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Abstract. In this paper, we give a definition of martingale Besov spaces and martin-
gale Triebel-Lizorkin spaces for general filtrations. We investigate several fundamental
properties of these spaces.

1 Introduction The theory of Besov spaces and Triebel-Lizorkin spaces provides us a
unified approach to various important function spaces such as Lp-spaces, Hardy spaces,
BMO spaces, Lipschitz spaces and Sobolev spaces. From such diversity, Besov spaces and
Triebel-Lizorkin spaces are useful in various mathematical branches.

In martingale theory, Chao and Peng [5] gave a definition of Besov spaces and Triebel-
Lizorkin spaces for p-adic martingales and pointed out some fundamental properties of these
spaces. They used martingale Besov spaces for characterization of Schatten-von Neumann
properties of commutators. For general filtrations, Weisz [17] proved duality theorems
among martingale Hardy spaces of q-variations, including the duality between martingale
Hardy spaces and martingale BMO spaces of q-variations. We note that these spaces coin-
cide with martingale Triebel-Lizorkin spaces when the smoothness parameter equals to 0,
and that Weisz’s duality theorem is an early general result on martingale Triebel-Lizorkin
spaces.

In this paper, we give a definition of martingale Besov spaces and martingale Triebel-
Lizorkin spaces for general filtrations. We give proofs for several fundamental properties
of these spaces such as duality, complex interpolation and norm equivalence in a general
framework. We also study some embeddings under additional assumptions on filtrations. It
relates to recent progress of the theory of fractional integral of martingales ([4], [7], [8], [11],
[14]). In fact, we apply our results to the boundedness of fractional integrals of martingales
and obtain some improvement.

The organization of this paper is as follows. In the next section, we give the definition
of martingale Besov-Triebel-Lizorkin spaces for general filtrations and describe our results.
In Section 3, we prove some basic properties of martingale Besov-Triebel-Lizorkin spaces.
In Section 4, we show a duality between martingale Besov-Triebel-Lizorkin spaces. In
Section 5, we study complex interpolation of martingale Besov-Triebel-Lizorkin spaces. In
Section 6, we show a norm equivalence in terms of mean oscillations. In Section 7, we prove
some embedding theorem under additional assumptions on filtrations. Finally in Section 8,
we give an application of our results to the boundedness of fractional integral of martingales.

2 Notations, definitions and results Let (Ω,F , P ) be a probability space. Let {Fn}n≥0

be a filtration, that is, nondecreasing sequence of sub-σ-algebras of F such that F =
σ(

∪
n Fn). The expectation operator and the conditional expectation operators relative to

Fn are denoted by E and En, respectively. For simplicity, we use the convention E−1 = 0.
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We say a sequence of measurable functions f = (fn)n≥0 is adapted if fn is Fn-measurable
for every n ≥ 0.

We denote by V the set of all adapted sequence of functions v = (vn)n≥0 satisfying that
v0 = 1 and that there exist constants δ2 ≥ δ1 > 1 such that

(2.1) δ1vn−1 ≤ vn ≤ δ2vn−1 for all n ≥ 1.

By v0 = 1 and (2.1), if (vn)n≥0 ∈ V, then

(2.2) δn
1 ≤ vn ≤ δn

2 for all n ≥ 0

for some δ2 ≥ δ1 > 1. For (vn)n≥0 ∈ V, we use the convention v−1 = v0.
Let (fn)n≥0 be a sequence of integrable functions. We say (fn)n≥0 is a martingale

relative to {Fn}n≥0 if it is adapted and satisfies En[fm] = fn for every n ≤ m. For a
martingale f = (fn)n≥0, let dnf = fn − fn−1 with convention f−1 = 0. We denote by M
the set of all martingales.

For p ∈ [1,∞), let Mp be the set of all Lp-bounded martingales. It is known that,
if p ∈ (1,∞), then any Lp-bounded martingale converges in Lp. Moreover, if f ∈ Lp,
p ∈ [1,∞), then (fn)n≥0 with fn = Enf is in Mp and converges to f in Lp (see for example
[10]). For this reason a function f ∈ L1 and the corresponding martingale (fn)n≥0 with
fn = Enf will be denoted by the same symbol f . Note also that ‖f‖Lp = supn≥0 ‖Enf‖Lp .

We now introduce martingale Besov spaces and martingale Triebel-Lizorkin spaces. Our
definition is a generalization of Chao and Peng’s one in [5].

Definition 2.1. Let p ∈ (0,∞], q ∈ (0,∞], s ∈ R and v = (vn)n≥0 ∈ V. For f = (fn)n≥0 ∈
M, define ‖f‖Bs

pq
= ‖f‖Bs

pq(v) and ‖f‖F s
pq

= ‖f‖F s
pq(v) by

(2.3) ‖f‖Bs
pq

=

( ∞∑
n=0

‖vs
n−1dnf‖q

Lp

)1/q

and ‖f‖F s
pq

=

∥∥∥∥∥∥
( ∞∑

n=0

|vs
n−1dnf |q

)1/q
∥∥∥∥∥∥

Lp

respectively if p < ∞ and q < ∞ with convention v−1 = v0 and f−1 = 0.
If p < ∞ and q = ∞, then define

‖f‖Bs
p∞

= sup
n≥0

‖vs
n−1dnf‖Lp

and ‖f‖F s
p∞

=
∥∥∥∥sup

n≥0
|vs

n−1dnf |
∥∥∥∥

Lp

,

and if p = ∞ and q < ∞, then define

‖f‖Bs
∞q

=

( ∞∑
n=0

‖vs
n−1dnf‖q

L∞

)1/q

and ‖f‖F s
∞q

= sup
n≥0

∥∥∥∥∥∥En

[ ∞∑
k=n

|vs
k−1dkf |q

]1/q
∥∥∥∥∥∥

L∞

,

and if p = q = ∞, then define

‖f‖Bs
∞∞

= sup
n≥0

‖vs
n−1dnf‖L∞ and ‖f‖F s

∞∞
=

∥∥∥∥sup
n≥0

|vs
n−1dnf |

∥∥∥∥
L∞

respectively with the same convention as in (2.3).
Then, the spaces Bs

pq = Bs
pq(v) and F s

pq = F s
pq(v) are defined by

Bs
pq = {f ∈ M : ‖f‖Bs

pq
< ∞} and F s

pq = {f ∈ M : ‖f‖F s
pq

< ∞}

respectively.
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‖f‖Bs
pq

and ‖f‖F s
pq

are quasi-norms on Bs
pq and F s

pq respectively. We call Bs
pq = Bs

pq(v) a
martingale Besov space associated to v and call F s

pq = F s
pq(v) a martingale Triebel-Lizorkin

space associated to v.
Remark 2.1. For f = (fn)n≥0 ∈ M, the square functions Sn(f), where n ≥ 0, and S(f) are
defined by

Sn(f) =

(
n∑

k=0

|dkf |2
)1/2

and S(f) =

( ∞∑
n=0

|dnf |2
)1/2

with convention f−1 = 0. Then, for p ∈ (0,∞), the martingale Hardy spaces HS
p is defined

by
HS

p = {f ∈ M : ‖S(f)‖p < ∞}.

The space F 0
p2 coincides with HS

p for p ∈ (0,∞). Moreover, if p > 1, then F 0
p2 = HS

p ∼ Lp.
Furthermore, martingale space BMOS−

2 is defined by

BMOS−
2 = {f ∈ M : ‖f‖BMOS−

2
< ∞},

where
‖f‖BMOS−

2
= sup

n≥0
‖En[S(f)2 − Sn−1(f)2]1/2‖∞

with convention S−1(f) = 0. The space F 0
∞2 coincides with BMOS−

2 . For the theory of
martingale Hardy spaces and martingale BMO spaces, we refer to [6], [10] and [16].

For v = (vn)n≥0 ∈ V, define u = (un)n≥0 by un = v−1
n for n ≥ 0. For α ∈ R and

f = (fn)n≥0 ∈ M, define a martingale Iu
αf = ((Iu

αf)n)n≥0 by

(Iu
αf)n =

n∑
k=0

uα
k−1dkf

with convention u−1 = u0, f−1 = 0 and (Iu
αf)−1 = 0.

Our first result is a lifting property of Iu
α. It is a direct consequence of the definition,

but for its importance, we give a proof.

Theorem 2.1. Let v = (vn)n≥0 ∈ V. Define u = (un)n≥0 by un = v−1
n for n ≥ 0.

Let α ∈ R. Then, Iu
α is an isometric isomorphism from Bs

pq to Bs+α
pq and F s

pq to F s+α
pq

respectively for p ∈ (0,∞], q ∈ (0,∞] and s ∈ R.

Proof. Since dn(Iu
αf) = uα

n−1dnf for n ≥ 0, it is clear that Iu
α is a bijection from M to M

with the inverse map Iu
−α. Moreover, we have

(2.4) vs+α
n−1dn(Iu

αf) = vs
n−1dnf for all n ≥ 0.

By (2.4), we have

‖Iu
αf‖Bs+α

pq
= ‖f‖Bs

pq
and ‖Iu

αf‖F s+α
pq

= ‖f‖F s
pq

.

This is the desired conclusion.

Our next result is a duality between martingale Besov-Triebel-Lizorkin spaces. For
p ∈ [1,∞], we denote by p′ the conjugate exponent of p, that is,

p′ =

 p/(p − 1) if 1 < p < ∞,
1 if p = ∞,
∞ if p = 1.

