LEan - fnlelLoc
n>0

1
—swp s e [ 1) = (Bl ape)

= ”fHAl_(s)‘
‘We have the desired conclusion. O

Proof of Theorem 2.7. We obtain (2.16) and (2.18) from (2.13) and (2.14) respectively. To
show (2.17), let f € FJ and o = 1/p. Noting that |diplof| = [b7_1dif| < b_;|dyf] for
k > n and using the regularity of {F,,},>0, we have

s 1/q o 1/q oo 1/q
(defaf|q> <h, <Z|dkf|q> < R0 (ZldW) .

k=n k=n k=0

Then, for B € A(F,), we have

oo r/q 0o p/q
E |xs (Z |dkfaf|Q) < R*’P(B)*"E | x5 (Zuw)

k=n k=0
< RP(B)|fll},

by a = 1/p. Since F,, is generated by A(F,), this means

1/p

00 p/q
(8.1) E, (Z deaf|q> < R*|| f[l pg, -
k=n
Combining (8.1), Lemma 8.1 and Theorem 2.1, we obtain the desired conclusion. O

Proof of Corollary 2.8. Taking s = 0, ¢ = 2 in (2.16) and combining with the fact L,(¢2) —
L,(¢s), we obtain (2.19). Similarly, taking s =0, ¢ = 2 in (2.17), we obtain (2.20). Taking
s = 0 in (2.18), we obtain (2.21) by Lemma 8.2 and by the fact L,(¢2) — L,({s). The
proof is completed. O
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