We use the notation As
pq to denote either Bs

pq or F s
pq for short.
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Theorem 2.2. Let v = (vn)n≥0 ∈ V, s ∈ R, p ∈ [1,∞) and q ∈ [1,∞). Denote by p′ and q′

the conjugate exponents of p and q respectively. Let (As
pq)

′ denote the topological dual space
of As

pq. Then, (As
pq)

′ is isomorphic to A−s
p′q′ under the pairing (g, f) 7→

∑∞
n=0 E[dngdnf ]

with convention g−1 = f−1 = 0. More precisely, there exists a positive constant C depending
only on p and q such that the following (1) and (2) hold:

(1) If g ∈ A−s
p′q′ , then the infinite sum

∑∞
n=0 E[dngdnf ] converges for every f ∈ As

pq.
Moreover, ∣∣∣∣∣

∞∑
n=0

E[dngdnf ]

∣∣∣∣∣ ≤ C‖g‖A−s

p′q′
‖f‖As

pq
(f ∈ As

pq).

(2) Conversely, for each Φ ∈ (As
pq)′, there exists h ∈ A−s

p′q′ such that

Φ(f) =
∞∑

n=0

E[dnhdnf ] (f ∈ As
pq)

and that ‖h‖A−s

p′q′
≤ C‖Φ‖(As

pq)′ .

The proof of Theorem 2.2 is given in Section 4.
Remark 2.2. The duality of the case s = 0 and A = F was proved in [17, Theorem 14 and
17].

Further, we investigate the complex interpolation between martingale Besov-Triebel-
Lizorkin spaces. We recall the definition of the first Calderón’s complex interpolation func-
tor.

Let S = {z ∈ C : 0 ≤ Rez ≤ 1} and S0 = {z ∈ C : 0 < Rez < 1}. Let (A0, A1) be
a compatible couple of Banach spaces. We denote by F(A0, A1) the set of all (A0 + A1)-
valued bounded continuous functions F on S which is holomorphic in S0 and moreover,
t 7→ F (j + it) (j = 0, 1) is a function from R into Aj satisfying ‖F (j + it)‖Aj → 0 as
|t| → ∞. As is shown in [2, Lemma 4.1.1], the space F(A0, A1) equipped with the norm

‖F‖F(A0,A1) = max
(

sup
t∈R

‖F (it)‖A0 , sup
t∈R

‖F (1 + it)‖A1

)
is a Banach space.

Definition 2.2. Let (A0, A1) be a compatible couple of Banach spaces. For θ ∈ [0, 1],
define [A0, A1]θ by

[A0, A1]θ = {f ∈ A0 + A1 : f = F (θ) for some F ∈ F(A0, A1)}

equipped with the norm

‖f‖[A0,A1]θ = inf
F (θ)=f

‖F‖F(A0,A1).

We now state our result on complex interpolation of martingale Besov-Triebel-Lizorkin
spaces.

Theorem 2.3. Let v ∈ V, θ ∈ (0, 1), s0, s1 ∈ R and p0, p1, q0, q1 ∈ [1,∞] with min(q0, q1) <
∞. Define s, p and q by

(2.5) s = (1 − θ)s0 + θs1,
1
p

=
1 − θ

p0
+

θ

p1
,

1
q

=
1 − θ

q0
+

θ

q1

with convention 1/∞ = 0. Then, the following (i) and (ii) hold.
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(i) [Bs0
p0q0

, Bs1
p1q1

]θ = Bs
pq with equivalence of norms.

(ii) Assume that 1 < p0, p1 < ∞. Then, [F s0
p0q0

, F s1
p1q1

]θ = F s
pq with equivalence of norms.

The proof of Theorem 2.3 is given in Section 5.
Remark 2.3. In the theory of Besov-Triebel-Lizorkin spaces on Euclidean spaces, the com-
plex interpolation is investigated for p0, p1, q0, q1 ∈ (0,∞] by using the framework of distri-
bution valued analytic functions ([15, Section 2.4.4]) and by using isomorphisms to sequence
spaces ([9, Theorem 9.1]). Since these methods are not known for martingales of general
filtrations, we restrict ourselves to the case where p0, p1, q0, q1 ∈ [1,∞].

In the next section, we will show that if s ∈ (0,∞), p ∈ [1,∞] and q ∈ (0,∞], then
Bs

pq ⊂ Lp and F s
pq ⊂ Lp. Further, in Section 6, we prove the following norm equivalence in

terms of mean oscillations.

Theorem 2.4. Let v ∈ V, s ∈ (0,∞), p ∈ [1,∞] and q ∈ (0,∞]. Let f ∈ Lp and iden-
tify f with the corresponding martingale (fn)n≥0 = (Enf)n≥0. Then, the following norm
equivalence holds:

(2.6) ‖f‖Bs
pq

∼
∥∥(‖vs

n−1En|f − fn−1|‖Lp)n≥0

∥∥
`q

.

Moreover, if 1 < p < ∞ and q ≥ 1, then

(2.7) ‖f‖F s
pq

∼
∥∥‖(vs

n−1En|f − fn−1|)n≥0‖`q

∥∥
Lp

.

Note that we do not need any assumption on {Fn}n≥0 in Theorems 2.1, 2.2, 2.3 and
2.4.

To study embeddings, we need some assumptions on {Fn}n≥0. B ∈ Fn is called an
atom (more precisely a (Fn, P )-atom), if any A ⊂ B with A ∈ Fn satisfies P (A) = P (B)
or P (A) = 0. Below, we assume that

(2.8) every σ-algebra Fn is generated by countable atoms.

We denote by A(Fn) the set of all atoms in Fn. We define Fn-measurable functions bn and
vn by

(2.9) bn =
∑

B∈A(Fn)

P (B)χB , vn = b−1
n .

We also assume that {Fn}n≥0 is regular, that is, there exists R ≥ 2 such that

(2.10) Enf ≤ REn−1f for all n ≥ 1 and non-negative integrable function f .

Further, for the sake of simplicity, we assume that

If B ∈ A(Fn−1), B′ ∈ A(Fn) and B′ ⊂ B,(2.11)
then P (B′) < P (B) for every n ≥ 1.
F0 = {∅, Ω}.(2.12)

If (2.8), (2.10), (2.11) and (2.12) hold, then, by [11, Lemma 3.3],(
1 +

1
R

)
bn ≤ bn−1 ≤ Rbn

for every n ≥ 1. Hence, we obtain that the sequence v = (vn)n≥0 defined in (2.9) belongs
to V.

As for embeddings, we show the following two theorems. For quasi-normed space X and
Y , we denote by X ↪→ Y if the identity map from X is a continuous map into Y .
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Theorem 2.5. Suppose that every σ-algebra Fn is generated by countable atoms. Fur-
thermore, assume that {Fn}n≥0 is regular with (2.11) and (2.12). Let v = (vn)n≥0 be the
sequence of functions defined in (2.9). Let s ∈ R, q ∈ (0,∞) and p0, p1 ∈ (0,∞) with
p0 < p1. Let α = 1/p0 − 1/p1. Then,

(2.13) Bs+α
p0q ↪→ Bs

p1q and F s+α
p0∞ ↪→ F s

p1q.

Theorem 2.6. Suppose that every σ-algebra Fn is generated by countable atoms. Fur-
thermore, assume that {Fn}n≥0 is regular with (2.11) and (2.12). Let v = (vn)n≥0 be the
sequence of functions defined in (2.9). Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Let As

pq denote
either Bs

pq or F s
pq. If s > 1/p, then

(2.14) As
pq ↪→ Bs−1/p

∞∞ .

The proofs of Theorems 2.5 and 2.6 are given in Section 7.
We apply our results to the boundedness of fractional integral for martingales. To

explain this application, we recall the definition of fractional integrals for martingales.

Definition 2.3. Let α ∈ R. Suppose that every σ-algebra Fn is generated by countable
atoms. Let bn be the function defined in (2.9). For a martingale (fn)n≥0, define a martingale
Iαf = ((Iαf)n)n≥0 by

(Iαf)n =
n∑

k=0

bα
k−1dkf

with convention b−1 = b0 and f−1 = 0. If α > 0, then we call Iαf the fractional integral of
f of order α.

Further, we recall the definition of martingale Lipschitz spaces ([16, page 7]). For s > 0
and f ∈ L1, let

‖f‖Λ−
1 (s) = sup

n≥0
sup

B∈A(Fn)

1
P (B)1+s

∫
B

|f(ω) − (En−1f)(ω)| dP (ω)

with convention E−1f = 0. We do not assume E0f = 0, different from [16]. Then define

(2.15) Λ−
1 (s) = {f ∈ L1 : ‖f‖Λ−

1 (s) < ∞}.

We regard Λ−
1 (s) as martingale spaces by the identification f ∈ L1 with the corresponding

martingale (Enf)n≥0.
We now state the application of our results. For two quasi-normed spaces X and Y , we

denote by B(X,Y ) the set of all bounded linear maps from X to Y .

Theorem 2.7. Suppose that every σ-algebra Fn is generated by countable atoms. Fur-
thermore, assume that {Fn}n≥0 is regular with (2.11) and (2.12). Let v = (vn)n≥0 be the
sequence of functions defined in (2.9). Let s ∈ R, p ∈ (0,∞), q ∈ (0,∞) and α ∈ (0,∞). If
α < 1/p, then define p1 by 1/p1 = 1/p − α. Then, the following boundedness holds for the
fractional integral Iα:

Iα ∈ B(F s
p∞, F s

p1q) if α < 1/p,(2.16)

Iα ∈ B(F s
pq, F

s
∞q) if α = 1/p and q ≥ 1,(2.17)

Iα ∈ B(F s
p∞, Bs+α−1/p

∞∞ ) if α > 1/p.(2.18)



MARTINGALE BESOV-TRIEBEL-LIZORKIN SPACES 7

Theorem 2.7 is an extension of the following known fact shown in [4], [11] and [14].
Indeed, we can obtain it as a corollary of Theorem 2.7.

Corollary 2.8. Under the assumptions in Theorem 2.7, the following boundedness holds
for the fractional integral Iα:

Iα ∈ B(HS
p ,HS

p1
) if α < 1/p,(2.19)

Iα ∈ B(HS
p , BMOS−

2 ) if α = 1/p,(2.20)

Iα ∈ B(HS
p , Λ−

1 (α − 1/p)) if α > 1/p.(2.21)

In Section 8, we give proofs of Theorem 2.7 and Corollary 2.8.

3 Some basic properties In this section, we show several basic properties of martingale
Besov spaces and martingale Triebel-Lizorkin spaces.

Proposition 3.1. Let v ∈ V, s ∈ R, p ∈ [1,∞] and q ∈ (0,∞]. Then Bs
pq and F s

pq are
quasi-Banach spaces.

Proof. Let As
pq denote either Bs

pq or F s
pq. Let (f (N))N≥1 be a Cauchy sequence in As

pq. By
(2.2), the sequence (dnf (N))N≥1 is a Cauchy sequence in Lp for every n ≥ 0. Let gn ∈ Lp

be the limit function of the sequence (dnf (N))N≥1. Noting that p ≥ 1, we have En−1gn = 0
for all n ≥ 1. Therefore, the sequence f = (fn)n≥0 defined by fn =

∑n
k=0 gk for n ≥ 0 is

a martingale. Hence, by a standard argument, we have that (f (N))N≥1 converges to f in
As

pq. We obtain the desired conclusion.

Proposition 3.2. Let v ∈ V, s ∈ R, p ∈ (0,∞] and q, q1, q2 ∈ (0,∞].

(1) If p < ∞ and q1 ≤ q2, then

(3.1) Bs
pq1

↪→ Bs
pq2

and F s
pq1

↪→ F s
pq2

.

(2) For each s ∈ R, p ∈ (0,∞] and q ∈ (0,∞],

(3.2) Bs
p min(p,q) ↪→ F s

pq ↪→ Bs
p max(p,q).

Proof. (3.1) is a consequence of the known fact ‖(an)n≥0‖`q2
≤ ‖(an)n≥0‖`q1

for any se-
quence (an)n≥0.

To show (3.2), we first note that

(3.3) Bs
pp = F s

pp,

which is derived from the definition. Furthermore, we recall the following fact for any
sequence of measurable functions (gn)n≥0, which is proved by the use of Minkowski’s in-
equality: ∥∥(‖gn‖Lp)n≥0

∥∥
`q

≤
∥∥‖(gn)n≥0‖`q

∥∥
Lp

if p ≤ q,(3.4) ∥∥(‖gn‖Lp)n≥0

∥∥
`q

≥
∥∥‖(gn)n≥0‖`q

∥∥
Lp

if p ≥ q.(3.5)

We now show (3.2) in case p < ∞. If p ≤ q, then, using (3.3), (3.1) and (3.4), we have (3.2)
as follows:

Bs
p min(p,q) = Bs

pp = F s
pp ↪→ F s

pq ↪→ Bs
pq = Bs

p max(p,q).
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Similarly, if p ≥ q, then we have (3.2) as follows:

Bs
p min(p,q) = Bs

pq ↪→ F s
pq ↪→ F s

pp = Bs
pp = Bs

p max(p,q).

Thus, we obtain (3.2) in case p < ∞.
If p = ∞ and q < ∞, then we have ‖f‖F s

∞q
≤ ‖f‖Bs

∞q
by the following inequality:

∞∑
k=n

|vs
k−1dkf |q ≤

∞∑
n=0

‖vs
n−1dnf‖q

L∞
= ‖f‖q

Bs
∞q

.

We also have ‖f‖Bs
∞∞

≤ ‖f‖F s
∞q

for q < ∞ by the following inequality:

|vs
n−1dnf |q = En[|vs

n−1dnf |q] ≤ En

[ ∞∑
k=n

|vs
k−1dkf |q

]
≤ ‖f‖q

F s
∞q

.

The proof is completed.

Concerning Theorem 2.4, we show the following proposition.

Proposition 3.3. Let v ∈ V, s > 0, p ∈ [1,∞], and q ∈ (0,∞]. Then,

(3.6) Bs
pq ↪→ Lp and F s

pq ↪→ Lp

under the identification of (fn)n≥0 ∈ As
pq with its limit function, where As

pq denote either
Bs

pq or F s
pq.

Proof. By Proposition 3.2, we only have to show that

Bs
p∞ ↪→ Lp.

Let f = (fn)n≥0 ∈ Bs
p∞. By (2.2), we have

∞∑
n=1

‖dnf‖Lp ≤
∞∑

n=1

δ
−s(n−1)
1 ‖vs

n−1dnf‖Lp ≤
∞∑

n=1

δ
−s(n−1)
1 ‖f‖Bs

p∞
< ∞.

Thus, (fn)n≥0 = (
∑n

k=0 dkf)n≥0 converges in Lp. Denote the limit function by the same
symbol f . Then we have Enf = fn and ‖f‖Lp ≤ 2(1 − δ−s

1 )−1‖f‖Bs
p∞

. The proof is
completed.

4 Proof of Theorem 2.2. In this section, we prove Theorem 2.2. To do this, we need
two lemmas.

Lemma 4.1. Let p ∈ [1,∞] and q ∈ [1,∞]. Let (fn)n≥0 be a sequence of integrable
functions. If 1 ≤ q ≤ p < ∞ or 1 < p ≤ q ≤ ∞, then, there exists a constant Cp,q

depending only on p and q such that∥∥‖(Enfn)n≥0‖`q

∥∥
Lp

≤ Cp,q

∥∥‖(fn)n≥0‖`q

∥∥
Lp

.

For the proof of Lemma 4.1, we refer to [1, Theorem 3.1].
Remark 4.1. Since ‖Enfn‖Lp ≤ ‖fn‖Lp by Jensen’s inequality for En, it is clear that∥∥(‖Enfn‖Lp)n≥0

∥∥
`q

≤
∥∥(‖fn‖Lp)n≥0

∥∥
`q

for p ∈ [1,∞] and q ∈ (0,∞].
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Lemma 4.2. Let q ∈ [1,∞). Denote by q′ the conjugate exponent of q. Then, there exists
a positive constant C depending only on q such that the following (1) and (2) hold:

(1) If g ∈ F 0
∞q′ , then the infinite sum

∑∞
n=0 E[dngdnf ] converges for every f ∈ F 0

1q.
Moreover, ∣∣∣∣∣

∞∑
n=0

E[dngdnf ]

∣∣∣∣∣ ≤ C‖g‖F 0
∞q′

‖f‖F 0
1q

(f ∈ F 0
1q).

(2) Conversely, for each Φ ∈ (F 0
1q)

′, there exists g ∈ F 0
∞q′ such that

Φ(f) =
∞∑

n=0

E[dngdnf ] (f ∈ F 0
1q)

and that ‖g‖F 0
∞q′

≤ C‖Φ‖(F 0
1q)′ .

For the proof of Lemma 4.2, we refer to [17, Theorem 17 and Corollary 10].

Remark 4.2. We remark on the difference between our convention and the one in [17]. In
[17, Corollary 10], it was shown the duality between H

Sq

1 = {(fn)n≥0 ∈ F 0
1q : f0 = 0} and

BMO−
q′ = {(fn)n≥0 ∈ F 0

∞q′ : f0 = 0}. For this difference, we note that

f ∈ F 0
1q if and only if f − f0 ∈ H

Sq

1 and f0 ∈ L1,

f ∈ F 0
∞q′ if and only if f − f0 ∈ BMO−

q′ and f0 ∈ L∞

with
‖f‖F 0

1q
∼ ‖f − f0‖F 0

1q
+ ‖f0‖L1 , ‖f‖F 0

∞q′
∼ ‖f − f0‖F 0

∞q′
+ ‖f0‖L∞ ,

where f = (fn)n≥0 and f − f0 = (fn − f0)n≥0.

Proof of Theorem 2.2. The proof below is a modification of the one given in [17, Theo-
rems 14-17], but, to include the Besov space case, we give a proof.

We first prove the case where p ∈ (1,∞). Let g ∈ A−s
p′q′ and f ∈ As

pq. If As
pq = F s

pq, then
using Hölder’s inequality, we have

∞∑
n=0

E [|dngdnf |] = E

[ ∞∑
n=0

|v−s
n−1dngvs

n−1dnf |

]
(4.1)

≤ E
[
‖(v−s

n−1dng)n≥0‖`q′‖(v
s
n−1dnf)n≥0‖`q

]
≤ ‖g‖F−s

p′q′
‖f‖F s

pq
.

If As
pq = Bs

pq, then similarly we have

∞∑
n=0

E [|dngdnf |] =
∞∑

n=0

E
[
|v−s

n−1dngvs
n−1dnf |

]
≤

∞∑
n=0

‖v−s
n−1dng‖Lp′‖vs

n−1dnf‖Lp

≤ ‖g‖B−s

p′q′
‖f‖Bs

pq
.

Therefore, we have obtained (1) in case p ∈ (1,∞).
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We next show (2) in case p ∈ (1,∞). Define Apq by

Apq =
{

`q(Lp) if As
pq = Bs

pq,
Lp(`q) if As

pq = F s
pq.

Let Φ ∈ (As
pq)

′ and let un = v−1
n for n ≥ 0. By Theorem 2.1, the functional f 7→ Φ ◦ Iu

s (f)
on A0

pq is bounded. We denote by i : A0
pq → Apq the isometric embedding defined by

i(f) = (dnf)n≥0 (f ∈ A0
pq). Using Hahn-Banach’s theorem, we take Ψ ∈ (Apq)′ such that

‖Ψ‖(Apq)′ = ‖Φ‖(As
pq)′ and that Ψ ◦ i = Φ ◦ Iu

s on A0
pq. Furthermore, using the fact that

(Apq)′ is isometric to Ap′q′ , we take g = (gn)n≥0 ∈ Ap′q′ such that

‖g‖Ap′q′ = ‖Φ‖(As
pq)′ and that Φ(f) =

∞∑
n=0

E[gnvs
n−1dnf ] for f ∈ As

pq.

Then define h = (hn)n≥0 by

hn =
n∑

k=0

vs
k−1(Ekgk − Ek−1gk)

with convention v−1 = v0 and E−1g0 = 0. It is clear that h = (hn)n≥0 is a martingale. If
As

pq = Bs
pq, then by Remark 4.1,∥∥∥(‖v−s

n−1dnh‖Lp′ )n≥0

∥∥∥
`q′

=
∥∥∥(‖Engn − En−1gn‖Lp′ )n≥0

∥∥∥
`q′

≤
∥∥∥(‖Engn‖Lp′ )n≥0

∥∥∥
`q′

+
∥∥∥(‖En−1gn‖Lp′ )n≥0

∥∥∥
`q′

≤ 2
∥∥∥(‖gn‖Lp′ )n≥0

∥∥∥
`q′

= 2‖Φ‖(Bs
pq)′ ,

that is, we have h ∈ B−s
p′q′ with ‖h‖B−s

p′q′
≤ 2‖Φ‖(Bs

pq)′ .

Similarly, if As
pq = F s

pq, then by Lemma 4.1,∥∥∥‖(v−s
n−1dnh)n≥0‖`q′

∥∥∥
Lp′

=
∥∥∥‖(Engn − En−1gn)n≥0‖`q′

∥∥∥
Lp′

≤
∥∥∥‖(Engn)n≥0‖`q′

∥∥∥
Lp′

+
∥∥∥‖(En−1gn)n≥0‖`q′

∥∥∥
Lp′

≤ 2Cp′,q′

∥∥∥‖(gn)n≥0‖`q′

∥∥∥
Lp′

= 2Cp′,q′‖Φ‖(F s
pq)′ ,

that is, we have h ∈ F−s
p′q′ with ‖h‖F−s

p′q′
≤ 2Cp′,q′‖Φ‖(F s

pq)′ .

Let f ∈ As
pq. Then, by the formal self-adjointness of En, we have

∞∑
n=0

E[dnhdnf ] =
∞∑

n=0

(E[En(vs
n−1gn)dnf ] − E[En−1(vs

n−1gn)dnf ])

=
∞∑

n=0

(E[gnvs
n−1En(dnf)] − E[gnvs

n−1En−1(dnf)])

=
∞∑

n=0

E[gnvs
n−1dnf ] = Φ(f).
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Hence, we have the desired conclusion for the case where p ∈ (1,∞).
For the case where As

pq = Bs
pq with p = 1, we can obtain the desired conclusion by the

same way as in the case where p ∈ (1,∞).
We now give a proof for the case where As

pq = F s
pq with p = 1. Let g ∈ F−s

∞q′ and let
u = (v−1

n )n≥0. Then, by (1) of Lemma 4.2 and Theorem 2.1, we obtain that the infinite
sum

∞∑
n=0

E[dngdnf ] =
∞∑

n=0

E[dn(Iu
s g)dn(Iu

−sf)]

converges and that∣∣∣∣∣
∞∑

n=0

E[dngdnf ]

∣∣∣∣∣ ≤ C‖Iu
s g‖F 0

∞q′
‖Iu

−sf‖F 0
1q

= C‖g‖F−s

∞q′
‖f‖F s

1q

for f ∈ F s
1q.

We next show (2). Let Φ ∈ (F s
1q)

′. By Theorem 2.1, Φ ◦ Iu
s belongs to (F 0

1q)
′. Using (2)

of Lemma 4.2, we take g ∈ F 0
∞q′ such that

(4.2) Φ ◦ Iu
s (f̃) =

∞∑
n=0

E[dngdnf̃ ] (f̃ ∈ F 0
1q)

and that ‖g‖F 0
∞q′

≤ C‖Φ ◦ Iu
s ‖(F 0

1q)′ = C‖Φ‖(F s
1q)′ . Let f ∈ F s

1q. We put h = Iu
−sg and

f̃ = Iu
−sf in (4.2). Then, we have ‖h‖F−s

∞q′
≤ C‖Φ‖(F s

1q)′ and

Φ(f) =
∞∑

n=0

E[dn(Iu
s h)dn(Iu

−sf)] =
∞∑

n=0

E[dnhdnf ].

Therefore, we have the desired conclusion for the case where As
pq = F s

pq with p = 1. The
proof is completed.

5 Proof of Theorem 2.3. In this section, we give a proof of Theorem 2.3. For the proof,
we need some lemmas.

For 0 ≤ x ≤ 1 and t ∈ R, let µ0(z, t), µ1(z, t) be the Poisson kernel on S = {0 ≤ Rez ≤
1}, that is,

µj(x + iy, t) =
e−π(t−y) sin πx

sin2 πx + (cos πx − eijπ−π(t−y))2
, j = 0, 1.

Lemma 5.1. Let (A0, A1) be a compatible couple of Banach spaces. Let f ∈ F(A0, A1).
Then, for 0 < θ < 1,

‖f(θ)‖[A0,A1]θ

≤
(

1
1 − θ

∫ ∞

−∞
‖f(it)‖A0µ0(θ, t)dt

)1−θ (
1
θ

∫ ∞

−∞
‖f(1 + it)‖A1µ1(θ, t)dt

)θ

.

For the proof of Lemma 5.1, see [2, Lemma 4.3.2].

Lemma 5.2. Let f be a non-negative bounded measurable function on Ω. Let a, b ∈ R and
let ρ(z) = az + b, z ∈ C. Suppose that either ess inf f > 0 or both a and b are positive.
Then, the map F : S → L∞ defined by F (z) = fρ(z) is holomorphic on S0.
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Proof. We first give the proof for the case where ess inf f > 0. Since fρ(z) = f b(fa)z, we
only have to prove in case where ρ(z) = z. Let z ∈ S0 and let h ∈ C \ {0} such that
z + h ∈ S0. By the fundamental theorem of calculus, we have∥∥∥∥fz+h − fz

h
− fz log f

∥∥∥∥
L∞

=

∥∥∥∥∥fz(log f)2
1
h

∫ h

0

(∫ t

0

fs ds

)
dt

∥∥∥∥∥
L∞

≤ C|h|,

where C = (1 + ‖f‖2
L∞

){log(‖f−1‖L∞ + ‖f‖L∞)}2. Therefore, we have F ′(z) = fz log f in
L∞.

We next give the proof for the case where both a and b are positive. Since fρ(z) =
fa(z+b/a), we only have to show in case where ρ(z) = z + c with c > 0. Then, as above, we
have ∥∥∥∥fz+c+h − fz+c

h
− fz+c log f

∥∥∥∥
L∞

=

∥∥∥∥∥(fc/2 log f)2
fz

h

∫ h

0

(∫ t

0

fs ds

)
dt

∥∥∥∥∥
L∞

≤ sup
0≤x≤‖f‖L∞

(xc/2 log x)2(1 + ‖f‖2
L∞

)|h|.

We have the desired conclusion.

Lemma 5.3. Let (cn)∞n=1 be a sequence of positive numbers and α > 0. Then,

∞∑
n=1

cn

(
n∑

k=1

ck

)α−1

≤ 1
min(α, 1)

( ∞∑
n=1

cn

)α

.

For the proof of Lemma 5.3, see [15, Section 2.4.6] and [13, Lemma 2.17].
In the next lemma, we give a dense subspace of Bs

pq and F s
pq. Let Mb be the set of all

martingales (fn)n≥0 which satisfies supn≥0 ‖fn‖L∞ < ∞.
Then define

T = {(fn)n≥0 ∈ Mb : there exists N ≥ 0 such that fn = fN for all n ≥ N} .

Lemma 5.4. Let v ∈ V. Let p ∈ [1,∞], q ∈ [1,∞) and s ∈ R. Then, T is dense in Bs
pq.

Moreover, if p < ∞, then T is also dense in F s
pq.

Proof. We first show that T is dense in F s
pq if p < ∞. Let f = (fn)n≥0 ∈ F s

pq. For N ≥ 0,
let fN = (fn∧N )n≥0 where n ∧ N = min(n, N). Then,

(5.1)

( ∞∑
n=0

|vs
n−1dn(f − fN )|q

)1/q

=

( ∞∑
n=N+1

|vs
n−1dnf |q

)1/q

.

By Lebesgue’s convergence theorem, we have

lim
N→∞

‖f − fN‖F s
pq

= 0.

Therefore, to obtain the conclusion, we only have to show that each fN is approximated by
some sequences in T .
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For R > 0, let g(N,R) = (En[fNχ{|fN |≤R}])n≥0. It is clear that g(N,R) ∈ T . Noting
that vn ≤ δn

2 for some δ2 > 1, we have( ∞∑
n=0

|vs
n−1dn(fN − g(N,R))|q

)1/q

=

(
N∑

n=0

|vs
n−1dn(fN − g(N,R))|q

)1/q

(5.2)

≤ δNs+

2

(
N∑

n=0

|dn(fN − g(N,R))|q
)1/q

≤ δNs+

2

N∑
n=0

|dn(fN − g(N,R))|

≤ 2δNs+

2

N∑
n=0

En|fNχ{|fN |>R}|

where s+ = max(s, 0). By (5.2), we have

‖fN − g(N,R)‖F s
pq

≤ 2δNs+

2

N∑
n=0

∥∥En|fNχ{|fN |>R}|
∥∥

Lp

≤ 2δNs+

2

N∑
n=0

‖fNχ{|fN |>R}‖Lp .

Since fN ∈ Lp, we have
lim

R→∞
‖fN − g(N,R)‖F s

pq
= 0.

Therefore, we have that T is dense in F s
pq.

We next show that T is dense in Bs
pq. As in (5.1), we have

(5.3)

( ∞∑
n=0

‖vs
n−1dn(f − fN )‖q

Lp

)1/q

=

( ∞∑
n=N+1

‖vs
n−1dnf‖q

Lp

)1/q

.

Note that (5.3) holds even if p = ∞. Then we have

lim
N→∞

‖f − fN‖Bs
pq

= 0.

Similarly, as in (5.2), we have( ∞∑
n=0

‖vs
n−1dn(fN − g(N,R))‖q

Lp

)1/q

≤ 2δNs+

2

N∑
n=0

‖fNχ{|fN |>R}‖Lp .

Hence, we obtain
lim

R→∞
‖fN − g(N,R)‖Bs

pq
= 0.

Therefore, we have the desired conclusion.

The following is the key lemma for the proof of Theorem 2.3.

Lemma 5.5. Let v ∈ V, θ ∈ (0, 1), s0, s1 ∈ R and p0, p1, q0, q1 ∈ [1,∞]. Define s, p and
q by (2.5) with convention 1/∞ = 0. Then, there exists a positive constant C1 depending
only on p0, p1, q0, q1 and θ such that the following (i) and (ii) hold.
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(i) For each f ∈ T , there exists H ∈ F(Bs0
p0q0

, Bs1
p1q1

) such that

(5.4) ‖H‖F(B
s0
p0q0 ,B

s1
p1q1 ) ≤ C1‖f‖Bs

pq
, H(θ) = f

and that

(5.5) H(z) ∈ T for all z ∈ S and sup
n≥0

sup
z∈S

‖dnH(z)‖L∞ < ∞.

(ii) Assume that 1 < p0, p1 < ∞. Then, for each f ∈ T , there exists H ∈ F(F s0
p0q0

, F s1
p1q1

)
such that

(5.6) ‖H‖F(F
s0
p0q0 ,F

s1
p1q1 ) ≤ C1‖f‖F s

pq
, H(θ) = f

and that (5.5).

Proof. We first show (i). To do this, we introduce functions ρ1, ρ2 and ρ3 defined on C by

ρ1(z) =
(

s
p

p0
− s0

)
(1 − z) +

(
s

p

p1
− s1

)
z,

ρ2(z) =
p

p0
(1 − z) +

p

p1
z,

ρ3(z) =
(

q

q0
− p

p0

)
(1 − z) +

(
q

q1
− p

p1

)
z,

with convention 1/∞ = 0 and ∞/∞ = 1.
Furthermore, define sgn : C → C by

sgn(z) =
{

z/|z| if z 6= 0,
0 if z = 0.

Let f ∈ T such that ‖f‖Bs
pq

= 1. For n ≥ 0, z ∈ S and ω ∈ Ω, define gn(z, ω) by

gn(z, ω) = vn−1(ω)ρ1(z)|dnf(ω)|ρ2(z)sgn(dnf(ω))‖vs
n−1dnf‖ρ3(z)

Lp
.

Then, define H(z) = (Hn(z))n≥0 by

(5.7) hn(z) = gn(z) − En−1[gn(z)], Hn(z) =
n∑

k=0

hk(z)

with convention E−1[g0(z)] = 0. H(z) is a martingale for every z ∈ S. Noting that
ρ1(θ) = ρ3(θ) = 0 and ρ2(θ) = 1, we have gn(θ, ω) = dnf(ω) and then have

(5.8) H(θ) = f.

By Lemma 5.2, we obtain that gn is an L∞-valued holomorphic function on S0. More-
over, since f ∈ T and Reρj (j = 1, 2, 3) is bounded on S, we have

(5.9) H(z) ∈ T for all z ∈ S.

Thus, H is a (Bs0
p0q0

+ Bs1
p1q1

)-valued holomorphic function on S0 with

(5.10) sup
n≥0

sup
z∈S

‖dnH(z)‖L∞ ≤ 2 sup
n≥0

sup
z∈S

‖gn(z)‖L∞ < ∞.
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For δ > 0, let Hδ(z) = eδ(z−θ)2H(z). Then, Hδ also satisfies Hδ(θ) = f and (5.5). We
now show that Hδ belongs to F(Bs0

p0q0
, Bs1

p1q1
). For j ∈ {0, 1}, noting that

Reρ1(j + it) = s
p

pj
− sj , Reρ2(j + it) =

p

pj
, Reρ3(j + it) =

q

qj
− p

pj
,

we have
|vsj

n−1gn(j + it)|pj = |vs
n−1dnf |p(‖vs

n−1dnf‖p
Lp

)(qpj/pqj)−1.

Hence, we have
‖vsj

n−1gn(j + it)‖Lpj
= (‖vs

n−1dnf‖Lp)q/qj .

Therefore,

‖H(j + it)‖
B

sj
pjqj

(5.11)

≤
∥∥∥(‖vsj

n−1gn(j + it)‖Lpj
)n≥0

∥∥∥
`qj

+
∥∥∥(‖vsj

n−1En−1[gn(j + it)]‖Lpj
)n≥0

∥∥∥
`qj

≤ 2
∥∥(‖vs

n−1dnf‖Lp)n≥0

∥∥1/qj

`q
= 2.

By (5.8) and (5.11), we obtain Hδ ∈ F(Bs0
p0q0

, Bs1
p1q1

) with

(5.12) ‖Hδ‖F(B
s0
p0q0 ,B

s1
p1q1 ) ≤ 2max(eδθ2

, eδ(1−θ)2), Hδ(θ) = f.

Thus, by (5.12), (5.9) and (5.10), we obtain (i).
We now show (ii). In this case, we define ρ1, ρ2 and ρ3 by

ρ1(z) =
(

s
q

q0
− s0

)
(1 − z) +

(
s

q

q1
− s1

)
z,

ρ2(z) =
q

q0
(1 − z) +

q

q1
z,

ρ3(z) =
(

p

p0
− q

q0

)
(1 − z) +

(
p

p1
− q

q1

)
z.

Let f ∈ T such that ‖f‖F s
pq

= 1. For n ≥ 0, z ∈ S and ω ∈ Ω, define gn(z, ω) by

gn(z, ω) = vn−1(ω)ρ1(z)|dnf(ω)|ρ2(z)sgn(dnf(ω)) (1 + Gn(ω))ρ3(z)

where Gn(ω) denotes
Gn(ω) = ‖(vk−1(ω)sdkf(ω))0≤k≤n‖`q

.

Then, by the same way as in (5.7), we obtain martingales H(z) = (Hn(z))n≥0 such that
H(θ) = f , H(z) ∈ T for all z ∈ S and that z 7→ H(z) is holomorphic from S0 into
F s0

p0q0
+ F s1

p1q1
. Furthermore, Hδ(z) = eδ(z−θ)2H(z) satisfies Hδ(θ) = f and (5.5) for every

δ > 0.
We now show that Hδ belongs to F(F s0

p0q0
, F s1

p1q1
) for every δ > 0. We first show it in

case where q0, q1 < ∞. Since ρ3(θ) = 0, we have ρ3(0)ρ3(1) < 0. We may assume that
ρ3(0) < 0 because the other case is proved by the same way. Note that

Reρ1(j + it) = s
q

qj
− sj , Reρ2(j + it) =

q

qj
, Reρ3(j + it) =

p

pj
− q

qj
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for j = 0, 1. Then, by the assumption ρ3(0) < 0, we have

(vs0
n−1|gn(it)|)q0 = (vs

n−1|dnf |)q(1 + Gn)ρ3(0)q0

≤ (vs
n−1|dnf |)qGρ3(0)q0

n

= (vs
n−1|dnf |)q

(
n∑

k=0

(vs
k−1|dkf |)q

)(pq0/qp0)−1

and

(vs1
n−1|gn(1 + it)|)q1 = (vs

n−1|dnf |)q(1 + Gn)ρ3(1)q1

≤ C(vs
n−1|dnf |)q{1 + Gρ3(1)q1

n }

= C(vs
n−1|dnf |)q

1 +

(
n∑

k=0

(vs
k−1|dkf |)q

)(pq1/qp1)−1
 ,

where C is a positive constant depending only on ρ3(1)q1. Using Lemma 5.3 and the
assumption ρ3(0) < 0, which is equivalent to pq0 < qp0, we have

( ∞∑
n=0

(vs0
n−1|gn(it)|)q0

)1/q0

≤

 ∞∑
n=0

(vs
n−1|dnf |)q

(
n∑

k=0

(vs
k−1|dkf |)q

)(pq0/qp0)−1
1/q0

≤ 1
min((pq0/qp0), 1)


( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q


p/p0

=
qp0

pq0


( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q


p/p0

.

Similarly, we have

( ∞∑
n=0

(vs1
n−1|gn(1 + it)|)q1

)1/q1

(5.13)

≤ C1/q1

( ∞∑
n=0

(vs
n−1|dnf |)q

)1/q1

+ C1/q1


( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q


p/p1

.

Since ‖f‖F s
pq

= 1, we have

∥∥∥∥∥∥∥


( ∞∑
n=0

(vs
n−1|dnf |)q

)1/q


p/pj

∥∥∥∥∥∥∥
Lpj

=

∥∥∥∥∥∥
( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q
∥∥∥∥∥∥

p/pj

Lp

= 1

for j = 0, 1. Furthermore, since the assumption ρ3(0) < 0 is equivalent to p/p1 > q/q1, we
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have ∥∥∥∥∥∥
( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q1
∥∥∥∥∥∥

Lp1

=

∥∥∥∥∥∥∥


( ∞∑
n=0

(vs
n−1|dnf |)q

)1/q


q/q1
∥∥∥∥∥∥∥

Lp1

≤

∥∥∥∥∥∥∥


( ∞∑
n=0

(vs
n−1|dnf |)q

)1/q


p/p1
∥∥∥∥∥∥∥

qp1/pq1

Lp1

=

∥∥∥∥∥∥
( ∞∑

n=0

(vs
n−1|dnf |)q

)1/q
∥∥∥∥∥∥

q/q1

Lp

= 1.

Hence, by Lemma 4.1, we have

‖H(j + it)‖
F

sj
pjqj

(5.14)

=

∥∥∥∥∥∥
( ∞∑

n=0

(vsj

n−1|hn(j + it)|)qj

)1/qj

∥∥∥∥∥∥
Lpj

≤

∥∥∥∥∥∥
( ∞∑

n=0

(vsj

n−1|gn(j + it)|)qj

)1/qj

∥∥∥∥∥∥
Lpj

+

∥∥∥∥∥∥
( ∞∑

n=0

(vsj

n−1|En−1[gn(j + it)]|)qj

)1/qj

∥∥∥∥∥∥
Lpj

≤ (1 + Cpj ,qj )

∥∥∥∥∥∥
( ∞∑

n=0

(vsj

n−1|gn(j + it)|)qj

)1/qj

∥∥∥∥∥∥
Lpj

≤ C ′,

where C ′ is a positive constant depending only on p0, p1, q0, q1 and θ. Therefore, we obtain
Hδ ∈ F(F s0

p0q0
, F s1

p1q1
) with

‖Hδ‖F(F
s0
p0q0 ,F

s1
p1q1 ) ≤ C ′ max(eδθ2

, eδ(1−θ)2).

Hence, we have the desired conclusion for the case where q0, q1 < ∞.
For the case where q0 < ∞ and q1 = ∞, we replace (5.13) by

sup
n≥0

|vs1
n−1gn(1 + it)| = sup

n≥0
(1 + Gn)p/p1 ≤ C(1 + ‖(vs

n−1dnf)n≥0‖p/p1
`q

)

where C is a positive constant depending only on p/p1. Furthermore, we replace (5.14) for
j = 1 by

‖H(1 + it)‖F
s1
p1∞

=
∥∥∥∥sup

n≥0
vs1

n−1|hn(1 + it)|
∥∥∥∥

Lp1

≤ (1 + Cp1,∞)
∥∥∥∥sup

n≥0
vs1

n−1|gn(1 + it)|
∥∥∥∥

Lp1

≤ C(1 + Cp1,∞)
(

1 +
∥∥∥‖(vs

n−1dnf)n≥0‖p/p1
`q

∥∥∥
Lp1

)
≤ C ′.
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The rest of the proof is the same as in the case of q0, q1 < ∞. We have the desired conclusion
for the case where q0 < ∞ and q1 = ∞. Similarly, we can prove the case where q0 = ∞ and
q1 < ∞.

We now prove the case where q0 = q1 = ∞. We replace (5.13) by

sup
n≥0

|vsj

n−1gn(j + it)| = sup
n≥0

(1 + Gn)p/pj ≤ C(1 + ‖(vs
n−1dnf)n≥0‖

p/pj

`q
)

where C is a positive constant depending only on p/p0 and p/p1.
Then, we replace (5.14) by

‖H(j + it)‖
F

sj
pj∞

=
∥∥∥∥sup

n≥0
v

sj

n−1|hn(j + it)|
∥∥∥∥

Lpj

≤ (1 + Cpj ,∞)
∥∥∥∥sup

n≥0
v

sj

n−1|gn(j + it)|
∥∥∥∥

Lpj

≤ C(1 + Cpj ,∞)
(

1 +
∥∥∥‖(vs

n−1dnf)n≥0‖
p/pj

`q

∥∥∥
Lpj

)
≤ C ′.

The rest of the proof is the same as in the case of q0, q1 < ∞. The proof is completed.

We now give the proof of Theorem 2.3.

Proof of Theorem 2.3. Combining θ ∈ (0, 1) and min(q0, q1) < ∞, we have q < ∞. Hence,
combining Lemma 5.4 and Lemma 5.5, we obtain that ‖f‖[B

s0
p0q0 ,B

s1
p1q1 ]θ

≤ C1‖f‖Bs
pq

for all
f ∈ Bs

pq, where C1 is the constant in Lemma 5.5. Similarly, if 1 < p0, p1 < ∞, then we have
‖f‖[F

s0
p0q0 ,F

s1
p1q1 ]θ

≤ C1‖f‖F s
pq

for all f ∈ F s
pq. Therefore, we only have to show the converse

inequality.
We first give a proof for the case of martingale Besov spaces. Let f ∈ [Bs0

p0q0
, Bs1

p1q1
]θ. Let

F ∈ F(Bs0
p0q0

, Bs1
p1q1

) such that F (θ) = f . From the fact ‖dng‖Lpj
≤ C‖g‖

B
sj
pjqj

, where C is

a positive constant independent of g = (gn)n≥0 ∈ M, we have that v
s0(1−z)+s1z
n−1 dnF (z)

belongs to F(Lp0 , Lp1) by a standard argument. Hence, by Lemma 5.1 with the fact
[Lp0 , Lp1 ]θ = Lp ([2, Theorem 5.1.1]), we obtain that

(5.15) ‖vs
n−1dnF (θ)‖Lp ≤ a1−θ

n bθ
n

where

an =
1

1 − θ

∫ ∞

−∞
‖vs0

n−1dnF (it)‖Lp0
µ0(θ, t) dt,

bn =
1
θ

∫ ∞

−∞
‖vs1

n−1dnF (1 + it)‖Lp1
µ1(θ, t) dt.

Using Minkowski’s inequality and the fact that

(5.16)
1

1 − θ

∫ ∞

−∞
µ0(θ, t) dt =

1
θ

∫ ∞

−∞
µ1(θ, t) dt = 1,

we have

‖(an)n≥0‖`q0
≤ 1

1 − θ

∫ ∞

−∞
‖F (it)‖B

s0
p0q0

µ0(θ, t) dt ≤ ‖F‖F(B
s0
p0q0 ,B

s1
p1q1 ),(5.17)

‖(bn)n≥0‖`q1
≤ 1

θ

∫ ∞

−∞
‖F (1 + it)‖B

s1
p1q1

µ1(θ, t) dt ≤ ‖F‖F(B
s0
p0q0 ,B

s1
p1q1 ).
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Therefore, using (5.15), Hölder’s inequality and (5.17), we obtain

‖f‖Bs
pq

= ‖F (θ)‖Bs
pq

=
∥∥(‖vs

n−1dnF (θ)‖Lp)n≥0

∥∥
`q

≤
∥∥(a1−θ

n bθ
n)n≥0

∥∥
`q

≤ ‖(an)n≥0‖1−θ
`q0

‖(bn)n≥0‖θ
`q1

≤ (‖F‖F(B
s0
p0q0 ,B

s1
p1q1 ))

1−θ(‖F‖F(B
s0
p0q0 ,B

s1
p1q1 ))

θ = ‖F‖F(B
s0
p0q0 ,B

s1
p1q1 ).

Thus, we obtain the desired conclusion for the case of martingale Besov spaces.
We next give the proof for the case of martingale Triebel-Lizorkin spaces.
Let f ∈ [F s0

p0q0
, F s1

p1q1
]θ. Let G ∈ F(F s0

p0q0
, F s1

p1q1
) such that G(θ) = f . Let h ∈ T such that

‖h‖F−s

p′q′
= 1. Noting that 1 < p0, p1 < ∞, we use Lemma 5.5 to take H ∈ F(F−s0

p′
0q′

0
, F−s1

p′
1q′

1
)

such that H(θ) = h, ‖H‖F(F
−s0
p′
0q′0

,F
−s1
p′
1q′1

)
≤ C1 and that H satisfies (5.5). Then define

Dh(z) =
∑∞

n=0 E [dnG(z)dnH(z)]. Since H satisfies these conditions mentioned above, we
have that Dh ∈ F(C, C). Moreover, as in (4.1), we have

|Dh(j + it)| ≤ ‖G(j + it)‖
F

sj
pjqj

‖H(j + it)‖
F

−sj

p′
j

q′
j

(5.18)

≤ ‖G‖F(F
s0
p0q0 ,F

s1
p1q1 ) ‖H‖F(F

−s0
p′
0q′0

,F
−s1
p′
1q′1

)

≤ C1‖G‖F(F
s0
p0q0 ,F

s1
p1q1 )

where j = 0, 1. Using Lemma 5.1, (5.18) and (5.16), we obtain that

|Dh(θ)|

≤
(

1
1 − θ

∫ ∞

−∞
|Dh(it)|µ0(θ, t) dt

)1−θ (
1
θ

∫ ∞

−∞
|Dh(1 + it)|µ0(θ, t) dt

)θ

≤ (C1‖G‖F(F
s0
p0q0 ,F

s1
p1q1 ))

1−θ(C1‖G‖F(F
s0
p0q0 ,F

s1
p1q1 ))

θ = C1‖G‖F(F
s0
p0q0 ,F

s1
p1q1 )

for all h ∈ T such that ‖h‖F−s

p′q′
= 1 and for all G ∈ F(F s0

p0q0
, F s1

p1q1
) such that G(θ) = f .

Therefore, we have

(5.19) sup
h∈T :‖h‖

F
−s
p′q′

=1

|Dh(θ)| ≤ C1‖f‖[F
s0
p0q0 ,F

s1
p1q1 ]θ

.

For g = (gn)n≥0 ∈ M and N ≥ 0, let gN = (gn∧N )n≥0, where n ∧ N = min(n,N). Define

(F s
pq)

N = {gN : g ∈ F s
pq}, T N = {gN : g ∈ T }.

Then, it is clear that (F s
pq)

N is a closed subspace of F s
pq. Moreover, by the same way as in

Lemma 5.4, we have that T N is dense in (F−s
p′q′)N , even if q′ = ∞. Hence, by Theorem 2.2

and (5.19), we have

‖fN‖F s
pq

≤ C sup
h∈T N :‖h‖

F
−s
p′q′

=1

|Dh(θ)| ≤ CC1‖f‖[F
s0
p0q0 ,F

s1
p1q1 ]θ

where C and C1 are positive constants in Theorem 2.2 and in Lemma 5.5 respectively. Using
monotone convergence theorem, we obtain

‖f‖F s
pq

= sup
N≥0

‖fN‖F s
pq

≤ CC1‖f‖[F
s0
p0q0 ,F

s1
p1q1 ]θ
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for all f ∈ [F s0
p0q0

, F s1
p1q1

]θ. Therefore, we obtain the desired conclusion for the case of
martingale Triebel-Lizorkin spaces. The proof is completed.

6 Proof of Theorem 2.4. In this section, we give a proof of Theorem 2.4.

Proof of Theorem 2.4. Since |dnf | = |En(f − fn−1)| ≤ En|f − fn−1|, we have

‖f‖Bs
pq

≤
∥∥(‖vs

n−1En|f − fn−1|‖Lp)n≥0

∥∥
`q

,

‖f‖F s
pq

≤
∥∥‖(vs

n−1En|f − fn−1|)n≥0‖`q

∥∥
Lp

.

We now show the converse inequalities. Let δ1 be the constant in (2.1). We first show (2.6)
for q = ∞. By (2.1) and the assumption s > 0, we have

(6.1) vs
n−1|f − fn−1| ≤ vs

n−1

∞∑
k=n

|dkf | ≤
∞∑

k=n

δ
s(n−k)
1 |vs

k−1dkf |.

From Jensen’s inequality for En and (6.1), we have

∥∥vs
n−1En|f − fn−1|

∥∥
Lp

≤
∥∥vs

n−1|f − fn−1|
∥∥

Lp
≤

∞∑
k=n

δ
s(n−k)
1 ‖vs

k−1dkf‖Lp ≤
‖f‖Bs

p∞

1 − δ−s
1

.

Therefore, we have (2.6) for q = ∞.
To show (2.7) for q = ∞, let G = supn≥0 vs

n−1|dnf |. Then, by (6.1), we have

vs
n−1En|f − fn−1| ≤

∞∑
k=n

δ
s(n−k)
1 En|vs

k−1dkf | ≤ EnG

1 − δ−s
1

.

Therefore, using Doob’s inequality, we have∥∥∥∥sup
n≥0

vs
n−1En|f − fn−1|

∥∥∥∥
Lp

≤ (1 − δ−s
1 )−1

∥∥∥∥sup
n≥0

EnG

∥∥∥∥
Lp

≤ p

(p − 1)(1 − δ−s
1 )

‖G‖Lp

=
p

(p − 1)(1 − δ−s
1 )

‖f‖F s
p∞

.

Thus, we have (2.7) for q = ∞.
We next show (2.6) for 0 < q < ∞. If q ≤ 1, then we have

∞∑
n=0

( ∞∑
k=n

δ
s(n−k)
1 ‖vs

k−1dkf‖Lp

)q

≤
∞∑

n=0

∞∑
k=n

δ
sq(n−k)
1 ‖vs

k−1dkf‖q
Lp

=
∞∑

k=0

(
k∑

n=0

δ
sq(n−k)
1

)
‖vs

k−1dkf‖q
Lp

≤ (1 − δ−sq
1 )−1

∞∑
k=0

‖vs
k−1dkf‖q

Lp
.
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If 1 < q < ∞, then, denoting by q′ the conjugate exponent of q, we have

∞∑
n=0

( ∞∑
k=n

δ
s(n−k)
1 ‖vs

k−1dkf‖Lp

)q

=
∞∑

n=0

( ∞∑
k=n

δ
s(n−k)/q′

1 δ
s(n−k)/q
1 ‖vs

k−1dkf‖Lp

)q

(6.2)

≤
∞∑

n=0

( ∞∑
k=n

δ
s(n−k)
1

)q/q′
∞∑

k=n

δ
s(n−k)
1 ‖vs

k−1dkf‖q
Lp

= (1 − δ−s
1 )−q/q′

∞∑
k=0

(
k∑

n=0

δ
s(n−k)
1

)
‖vs

k−1dkf‖q
Lp

≤ (1 − δ−s
1 )−q

∞∑
k=0

‖vs
k−1dkf‖q

Lp
.

Therefore, we have

(6.3)
∞∑

n=0

( ∞∑
k=n

δ
s(n−k)
1 ‖vs

k−1dkf‖Lp

)q

≤ Cq
∞∑

k=0

‖vs
k−1dkf‖q

Lp

where C is a positive constant depending only on s, q and δ1. Combining Remark 4.1, (6.3)
and (6.1), we have( ∞∑

n=0

∥∥vs
n−1En|f − fn−1|

∥∥q

Lp

)1/q

≤

( ∞∑
n=0

∥∥vs
n−1|f − fn−1|

∥∥q

Lp

)1/q

≤ C‖f‖Bs
pq

.

Thus, we obtain (2.6).
We now show (2.7) for 1 ≤ q < ∞. Similarly as in (6.2), we have

(6.4)
∞∑

n=0

( ∞∑
k=n

δ
s(n−k)
1 vs

k−1|dkf |

)q

≤ (1 − δ−s
1 )−q

∞∑
k=0

(vs
k−1|dkf |)q.

Combining (6.1) and (6.4), we have( ∞∑
n=0

(vs
n−1|f − fn−1|)q

)1/q

≤ (1 − δ−s
1 )−1

( ∞∑
k=0

(vs
k−1|dkf |)q

)1/q

.

Therefore, using Lemma 4.1, we have∥∥∥∥∥∥
( ∞∑

n=0

(vs
n−1En|f − fn−1|)q

)1/q
∥∥∥∥∥∥

Lp

≤ Cp,q

∥∥∥∥∥∥
( ∞∑

n=0

(vs
n−1|f − fn−1|)q

)1/q
∥∥∥∥∥∥

Lp

≤ Cp,q

1 − δ−s
1

∥∥∥∥∥∥
( ∞∑

k=0

(vs
k−1|dkf |)q

)1/q
∥∥∥∥∥∥

Lp

.

We have the desired conclusion.
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7 Proofs of Theorems 2.5 and 2.6. In this section, we give proofs of Theorems 2.5
and 2.6. As is described in Section 2, we postulate following conditions:

Every σ-algebra Fn is generated by countable atoms.(7.1)
{Fn}n≥0 is regular.(7.2)
If B ∈ A(Fn−1), B′ ∈ A(Fn) and B′ ⊂ B,(7.3)
then P (B′) < P (B) for every n ≥ 1.
F0 = {∅, Ω},(7.4)

where A(Fn) stands for the set of all atoms in Fn. Define Fn-measurable functions bn and
vn by

(7.5) bn =
∑

B∈A(Fn)

P (B)χB , vn = b−1
n .

By [11, Lemma 3.3], bn satisfy

(7.6)
(

1 +
1
R

)
bn ≤ bn−1 ≤ Rbn

where R is the constant in (2.10). Hence, v = (vn)n≥0 in (7.5) belongs to V.
We start with the following lemma.

Lemma 7.1. Let p0, p1 ∈ (0,∞) with p0 < p1. Let n be a non-negative integer. Let
α = 1/p0 − 1/p1. Let f = (fn)n≥0 ∈ M. If dnf ∈ Lp1 , then

(7.7) ‖dnf‖Lp1
≤ Rα‖vα

n−1dnf‖Lp0

with convention v−1 = v0 and f−1 = 0, where R is the constant in (2.10).

Proof. If n = 0, then ‖dnf‖Lp1
= ‖vα

n−1dnf‖Lp0
because d0f is constant and v−1 = v0 = 1

by F0 = {∅, Ω}. Since R ≥ 2, we have (7.7) for n = 0.
For n ≥ 1, let B ∈ A(Fn). Then, since dnf is constant on B, we have

(7.8) ‖χBdnf‖Lp1
= P (B)1/p1‖χBdnf‖L∞ = P (B)1/p1−1/p0‖χBdnf‖Lp0

.

Using (7.8), α = 1/p0 − 1/p1 and vn ≤ Rvn−1, we have

(7.9) ‖χBdnf‖Lp1
= ‖χBvα

ndnf‖Lp0
≤ Rα‖χBvα

n−1dnf‖Lp0
.

Using (7.9), we have

‖dnf‖p1
Lp1

=
∑

B∈A(Fn)

‖χBdnf‖p1
Lp1

≤ Rαp1
∑

B∈A(Fn)

‖χBvα
n−1dnf‖p1

Lp0

≤ Rαp1

 ∑
B∈A(Fn)

‖χBvα
n−1dnf‖p0

Lp0

p1/p0

= Rαp1‖vα
n−1dnf‖p1

Lp0
.

We have the desired conclusion.
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We next show the following lemma.

Lemma 7.2. Let p ∈ (0,∞) and α ∈ (0,∞). Let n be a non-negative integer. Let f ∈ Fα
p∞

with ‖f‖F α
p∞

= 1. Then,

|vα
n−1dnf | ≤ R1/pv

1/p
n−1

with convention v−1 = v0 and f−1 = 0, where R is the constant in (2.10).

Proof. Let B ∈ A(Fn). Since vα
n−1dnf is constant on B, we have

χB |vα
n−1dnf | = χB

(
1

P (B)

∫
B

|vα
n−1(ω)dnf(ω)|p dP (ω)

)1/p

≤ χB

P (B)1/p

(∫
Ω

|vα
n−1(ω)dnf(ω)|p dP (ω)

)1/p

≤ χBv1/p
n

(∫
Ω

sup
n≥0

|vα
n−1(ω)dnf(ω)|p dP (ω)

)1/p

≤ χBR1/pv
1/p
n−1‖f‖F α

p∞
= χBR1/pv

1/p
n−1.

The proof is completed.

We now show Theorems 2.5 and 2.6.

Proof of Theorem 2.5. By Theorem 2.1, we only have to give a proof for the case where
s = 0. We first show that

(7.10) ‖f‖B0
p1q

≤ Rα‖f‖Bα
p0q

.

Indeed, using Lemma 7.1, we have (7.10) as follows:

‖f‖B0
p1q

=

( ∞∑
n=0

‖dnf‖q
Lp1

)1/q

≤ Rα

( ∞∑
n=0

‖vα
n−1dnf‖q

Lp0

)1/q

= Rα‖f‖Bα
p0q

.

We next show

(7.11) ‖f‖F 0
p1q

≤ Rα‖f‖F α
p0∞

.

Let f ∈ Fα
p0∞ with ‖f‖F α

p0∞
= 1. Let

F (ω) = sup
n≥0

|vα
n−1(ω)dnf(ω)|, G(ω) =

( ∞∑
n=0

|dnf(ω)|q
)1/q

.

We show

(7.12) G ≤ CF p0/p1

where C is a positive constant depending only on p0, p1, q and R. Indeed, using Lemma 7.2
with p = p0 and α = 1/p0 − 1/p1, we have

|dnf | = v−α
n−1|vα

n−1dnf |

≤ min(v−α
n−1F, v−α

n−1R
1/p0v

1/p0
n−1 )

= min(v−α
n−1F,R1/p0v

1/p1
n−1 ).
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Therefore, noting the convention v−1 = v0 and the fact (1 + 1/R)vn−1 ≤ vn ≤ Rvn−1, we
have (7.12) as follows:

Gq ≤
∞∑

n=0

min(v−α
n−1F,R1/p0v

1/p1
n−1 )q

≤ 2
∞∑

n=1

min(v−α
n−1F,R1/p0v

1/p1
n−1 )q

≤ 2
∞∑

n=1

1
log(1 + 1/R)

∫ vn

vn−1

min(v−α
n−1F,R1/p0v

1/p1
n−1 )q dt

t

≤ 2
log(1 + 1/R)

∞∑
n=1

∫ vn

vn−1

min(Rαt−αF,R1/p0t1/p1)q dt

t

≤ 2Rq/p0

log(1 + 1/R)

∫ ∞

1

min(t−αF, t1/p1)q dt

t

≤ 2Rq/p0

q log(1 + 1/R)

(
1
α

+ p1

)
F qp0/p1 .

By (7.12), we have

‖f‖F 0
p1q

= ‖G‖Lp1
≤ C‖F‖p0/p1

Lp0
= C‖f‖p0/p1

F α
p0∞

= C.

We have the desired conclusion.

Proof of Theorem 2.6. By Theorem 2.1 and Proposition 3.2, we only have to show B0
p∞ ↪→

B
−1/p
∞∞ . As in (7.8), we have

‖v−1/p
n−1 dnf‖L∞ ≤ R1/p‖v−1/p

n dnf‖L∞ ≤ R1/p sup
B∈A(Fn)

‖χBdnf‖Lp ≤ R1/p‖f‖B0
p∞

.

We obtain the desired conclusion.

8 Proof of Theorem 2.7 and Corollary 2.8. In this section, we prove Theorem 2.7
and Corollary 2.8. To do this, we need the following John-Nirenberg type lemma.

Lemma 8.1. Let p ∈ (0,∞) and q ∈ [1,∞). Then, the following equivalence holds:

‖f‖F 0
∞q

∼ sup
n≥0

∥∥∥∥∥∥∥En

( ∞∑
k=n

|dkf |q
)p/q

1/p
∥∥∥∥∥∥∥

L∞

(f ∈ F 0
∞q).

For the proof of Lemma 8.1, we refer to [17, Theorem 2].

Lemma 8.2. Suppose that every σ-algebra Fn is generated by countable atoms. Further-
more, assume that {Fn}n≥0 is regular with (2.11) and (2.12). Let v = (vn)n≥0 be the
sequence of functions defined in (2.9). Let s > 0. Then, Bs

∞∞ = Λ−
1 (s) with equivalent

norms.
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Proof. By Theorem 2.4 and the regularity of {Fn}n≥0, we have

‖f‖Bs
∞∞

∼ sup
n≥0

∥∥vs
n−1En|f − fn−1|

∥∥
L∞

∼ sup
n≥0

‖vs
nEn|f − fn−1|‖L∞

= sup
n≥0

sup
B∈A(Fn)

1
P (B)1+s

∫
B

|f(ω) − (En−1f)(ω)| dP (ω)

= ‖f‖Λ−
1 (s).

We have the desired conclusion.

Proof of Theorem 2.7. We obtain (2.16) and (2.18) from (2.13) and (2.14) respectively. To
show (2.17), let f ∈ F 0

pq and α = 1/p. Noting that |dkIαf | = |bα
k−1dkf | ≤ bα

n−1|dkf | for
k ≥ n and using the regularity of {Fn}n≥0, we have( ∞∑

k=n

|dkIαf |q
)1/q

≤ bα
n−1

( ∞∑
k=n

|dkf |q
)1/q

≤ Rαbα
n

( ∞∑
k=0

|dkf |q
)1/q

.

Then, for B ∈ A(Fn), we have

E

χB

( ∞∑
k=n

|dkIαf |q
)p/q

 ≤ RαpP (B)αpE

χB

( ∞∑
k=0

|dkf |q
)p/q


≤ RP (B)‖f‖p

F 0
pq

by α = 1/p. Since Fn is generated by A(Fn), this means

(8.1) En

( ∞∑
k=n

|dkIαf |q
)p/q

1/p

≤ Rα‖f‖F 0
pq

.

Combining (8.1), Lemma 8.1 and Theorem 2.1, we obtain the desired conclusion.

Proof of Corollary 2.8. Taking s = 0, q = 2 in (2.16) and combining with the fact Lp(`2) ↪→
Lp(`∞), we obtain (2.19). Similarly, taking s = 0, q = 2 in (2.17), we obtain (2.20). Taking
s = 0 in (2.18), we obtain (2.21) by Lemma 8.2 and by the fact Lp(`2) ↪→ Lp(`∞). The
proof is completed.
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